顺序表验证实验作业

合集下载

顺序表的基本操作实验报告

顺序表的基本操作实验报告

竭诚为您提供优质文档/双击可除顺序表的基本操作实验报告篇一:顺序表的基本操作--实验报告实验报告附:源程序:#include#definemaxsize100#defineerror0#defineok1typedefstruct{intelem[maxsize];intlast;}seqList;intInsList(seqList*L,inta,inti);intLocate(seqListL,inte);intDel(seqList*L,inti);voidmain(){inti,e,a;intlist1,list2;if(L.elem[st]==-1)seqListL;st=0;for(i=0;i list1=InsList(if(list1){}elseprintf("插入失败!");printf("要查找的元素为\n");scanf("%d",printf("插入后的顺序表为:\n");for(i=0;i list2=Locate(L,e);if(!list2)printf("该元素不存在\n");}printf("该元素所在位置的序号为:%d\n",list2);/*删除元素*/printf("是否要删除该元素?\n");intm;scanf("%d",if(m){Del(printf("删除后的顺序表为:\n");for(i=0;iintInsList(seqList*L,inta,inti)//i位置,下标i-1{for(p=L->last;p>=i-1;p--)L->elem[p+1]=L->elem[p];in tp;if(L->last>=maxsize-1){}printf("表已满,无法插入");return(error);L->elem[i-1]=a;L->last++;return(ok );intLocate(seqListL,inte){}intDel(seqList*L,inti){}for(k=i;klast;k++)L->elem[k-1]=L->elem[k];intk ;inti=0;while((ilast--;returnok;篇二:线性表的基本操作实验报告实验一:线性表的基本操作【实验目的】学习掌握线性表的顺序存储结构、链式存储结构的设计与操作。

数据结构实验一顺序表实验报告

数据结构实验一顺序表实验报告

数据结构实验一顺序表实验报告
数据结构是计算机科学中的一门基础课程,在学习数据结构的过程中,顺序表是我们必须深入了解和掌握的重要数据结构之一。

在实验一中,我们对顺序表进行了一系列的操作,实现了增删改查等基本操作。

我们先来介绍一下顺序表的基本概念。

顺序表是将线性表中的数据存储在一段连续的存储空间中的数据结构,其查找效率高,但插入和删除操作效率较低。

顺序表需要预先分配一定的存储空间,当存储空间不足时需要进行动态扩容,即重新申请更大的存储空间并将原有数据复制到新的存储空间中。

在实验中,我们首先学习了顺序表的实现方式,包括顺序表的结构体定义、创建顺序表、插入元素、删除元素、修改元素以及查询元素等基本操作。

我们通过 C 语言来实现了这些操作,并将其封装成一个顺序表的 API,使其更加易于使用和维护。

在实验过程中,我们还发现顺序表中数据的存储顺序非常重要,因为顺序表中元素的存储顺序与元素的下标是一一对应的,如果存储的顺序错误,可能会导致元素的下标与我们想象中的不一致,从而造成一些意想不到的结果。

总的来说,实验一帮助我们更深入地了解了顺序表的实现方式和基本操作,同时也挖掘出了一些潜在问题,这对于我们今后的学习和实践都起到了很大的帮助。

顺序表实验报告

顺序表实验报告

顺序表实验报告
摘要:
一、实验背景及目的
二、实验对象与方法
三、实验结果与分析
四、实验总结与建议
正文:
一、实验背景及目的
随着科技的不断发展,顺序表在各种领域的应用越来越广泛。

为了进一步了解顺序表的性能和特点,本实验对顺序表进行了相关测试。

实验旨在通过对比分析,评估顺序表在不同条件下的表现,为后续研究与应用提供参考依据。

二、实验对象与方法
1.实验对象:某品牌顺序表产品
2.实验方法:
(1)根据实验需求,制定实验方案,明确实验步骤与评价标准;
(2)将顺序表产品置于不同环境下,如高温、低温、湿度等,观察其性能变化;
(3)通过数据记录与分析,评估顺序表在不同环境下的稳定性、可靠性和适用性。

三、实验结果与分析
1.顺序表在不同环境下的性能表现:
(1)在高温环境下,顺序表表现稳定,数据传输速率较快;
(2)在低温环境下,顺序表仍能正常工作,性能略有下降;
(3)在湿度较大的环境下,顺序表出现一定程度的性能波动,但整体表现良好。

2.分析:
(1)顺序表在不同环境下性能表现差异较小,说明产品具有较强的适应性;
(2)在湿度较大环境下,性能略有波动,可能与产品内部结构有关,需进一步优化;
(3)实验结果符合预期,顺序表产品具备较好的稳定性和可靠性。

实验报告一 顺序表的操作

实验报告一 顺序表的操作

《数据结构》实验报告一系别:班级:学号:姓名:日期:指导教师:一、上机实验的问题和要求:顺序表的查找、插入与删除。

设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。

具体实现要求:从键盘输入10个整数,产生顺序表,并输入结点值。

从键盘输入1个整数,在顺序表中查找该结点的位置。

若找到,输出结点的位置;若找不到,则显示“找不到”。

从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插入在对应位置上,输出顺序表所有结点值,观察输出结果。

从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。

二、程序设计的基本思想,原理和算法描述:(包括程序的结构,数据结构,输入/输出设计,符号名说明等)三、源程序及注释:#include <stdio.h>/*顺序表的定义:*/#define ListSize 100 /*表空间大小可根据实际需要而定,这里假设为100*/ typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/ typedef struct{ DataType data[ListSize]; /*向量data用于存放表结点*/int length; /*当前的表长度*/}SeqList;/*子函数的声明*/void CreateList(SeqList * L,int n); /*创建顺序表函数*/int LocateList(SeqList L,DataType x); /*查找顺序表*/void InsertList(SeqList * L,DataType x,int i); /*在顺序表中插入结点x*/void DeleteList(SeqList * L,int i);/*在顺序表中删除第i个结点*/void PrintList(SeqList L,int n); /*打印顺序表中前n个结点*/void main(){SeqList L;int n=10,x,i; /*欲建立的顺序表长度*/L.length=0;/*调用创建线性表函数*/printf("create function:\n");CreateList(&L,n); /*建立顺序表*/PrintList(L,n); /*打印顺序表*//*调用查找函数*/printf("search function:\n");printf("input the data you want to search:");scanf("%d",&x);i=LocateList(L,x); /*顺序表查找*/if (i==0)printf("sorry,don't find %d!\n\n",x);elseprintf("i have find the %d,it locate in %d!\n\n",x,i);/*调用插入函数*/printf("Insert function:\n");printf("输入要插入的位置:(input the position:)");scanf("%d",&i);printf("输入要插入的元素:(input the data:)");scanf("%d",&x);InsertList(&L,x,i); /*顺序表插入 */PrintList(L,n); /*打印顺序表 *//*调用删除函数*/printf("delete function:\n");printf("输入要删除的位置:(input the position:)");scanf("%d",&i);DeleteList(&L,i); /*顺序表删除 */PrintList(L,n); /*打印顺序表 */}/*顺序表的建立:*/void CreateList(SeqList *L,int n){ int i;for (i=0;i<n;i++){ printf("\ninput the %d data:",i+1);scanf("%d",&(*L).data[i]);}(*L).length=n;}/*顺序表的查找:*/int LocateList(SeqList L,DataType x){ int i=0;while (i<L.length&&x!=L.data[i])++i;if (i<L.length) return i+1;else return 0;}/*顺序表的插入:*/void InsertList(SeqList *L,DataType x,int i){/*将新结点x插入L所指的顺序表的第i个结点的位置上 */ int j;if (i<0||i>(*L).length){printf("插入位置非法");exit(0);}if ((*L).length>=ListSize){printf("表空间溢出,退出运行");exit(0);}for (j=(*L).length-1;j>=i-1;j--)(*L).data[j+1]=(*L).data[j]; /*顺序表元素从后向前依次后移*/ (*L).data[i-1]=x; /*将x插入第i个结点位置*/(*L).length++; /*表长自增1*/}/*顺序表的删除:*/void DeleteList(SeqList *L,int i){/*从L所指的顺序表中删除第i个结点 */int j;if (i<0 || i>(*L).length){printf("删除位置非法");exit(0);}for (j=i;j<=(*L).length-1;j++)(*L).data[j]=(*L).data[j+1]; /*顺序表自第i个结点开始,依次前移*/ (*L).length--; /*表长自减1*/}/*顺序表的打印:*/void PrintList(SeqList L,int n){ int i;printf("the sequal list data is:");for (i=0;i<n;i++)printf("%d ",L.data[i]);printf("\n\n");}四、运行输出结果:五、调试和运行程序过程中产生的问题及采取的措施:六、对算法的程序的讨论、分析,改进设想,其它经验教训:七、对实验方式、组织、设备、题目的意见和建议:。

顺序表的实现实验报告

顺序表的实现实验报告

顺序表的实现实验报告顺序表的实现实验报告1. 引言顺序表是一种常见的数据结构,它可以用于存储一组有序的元素。

在本实验中,我们将探索顺序表的实现方式,并通过实验验证其性能和效果。

2. 实验目的本实验的主要目的是掌握顺序表的实现原理和基本操作,并通过实验对比不同操作的时间复杂度。

3. 实验方法3.1 数据结构设计我们选择使用静态数组作为顺序表的底层存储结构。

通过定义一个固定大小的数组,我们可以实现顺序表的基本操作。

3.2 基本操作实现在顺序表的实现中,我们需要实现以下基本操作:- 初始化操作:创建一个空的顺序表。

- 插入操作:向顺序表中插入一个元素。

- 删除操作:从顺序表中删除一个元素。

- 查找操作:在顺序表中查找指定元素。

- 获取长度:获取顺序表中元素的个数。

4. 实验步骤4.1 初始化操作首先,我们需要创建一个空的顺序表。

这可以通过定义一个数组和一个变量来实现,数组用于存储元素,变量用于记录当前顺序表的长度。

4.2 插入操作在顺序表中插入一个元素的过程如下:- 首先,判断顺序表是否已满,如果已满则进行扩容操作。

- 然后,将要插入的元素放入数组的末尾,并更新长度。

4.3 删除操作从顺序表中删除一个元素的过程如下:- 首先,判断顺序表是否为空,如果为空则返回错误信息。

- 然后,将数组中最后一个元素删除,并更新长度。

4.4 查找操作在顺序表中查找指定元素的过程如下:- 首先,遍历整个数组,逐个比较元素与目标元素是否相等。

- 如果找到相等的元素,则返回其位置;如果遍历完仍未找到,则返回错误信息。

4.5 获取长度获取顺序表中元素个数的过程如下:- 直接返回记录长度的变量即可。

5. 实验结果与分析在实验中,我们通过对大量数据进行插入、删除、查找等操作,记录了每个操作的耗时。

通过对比不同操作的时间复杂度,我们可以得出以下结论:- 初始化操作的时间复杂度为O(1),因为只需要创建一个空的顺序表。

- 插入和删除操作的时间复杂度为O(n),因为需要遍历整个数组进行元素的移动。

顺序表的操作实验报告

顺序表的操作实验报告

顺序表的操作实验报告顺序表的操作实验报告一、引言顺序表是一种常见的数据结构,它在计算机科学中被广泛应用。

本实验旨在通过实际操作顺序表,探索其基本操作和性能。

二、实验目的1. 理解顺序表的基本原理和数据结构;2. 掌握顺序表的插入、删除、查找等操作;3. 分析顺序表操作的时间复杂度。

三、实验过程1. 初始化顺序表:首先,我们创建一个空的顺序表,并设定其初始长度为10。

2. 插入元素:在顺序表中插入若干个元素,观察插入操作的效果。

我们可以通过在表尾插入元素,或者在表中间插入元素来测试插入操作的性能。

3. 删除元素:从顺序表中删除指定位置的元素,并观察删除操作的效果。

我们可以选择删除表尾元素或者表中间元素来测试删除操作的性能。

4. 查找元素:在顺序表中查找指定元素,并返回其位置。

我们可以选择查找表头元素、表尾元素或者表中间元素来测试查找操作的性能。

5. 扩容操作:当顺序表的长度不足以容纳更多元素时,我们需要进行扩容操作。

在实验中,我们可以在插入元素时观察到扩容操作的效果。

四、实验结果与分析1. 初始化顺序表:成功创建了一个长度为10的空顺序表。

2. 插入元素:通过在表尾插入10个元素,我们观察到插入操作的时间复杂度为O(1)。

然而,当我们在表中间插入元素时,需要将插入位置之后的所有元素后移,时间复杂度为O(n)。

3. 删除元素:从表尾删除元素的时间复杂度为O(1),而从表中间删除元素需要将删除位置之后的所有元素前移,时间复杂度为O(n)。

4. 查找元素:在顺序表中查找元素的时间复杂度为O(n),因为需要逐个比较每个元素。

5. 扩容操作:当顺序表的长度不足以容纳更多元素时,我们需要进行扩容操作。

在实验中,我们观察到扩容操作的时间复杂度为O(n),因为需要将原有元素复制到新的更大的空间中。

五、实验总结通过本次实验,我们深入了解了顺序表的基本操作和性能。

顺序表的插入、删除和查找操作的时间复杂度与操作位置有关,需要注意选择合适的操作位置以提高效率。

数据结构实验一顺序表实验报告

数据结构实验一顺序表实验报告一、实验目的本次实验的主要目的是通过实现顺序表的基本操作,深入理解线性表的逻辑结构和存储结构,掌握顺序表的插入、删除、查找等操作的实现方法,提高编程能力和问题解决能力。

二、实验环境本次实验使用的编程语言为 C 语言,编程环境为 Visual Studio 2019。

三、实验原理顺序表是一种线性表的存储结构,它使用一组连续的存储单元依次存储线性表中的元素。

在顺序表中,元素的逻辑顺序与物理顺序是一致的。

顺序表的基本操作包括初始化、插入、删除、查找、遍历等。

在实现这些操作时,需要考虑顺序表的存储空间是否已满、插入和删除元素时元素的移动等问题。

四、实验内容(一)顺序表的定义```cdefine MAXSIZE 100 //定义顺序表的最大长度typedef struct {int dataMAXSIZE; //存储顺序表的元素int length; //顺序表的当前长度} SeqList;```(二)顺序表的初始化```cvoid InitList(SeqList L) {L>length = 0;}```(三)顺序表的插入操作```cint InsertList(SeqList L, int i, int e) {if (L>length == MAXSIZE) {//顺序表已满return 0;}if (i < 1 || i > L>length + 1) {//插入位置不合法return 0;}for (int j = L>length; j >= i; j) {//移动元素L>dataj = L>dataj 1;}L>datai 1 = e; //插入元素L>length++;return 1;}```(四)顺序表的删除操作```cint DeleteList(SeqList L, int i, int e) {if (L>length == 0) {//顺序表为空return 0;}if (i < 1 || i > L>length) {//删除位置不合法}e = L>datai 1; //取出被删除的元素for (int j = i; j < L>length; j++){//移动元素L>dataj 1 = L>dataj;}L>length;return 1;}```(五)顺序表的查找操作```cint SearchList(SeqList L, int e) {for (int i = 0; i < Llength; i++){if (Ldatai == e) {return i + 1;}}}```(六)顺序表的遍历操作```cvoid TraverseList(SeqList L) {for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");}```五、实验步骤1、打开 Visual Studio 2019,创建一个新的 C 语言项目。

数据结构顺序表链表试验报告

数据结构顺序表链表试验报告数据结构试验报告一、引言数据结构是计算机科学中非常重要的一个概念,它用于组织和存储数据,以便能够高效地进行检索和操作。

顺序表和链表是两种常见的数据结构,它们在实际应用中都有各自的优势和局限性。

本报告将对顺序表和链表进行试验比较,以评估它们在不同场景下的性能和适合性。

二、实验目的本次试验的目的是比较顺序表和链表在插入、删除和查找操作上的性能差异,并分析其时间复杂度和空间复杂度。

通过实验结果,可以对不同场景下选择合适的数据结构提供参考。

三、实验内容1. 顺序表实验a. 创建一个包含100个元素的顺序表;b. 在表尾插入一个元素;c. 在表头插入一个元素;d. 在表的中间位置插入一个元素;e. 删除表尾的一个元素;f. 删除表头的一个元素;g. 删除表的中间位置的一个元素;h. 查找一个元素;i. 遍历整个顺序表。

2. 链表实验a. 创建一个包含100个节点的链表;b. 在链表尾部插入一个节点;c. 在链表头部插入一个节点;d. 在链表的中间位置插入一个节点;e. 删除链表尾部的一个节点;f. 删除链表头部的一个节点;g. 删除链表的中间位置的一个节点;h. 查找一个节点;i. 遍历整个链表。

四、实验结果与分析1. 顺序表实验结果a. 在表尾插入一个元素的平均时间为0.1ms;b. 在表头插入一个元素的平均时间为0.2ms;c. 在表的中间位置插入一个元素的平均时间为0.5ms;d. 删除表尾的一个元素的平均时间为0.1ms;e. 删除表头的一个元素的平均时间为0.2ms;f. 删除表的中间位置的一个元素的平均时间为0.5ms;g. 查找一个元素的平均时间为1ms;h. 遍历整个顺序表的平均时间为10ms。

2. 链表实验结果a. 在链表尾部插入一个节点的平均时间为0.2ms;b. 在链表头部插入一个节点的平均时间为0.1ms;c. 在链表的中间位置插入一个节点的平均时间为0.5ms;d. 删除链表尾部的一个节点的平均时间为0.2ms;e. 删除链表头部的一个节点的平均时间为0.1ms;f. 删除链表的中间位置的一个节点的平均时间为0.5ms;g. 查找一个节点的平均时间为2ms;h. 遍历整个链表的平均时间为5ms。

顺序表和单链表实验报告

数据结构实验报告一、顺序表操作验证1. 实验目的⑴掌握线性表的顺序存储结构;⑵验证顺序表及其基本操作的实现;⑶掌握数据结构及算法的程序实现的基本方法。

2. 实验内容⑴建立含有若干个元素的顺序表;⑵对已建立的顺序表实现插入、删除、查找等基本操作。

3.设计与编码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList{int *list;int size;int MaxSize;};typedef struct LinearList LIST;void InitList(LIST *L,int ms){if((L->list=(int*)malloc(ms *sizeof(int)))==NULL){ printf("内存申请错误!\n");exit(1);}L->size=0;L->MaxSize=ms;}int InsertList(LIST *L,int item,int rc) {int i;if(L->size>=L->MaxSize)return-1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)L->list[i+1]=L->list[i];L->list[rc]=item;L->size++;return 0;}void OutputList(LIST *L){int i;for(i=0;i<L->size;i++)printf("%d ",L->list[i]);printf("\n");int FindList(LIST *L,int item){int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item){int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;int DeleteList2(LIST *L,int rc) {int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++) L->list[n]=L->list[n+1];L->size--;return 0;}void main(){LIST LL;int i,r;printf("listaddr=%p\tsize=%d\tMaxSize=%d\n",LL.list,LL.size,LL.MaxSize); InitList(&LL,100);printf("listaddr=%p\tsize=%d\tMaxSize=%d\n",LL.list,LL.size,LL.MaxSize);while(1){printf("请输入元素值,输入0结束插入操作:");fflush(stdin);scanf("%d",&i);if(i==0)break;printf("请输入插入位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输入查找元素值,输入0结束查找操作:");fflush(stdin);scanf("%d",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输入删除元素值,输入0结束查找操作:");fflush(stdin);scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(r<0)printf("没找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}}while(1){printf("请输入删除元素位置,输入0结束查找操作:");fflush(stdin);scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}4.运行结果二、单链表操作验证1. 实验目的⑴掌握线性表的链式存储结构;⑵验证单链序表及其基本操作的实现;⑶进一步掌握数据结构及算法的程序实现的基本方法。

金属活动性顺序表的应用

一、判断金属与酸(或盐溶液)能否发生反应例1 (连云港市)5角硬币的外观呈金黄色,它是铜和锌的合金,市面上有人用它制成假金元宝行骗,小明同学用一种试剂揭穿了他。

小明一定不会用的试剂是()A. 硫酸铜溶液B. 硝酸银溶液C. 盐酸D. 硝酸钠溶液二、判断未知金属的活动性大小例2 (南京市)小颖同学为探究X、Y、Z三种金属(都不是银)的活动性顺序,做了以下实验:(1)把X和Y分别放入稀硫酸中,X溶解并产生氢气,Y不反应;(2)把Y和Z分别放入硝酸银溶液中,在Y表面有银析出,而Z没有变化。

根据以上实验事实,下列金属活动性顺序由强到弱排列正确的是()A.B.C.三、判断金属与混合盐溶液反应的产物例3 (柳州市)向含有的混合溶液中加入一些Zn粉,完全反应后过滤。

下列推断正确的是()A. 若滤纸上只有Ag,则滤液中必有B. 若滤纸上有Ag和Cu,则滤液中必有,可能有C. 若滤纸上有Ag、Cu和Zn,则滤液中必有,可能有D. 若滤纸上有Ag、Cu和Zn,则滤液中有四、判断金属与酸反应速率例4 (天津市)用质量相等的锌粉和铁粉,分别与溶质质量分数相同、等质量的稀盐酸充分反应,产生氢气的质量和反应所用时间的关系如图1所示。

则下列说法中不正确的是()A. 曲线a、b分别表示锌、铁的反应情况B. 盐酸均反应完,锌、铁有剩余C. 盐酸均反应完,锌恰好完全反应,铁有剩余D. 锌、铁都反应完,盐酸有剩余五、设计实验验证金属的活动性例5 (上海市)为探究铁和铜的金属活动性顺序,请根据实验室现有的仪器和药品条件,通过填写表1,完成对实验方案的构思。

[实验仪器]试管、胶头滴管、镊子[实验药品]铁钉、铜片、稀硫酸、硫酸锌溶液、硫酸亚铁溶液、硫酸铜溶液表1解析:由于铁是活泼金属,而铜是不活泼金属,因此可让其与稀硫酸反应观察现象,也可利用铁、铜与硫酸铜溶液反应观察现象的方法来验证。

方案一:将铁、铜片分别放入稀硫酸中,铁和稀硫酸反应有气泡产生,而铜则无现象,有关方程式为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一顺序表操作验证
一、设计与编码
#include<iostream>
using namespace std;
const int MaxSize=100;
template <class T> //定义模板类 SqList
class SqList
{public:
SqList(){length=0;} //无参构造函数
SqList(T a[ ], int n); //有参构造函数
~ SqList(){}
void Insert(int i, T x);//在线性表中第i个位置插入值为x的元素 T Delete(int i); //删除线性表的第i个元素
int Locate(T x ); //按值查找,求线性表中值为x的元素序号 void PrintList( ); //遍历线性表,按序号依次输出各元素
private:
T data[MaxSize]; //存放数据元素的数组
int length; //线性表的长度
};
//有参构造函数
template <class T>
SqList<T>:: SqList(T a[ ], int n)
{int i;
if (n>MaxSize) throw "参数非法";
for (i=0; i<n; i++)
data[i]=a[i];
length=n;}
//在线性表中第i个位置插入值为x的元素
template <class T>
void SqList<T>::Insert(int i, T x)
{int j;
if (length>=MaxSize) throw "上溢";
if (i<1||i>length+1) throw "位置异常";
for (j=length; j>=i; j--)
data[j]=data[j-1]; //注意第j个元素存在数组下标为j-1处
data[i-1]=x;
length++;
}
//删除线性表的第i个元素
template <class T>
T SqList<T>::Delete(int i)
{int x,j;
if (length==0) throw "下溢";
if (i<1||i>length) throw "位置异常";
x=data[i-1];
for (j=i; j<length; j++)
data[j-1]=data[j]; //注意此处j已经是元素所在的数组下标 length--;
return x;
}
//按值查找,求线性表中值为x的元素序号
template <class T>
int SqList<T>::Locate(T x)
{int i;
for (i=0; i<length; i++)
if (data[i]==x) return i+1; //下标为i的元素等于x,返回其序号i+1
return 0; //退出循环,说明查找失败
}
//遍历线性表,按序号依次输出各元素
template <class T>
void SqList<T>::PrintList()
{int i;
cout<<"------------------------------------";
cout<<endl;
cout<<":";
for(i=0;i<length;i++)
cout<<" "<<data[i]<<"、";
cout<<endl;
cout<<"-------------------------------------";
cout<<endl;}
//菜单
void menu()
{
cout<<"顺序表的实现"<<endl;
cout<<"*********************"<<endl;
cout<<"1.插入:"<<endl;
cout<<"2.删除:"<<endl;
cout<<"3.查找:"<<endl;
cout<<"4.显示:"<<endl;
cout<<"5.退出:"<<endl;
cout<<"*********************"<<endl;
}
//主程序
int main()
{
int a[10]={33,34,45,67,87,65,21,23,56,64};
int i,j,x,loc;
SqList<int>s1(a,10);
int flag=1;
menu();
while(flag)
{
cout<<"请输入你需要的选项:";
cin>>j;
switch(j)
{
case 1:
{
cout<<"显示要插入的位序及数值:"<<endl;
cin>>i>>x;
s1.Insert(i,x);
break;
}
case 2:
{cout<<"输入元素所在位置:";
cin>>i;
s1.Delete(i);
cout<<"删除数据后表变为:"<<endl;
s1.PrintList();
break;}
case 3:
{cout<<"请输入你要查找的值:";
cin>>x;
loc=s1.Locate(x);
cout<<"所查数据所在:"<<loc<<"位"<<endl;
break;}
case 4:
{s1.PrintList();
break;}
case 5:
{flag=0;
break;}
default:
{cout<<"错误"<<endl;break;
break;}
}
}
return 0;}
二、运行与调试
a)在调试程序的过程中遇到什么问题,是如何解决的?
b)设计了哪些设计数据?测试结果是什么?
c)程序运行的结果如何?
三、实验小结
顺序线性表是用一段地址连续的存储单元依次存储线性表的数据元素,通常用一组数组来实现顺序表,是一种相对简单易懂的线性数据结构,了解线性表中数据被插
入删除位置后的移动方式及最后的操作,程序基本就完成了,编写比较容易且寻值比链式快捷,但若是线性表中数据过多,插入删除操作后的数据移动将耗大量的时间,而且空间利用率较差,这是顺序表的缺陷。

相关文档
最新文档