硬模板法合成分子筛研究进展

合集下载

TS-1分子筛的合成、催化及应用研究 开题报告

TS-1分子筛的合成、催化及应用研究 开题报告
[19]Tiramisu M,Peregoq Notary B,Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides,US Patent 4410501,1983
[20]Takashi T,Metallozcolites and applications in catalysis,Current Opinion in Solid-Stateand Materials Science,1997.2:76--83
毕业论文开题报告
课题名称:TS-1分子筛的合成、催化及
应用研究
专业:化学
******
班级学号:************
*******
二○一四年三月
一、本题目研究的目的与意义:
在经济发展和科技进步的现代社会,人们越来越关注环境对人类生存和可持续发展的影响。传统的化学工业污染比较严重,而近些年兴起的绿色化学工业技术是对传统化学工业的一次重大变革,它从源头阻止环境的污染,减少副产物和废料。[1]绿色化工技术是要利用化学原理和新化工技术,以“原子经济性”为基本原则,从源头上消除污染。即在获取新物质的化学过程中,充分利用每个原料原子,实现“零排放”,既不产生污染,又充分利用资源;采用无毒、无害的原料、溶剂助剂和催化剂,通过无害的反应过程,节约能源,生产对环境友好、对人身健康有益的产品,实现绿色化学的愿望。[2]分子筛催化技术在开发对环境友好工艺、促进环境可持续发展中有巨大的潜力。分子筛催化剂的使用极大的促进了石油化工、精细化工和环保等产业的发展。[3]经典的沸石分子筛是指含水的硅铝酸盐晶体。但现在分子筛早己超出了此范围,含钛、钒、柿、钴等杂原子的沸石分子筛及磷酸铝等非沸石型分子筛不断被发现或合成。将钛引入到分子筛,可使其获得特殊的催化选择氧化性能。[4]1983年Taramasso及其合作者最先报道了钛硅沸石分子筛TS-1的合成,由于其在H2O2参与的有机物分子的选择氧化反应中具有优异的催化性能,且副产物为水,对环境友好无污染[5],以TS-1为催化剂,过氧化氢为氧化剂,近年应用于的反应有:苯酚羟基化制邻、对苯二酚,环己酮氨氧化制环己酮肟,丙烯环氧化制环氧丙烷,苯乙烯氧化制苯甲醛、苯乙醛等。[6]在环境问题日益受到重视的今天,开发应用于这一高效、洁净的新工艺的催化剂就显得尤为重要[7]。

ZSM-5分子筛的结构及催化性能研究进展

ZSM-5分子筛的结构及催化性能研究进展

ZSM-5分子筛的结构及催化性能研究进展2005年l0月第24卷第5期绵阳师范学院JournalofMisnyangNormalUnivemityOct.,2005V o1.24No.5M—ZSM一5分子筛的结构及催化性能研究进展薛英,昊宇",万家义(1.I~;ll大学化学学院,四川成都610064;2.I~;ll省产品质量监督检验检测院,四川成都610031)摘要:撂宛了ZSM-5分子筛的晶体蛄构,孔结构及酸性质:对通过离子变换对其表面进行优化以提高催化活性方面的研究工作进行了阐迷;对Cu-ZSM-5分子筛上NO直接催化分解反应提出了:4CuO=2cO+O2,2Cu20+4NO=4CuO+2N2+02的反应机理.关键词:ZSM-5分子筛;x-射线衍射;孔结构;酸性质;综述中圈分类号:0643.32文献标识码:A文章编号:1672-612x(2005)05..0001-04O引言ZSM-5是一类硅铝酸盐沸石分子筛,其组成中的T-0(T=Si,A1)四面体构成内表面很大的空隙,并进一步连接成孔径均匀的直形孔道和正弦形孔道….这些孔道特定的孔径与某些分子的动力学直径相近,故ZSM-5分子筛容易吸附/脱附NOFCC汽油,苯,取代苯等小分子,并具有择形催化性能【2一J.ZSM-5为高硅/铝比分子筛,具有丰富的B酸位和L酸位,这些酸位形成强酸中心,中等强度酸中心和弱酸中心,它们的强度和分布具有可调节性,因此可以用作固体酸催化剂.通过改变合成条件和合成方法,离子交换,表面修饰,扩孔技术等改性方法得到的离子交换分子筛M—ZSM-5广泛用作DeNO.[5,芳构化[1圳,裂化¨,汽油邻氢降凝[2以及其它反应[3?22-24]的催化剂.ZSM-5分子筛白问世以来,已经对工业生产起了重要的作用,并且得到了广泛研究.本文结合本课题组以往及近期的研究工作[6-|】探究了近年来对ZSM-5分子筛进行表面修饰,对其酸性及孔结构进行优化,以提高其催化活性及稳定性方面的研究进展;强调催化剂的结构,表征与性能及用途的关联,并提出了Cu-ZSM-5分子筛上NO直接催化分解的反应机理.1ZSM_5分子筛的晶体结构与Ⅺ表征催化剂的性能和用途是由其结构决定的.x一射线衍射(XRD)单晶结构分析的结果表明:ZSM-5分子筛中的T-O四面体组成十元环,十元环共边连接形成螺旋链.螺旋链可经其图形中的2次对称轴旋转180.而得到.螺旋链进一步彼此连接则形成具有周期性结构的ZSM-5分子筛晶体.ZSM-5分子筛可由螺旋链按对称面的反映操作(相当于照镜子)而得到.O的离子半径为1.35A,据此可以推知,由T.O四面体彼此连接并周期性重复而在ZSM-5分子筛晶体中形成的直形孔道平行于(010)方向,孔径为5.6×5.4A;而沿着(too)方向的正弦形孔道孔径则为5.1×5.5A,两种孔道在(001)方向彼此重叠并扩大….这种骨架结构对应于ZSM-5分子筛XRD多晶粉末谱中20=8o附近的两个衍射峰,以及2O=25.附近的特征五指峰.不同制备条件,不同制备方法,不同Si/A1比的ZSM-5分子筛及其经改性的MZSM-5分子筛的粉末衍射谱图中一般都会保持这些特征峰.7I圳'.XRD结构分析还发现,ZSM-5分子筛有简单单斜(monoclinicP)和简单正交(orthorhombicP)两种晶型,这两种晶型的骨架结构类似,均如上所述,两种晶型的晶胞参数也比较接近.并且,粉末图中20=29.附近的单峰是正交晶系ZSM-5分子筛的特征峰,该位置的衍射峰分裂为双峰则是属于单斜晶系的ZSM-5分子筛的特征'.收稿日期:2005-08-08.作者筒介:薛荚(1962一),女,教授,博士导师.主持国家自然科学基金资助课题1项,作为主研人员参与完成国家自然科学基金九五重大课题,国家博士点基金课题,国家I然科学基金八五重大课题各1项,获各种奖励(成果)5项.迄今已在国内外重要学术刊物上发表学术论文22篇(其中,英文论文7篇,近两年米被scI收录的论文1O篇).主要从事理论化学研究.l?采用XRD结构分析技术,不仅可以确定催化剂的物相,还可以得到晶粒尺寸,晶胞中原子的位置,原子之间的距离,氢键键长和键角等结构信息.借助于量子化学理论计算,还可以确定催化剂的活性物种和活性位,并且可以探讨催化反应的历程和机理等蚓.总之,XRD技术对ZSM-5分子筛催化剂的表征是十分重要和非常有效的.2ZSM_5分子筛的酸性质及孑L结构研究表明,添加助剂,表面修饰,以及水热处理等可以对ZSM-5分子筛的酸性质及孔结构等进行优化.一般说来,ZSM-5分子筛催化剂的酸量随Si/A1比增大而减小,酸强度则随之降低.Si/A1比越大,ZSM-5分子筛催化剂的耐酸性和稳定性亦越强.作为烃类转化反应催化剂的ZSM一5分子筛,其酸性影响烃的转化率,产品分布和催化剂寿命则取决于酸强度的分布.分子筛的酸性较大较强,特别是适中的B酸有利于芳构化及芳烃和烯烃的烷基化.IR谱中1545cm和1635cm附近的吸收峰表征Cd—ZSM-5分子筛中B酸的存在,1454cm左右则是其L酸的特征吸收峰J,3610cm处的吸收峰表征CuC1/H-ZSM-5分子筛的B酸¨引.由朱向学等¨副计算所得丁烯裂解反应的热力学数据知,ZSM-5分子筛催化剂较强的酸性有利于氢转移及芳构化反应的进行,降低其酸性可以提高目的产物丙烯和乙烯的选择性和收率,合适的反应条件可以有效抑制氢转移等副反应.毛东森等副的研究表明,合成气直接制二甲醚反应的催化剂Cu-ZnO—A10一ZSM-5分子筛的弱和中等强度的酸性位是生成二甲醚的活性中心,强酸位则是生成烃类副产物的活性中心.高温水热处理可以减少催化剂的强酸中心,提高二甲醚的选择性,但同时也会使弱酸中心的数量减少而降低催化剂的活性.Mg常用于调节MZSM-5分子筛催化剂的酸性,添加适量MgO可明显降低HZSM-5分子筛中强酸中心的数量,并能将较强的B酸中心转化为较弱的L酸中心.NH3-TPD常用于表征催化剂的酸性质,其峰面积可以代表酸量,峰位置及峰高可以代表酸强度.催化剂表面的酸度还可以用电位滴定法确定,也可以用Hammer指示剂法确定催化剂总的和外表面的酸度分布.ZSM-5分子筛的孔结构是决定其择形催化性能的重要因素.除XRD技术是表征分子筛孔结构的强有力武器之外,一般还用比表面仪采用N:吸附法测定多相催化剂的孔径和孔容积等.研究表明,乙烯齐聚反应的最终产物将受分子筛孔结构和内表面酸性位和外表面酸性位双重作用的影响.为了提高直链烯烃产物的收率和选择性,除应选择适宜孔结构参数的ZSM-5分子筛外,还必须降低其外表面酸性位的活性.张君涛等报道NaZSM一5(26)(26=nsl/n.)分子筛催化剂经离子交换后得到的MZSM-5(M=Ba,Mo,Cd)分子筛的孔径有所扩大,有利于乙烯齐聚生成芳烃及稠环芳烃.MZSM-5经有机碱邻菲咯啉表面修饰后,产物中Ot一烯烃的选择性明提高,这是邻菲咯啉分子不仅可以在催化剂外表面吸附,而且还可以进人ZSM.5分子筛的较大孔道,并在其表面吸附使之大部分活性中心失活之故.郭新闻等的研究结果显示,对4.甲基联苯与甲醇的甲基化反应催化剂HZSM-5分子筛,采用添加金属氧化物进行改性,随MgO负载量的增加,样品的比表面积和微孑L比表面积逐渐减少,中孔的比表面积变化不大.同时,经金属氧化物改性后,减少了催化剂的酸性,抑制了产物4,4'一二甲基的异构化,脱烷基化及烷基化,使其选择性提高. 由上可见,载体ZSM-5分子筛的孑L结构及酸性质对催化剂的性能和用途起着决定性作用.3Cu—ZSM-5分子筛催化剂上NO直接分解的机理金属离子交换是对ZSM-5分子筛进行改性与优化的重要方法.改性分子筛MZSM.5中,Cu—ZSM一5分子筛尤其重要.研究发现,Cu—ZSM一5是容易达到超计量离子交换的体系¨引,这是由分子筛的结构决定的.铜离子交换的Cu—ZSM-5分子筛对NO直接分解反应有很高的活性[71].高Si/A1比,铜离子交换量超过ZSM-5分子筛的单层分散阈值等,有利于提高催化剂的活性.这是因为cu是NO直接分解的活性物种,cu与cu札之问可逆的氧化还原循环使NO的直接分解成为可能.一般是以cu(Ac):或Cu(NO,):等铜盐作为cu源,采用常规浸渍法或直接混合研磨的方法制备Cu7-.5~-5分子筛催化剂. 催化剂中cu是以[Cu(OH)]存在,在NO直接分解反应的条件下,发生如下反应:2[Cu(OH)]=cu'+CuO+H0由电荷补偿原则可以知道,cu趋向于由分子筛的孔道向两个[AIO]一四面体空隙之间迁移,这对高Si/Al比ZSM-5分子筛而言,原子之间的距离太大,不合适,故cu容易还原为cu,cu 向[AlO]一四面体2?空隙迁移,同时吸附NO.NO通过cu与cu+2之间可逆的氧化还原循环而分解:4CuO=2Cu2O+O22Cu2O+4NO=4CuO+2N2+O2因为具有不需要另外加入还原剂,不会产生新的污染物等特征,直接分解无疑是脱除大气污染物NO的关键起始物,并且还是脱除NO的良好方法.Cu—ZSM-5分子筛对NO直接分解具有优良性能是由其结构决定的,Cu由分子筛的孔道向AI—O四面体空隙迁移是关键步骤,Cu与Cu之间可逆的氧化还原循环起重要作用.因此,分子筛的Si/A1比是对其催化性能有较大影响的因素之一.4ZSM-5分子筛催化剂的其它表征方法及用途Cu-ZSM-5分子筛的Cu含量可以用原子吸收光谱法测定,Cu元素的表面形态可以用x射线光电子能谱(XPS)仪测定.此外,rI.PR,TPD,SEM等技术也常用于催化剂的表征.H2-TPR谱中,cu还原为cu的峰在209"附近,265.附近则是cu还原为Cu的还原峰【|¨.O—rPD方法¨刮显示,Cu-ZSM-5上有三个O脱附峰,最高峰温为700K的脱附峰对应的O:脱附与催化活性有直接关联.Cu—ZSM-5催化剂0吸附量明显高于co-zsM一5,Fe—zsM_5和H—ZSM-5的O吸附量,这是其催化活性在三者中为最高的原因之一.在Cu-ZSM-5的XPS谱中cu+2的结合能为942.7eV,Cu的结合能则为933.1eV【6.】引.我们近期的研究工作表明,nsi/n^l比分别为25,38和5O的Cu—ZSM-5,Cu—Ce—ZSM-5,Cu—La.ZSM-5以及Cu —Ag—ZSM5分子筛催化剂的XRD谱中,20=23—26.出现特征五指峰,9.附近有两个较强的衍射峰,这与前述结果一致. 南开大学李赫喧教授等用水热晶化法合成了ZSM-5分子筛.合成时不用胺类模板剂,而是用廉价易得的工业水玻璃,硫酸铝和硫酸为原料,成本仅为国外胺法合成的1/9.合成工艺简单,分子筛产率高,生产周期短,产品结晶度好,并且避免了胺对环境的污染.又因为不需要经过焙烧脱氨,可以直接进行离子交换,简化了催化剂制备工艺.该法突破了国际上合成ZSM-5分子筛必须用胺类作模板剂的传统理论和方法.南开大学在用乙二醇合成乙醚的生产中使用该法生产的ZSM-5分子筛催化剂取代三氟化硼催化剂后,产率提高20%,主要原料成本下降2l%,每吨产品成本降低2000元,并且消除了氟化硼对设备的腐蚀和对环境的污染.该项目获得国家教委科技进步二等奖.他们用ZSM-5分子筛催化剂由乙醇脱水制乙烯,与采用传统的氧化铝催化剂比较,反应温度降低100.C,空速高1—2倍,节省了能源,提高了生产效率.此项目获得国家发明奖四等奖.他们还将ZSM-5分子筛催化剂用在乙苯,乙醇合成对二乙苯的生产中,可使对二乙苯选择性达到95-98%,这是生产长期依靠进口的二甲苯分离吸附剂的一种催化合成新工艺,使我国"对乙二苯"的生产将很快实现国产化.此外,中国石化总公司抚顺石油科学研究院用该ZSM-5分子筛制的FDN一1无胺型临氢降凝催化剂,已经可以取代从美国莫尔比公司进口的降凝催化剂.胜利炼油厂在引进装置上采用ZSM一5分子筛催化剂后,每批催化剂可节约外汇126万美元.北京大学林炳雄教授等首次应用多晶x射线衍射方法,对国内外用典型方法制备的ZSM-5分子筛进行了体相结构和性能的研究,发现了该类型分子筛结构的易变性以及分子筛晶格内存在强度,酸度及稳定性不同的两类质子酸中心sj和S.i'两类质子酸中心的强度和空间位置不同,因而有各自的催化功能.由上可见,ZSM-5分子筛的结构决定了它优良的催化性能和广泛的用途.参考文献:[1]D.H.Ohon,C.T.KokotaUo,wton.Crystalstruetureandstructure-relatedproperti esofZSM-5[J].J.Phys.Chem.1981.85(15):2238-2243.[2]张培青,王祥生,郭洪臣,等.水热处理对纳米HZSM-5沸石酸性质及其降低汽油烯烃性能的影响[J].催化,2003,24(2).900—904.[3]郭新闻,王祥生,沈建平,等.改性HZSM-5上4一甲基联苯与甲醇的甲基化反应性能[J].催化,2003,24(5):333—337.[4]张君涛.张耀君,梁生荣.表面修饰对金属负载型HZSM-5催化剂乙烯齐聚性能的影响[J].分子催化,2005,19(2):121—124.[5]李哲,张海荣,黄伟,等.不同Si/AI比对Mo/ZSM-5催化性能的影响[J].分子催化.2005,19(2):104—108.[6]万家义.余林,陈豫.Cu?M/ZSM-5(M=ce,La.Ag)催化剂的表征及其对NO直接分解催化活性的研究[J].化学研究与应用,1999,11(1):8—12.-3?[7]万家义,余林,陈豫.Cu-ZSM-5上NO催化分解的研究[J].四川大学,1999,36(1):126—130.[8】高玉英,万家义,衰永明,等.CuCe./ZSM-5催化剂的TPR及动力学研究[J].化学研究与应用,2000,12(2);137—141.【9]M.1wamoto,H.Y ahiro,K.Tanda,eta1.Removalofnitmsenmonoxidethroughanovelc a~yticprocess.1.Decomposition onexcessivelyCopperionexchangedZSM-5zeolltesCJ].J.Phys.Chem.1991,95(9):3727-3730.[10]L.Yin.W.K.Hal1.Stoichlometriccatalyticdecomposition0f~tficoxideoverCu-ZSM-5Catalysts[J].J+Phys.Chem.1990,94(t6):6145—6149.[11]M.1wamoto,H.Yahlro.Novelca~ytlcdecompositionandreduction0fNO[J].Catalysis today,1994,22:5一l8.[12]王晓东,马磊,张涛,等.In/ZSM-5催化剂上cH-选择还原NO反应机理研究[c].环境友好催化一首届全国环境催化学术研讨会论文集.浙江:浙江大学出版社,1999,7—8.[13]贾明君,王桂英,李雪梅,等.CuCI/ZSM-5上c3催化还原NO反应机理研究[c].环境友好催化—首届全国环境催化学术研讨会i仑文集.浙江:浙江大学出版社,1999,34—35.[14]徐秀峰,索掌环,李鑫恒,等,Cu-ZSM-5制备参数对N2O分解催化活性的影响[C].环境友好催化一首届全国环境催化学术研讨会论文集.浙江:浙江大学出版社,1999,7—8.[15]王维家,卢立军,宗保宁,等.DeNOx催化剂FeZSM-5/RsneyFe的制备[J].催化,2003,24(10):739—743.[16]曾翔,陈继新,单学蕾.等.o2在Cu-ZSM-5上TPD与NO分解反应研究[c].环境友好催化一首届全国环境催化学术研讨会论文集.浙江:浙江大学出版社,1999,23—24.【17]薛全民,张永春.钴铜改性的ZSM-5对低浓度NO吸附性能的研究[J].环境科学研究,2004,17(6):63-65.[18】王红霞.谭大力,徐奕德.等.硅烷化处理对Mo/HZSM-5催化剂上甲烷脱氢芳构化活性的影响[J】.催化,2004,25(6):445—449.[19]郑海涛.棱辉,李影辉,等.Mo-Zn/HZSM-5催化剂上甲烷与丙烷混合物的无氧芳构化.[J].高等学校化学,2005.26(2):285.2Ji9.[20]陈会荚.李永刚,陈为,等.Mo/HZSM-5催化剂上甲烷芳构化反应行为的改善—催化剂制备因索及反应添加剂的考察[J].分子催化,2005.19(2):83—89.[21]朱向学,刘盛林.牛雄冒.等.ZSM-5分子筛上烯烃催化裂化制丙烯和乙烯[J].石油化工,2004,33(4):320—324.[22]毛东森,张斌.宋庆英,等,镁改性HZSM-5对Cu?ZnO-Al2A/HZSM-5催化合成气直接制二甲醚反应的影响[J]催化学报.2005,26(5):365-370.[23】赵掌,吕高盂,索继栓,等.Au/ZSM-5催化氧化环己烷制环己酮和环己醇的研究[J].分子催化.2005,19(2):l15—120.[24】李明慧,扬大伟,扬毅,等.纳米级HZSM-5分子筛催化合成异戊醇的研究[J】.精细石油化工进展,2005,6(4):22-24.[25]E.L.Wu,wtow,D.H.Olson.ZSM-5一Tapematerials,factoraffectingcrystalsynnnetry[J].J.Phys.Chem..1979,83(21):2777—2781.[26】A.Miyamoto,H.Himei,puter-aideddesignofcatalystsfortherelnov4~ofn itric耐de[J].Catalysistoday,1994.22:87—96.[27】潘晓名.谢有畅.x射线相定量法测定单层分散阈值[J].大学化学,2001,16(3):36—39.[2s]李郝喧.相寿鹤.刘述全,等."直接法合成ZSM.5分子筛"[P].04811,13P. ProgressinStructureandCatalysisPropertiesofZSM-5ZeolitesXUEYing,WUYu¨.W ANJia—yi(1.CollegeofChemistry,SichuanUniversityChengdu610064;2.SichuanInstituteofProductQualitySupervisionandInspection,Chengdu610031) Abstract:Theprogressinthecrystalstructure,catalysisandacidicpropertiesofMZSM-5was summarizedeny.Theeffectivethree?dimensionalchannelswerestudied.CoppercationexchangedZSM -5zeolitesareeffec—tivecatalystsfortheNOdecompositionreaction.Theredoxmechanismhasproposeda8follo ws:4CuO=2Cu20+022Cu20+4NO=4CuO+2N2+02Keywords:ZSM?5Zeolites;XRD;three-dimensionalChannel;acidicproperties;sununary。

mww型沸石分子筛的合成及其应用研究

mww型沸石分子筛的合成及其应用研究

mww型沸石分子筛的合成及其应用研究mww型沸石分子筛是一种具有许多应用潜力的重要材料,其合成和应用研究引起了广泛关注。

本文将从合成方法、性质特点和应用领域三个方面进行详细介绍,并提供指导意义。

首先,让我们看看mww型沸石分子筛的合成方法。

mww型沸石是一种具有大孔径和中孔径的纳米材料,其合成过程相对复杂。

一般来说,主要有两种方法来合成mww型沸石分子筛:水热合成和气体烧结合成。

水热合成是最常用的方法,通过在高温高压条件下将硅酸盐和氧化铝等原料溶解在碱性溶液中,再经过水热反应,形成mww型沸石分子筛的晶体。

气体烧结合成方法则是将硅酸盐和有机模板剂进行混合,再通过高温高压条件下的烧结过程合成mww型沸石分子筛。

其次,我们来了解一下mww型沸石分子筛的性质特点。

mww型沸石具有大的比表面积、丰富的孔结构和良好的热稳定性。

其特殊的孔结构和孔径使其能够吸附分子,具有优异的分离和催化性能。

此外,mww型沸石还具有良好的酸碱性质,可以用于吸附有机物和催化反应。

最后,让我们了解一下mww型沸石分子筛的应用研究。

由于其独特的结构和性质,mww型沸石在吸附、分离和催化领域具有广泛应用。

在环境领域,mww型沸石可以用于废水处理和气体吸附,通过吸附和分离,将有害物质从废水和废气中去除。

在化工领域,mww型沸石可作为催化剂用于有机合成反应和汽油裂化,提高反应效率和产率。

此外,mww型沸石还可以用于生命科学领域的药物传递和生物催化。

综上所述,mww型沸石分子筛是一种重要的纳米材料,其合成和应用研究具有重要意义。

我们应通过水热合成和气体烧结合成方法获得mww型沸石,了解其性质特点和应用领域。

进一步的研究和应用将有助于开发出更多的高效分离和催化材料,推进科学技术的发展和应用。

模板合成法(仿生合成)

模板合成法(仿生合成)
分子在溶液 表面定向排 列,表面张 力迅速降低, 开始形成 小胶束
C = CMC 溶液表面定 向排列已经 饱和,表面 张力达到最 小值。
C > CMC 溶液中的分子 的憎水基相互 吸引,分子自 发聚集,形成 球状、层状胶 束,将憎水基 24 埋在胶束内部
6.4 胶束自发形成的原因 能量因素: C < CMC
除去模板后可以得到纳米材料。
分子筛,多孔氧化铝膜,聚合物纤维,纳米碳管
47
4.1 硬模板法特点:
1) 较高的稳定性,强的限域作用; 2) 后处理过程复杂; 3) 反应物与模板的相容性影响纳米结构的形貌
4) 硬模板结构比较单一, 形貌变化较少
48
硬模板:多孔氧化铝膜(AAO)
结构特点:
孔洞为六边形或圆形且垂直于膜面;
饱和 吸附
疏水基团逃离
水相的两种方式
形成单分子表面吸附层
C ≥ CMC
形成胶束
25
五、胶束的结构
反离子固定层
疏水内核
反离子扩散层
离子型胶束示意图
26
六、胶束的形状
胶束可呈现棒状、层状或球状等多种形状
球形胶束
棒状胶束
27
28
6.1 影响胶束形态的因素
1)具有单链憎水基和较大极性基的分子或离子 容易形成球状胶束; 2)具有单链憎水基和较小极性基的分子或离子 容易形成棒状胶束。 3)对于离子型活性剂,加入反离子将促使棒状胶 束形成; 4)具有较小极性基的分子或离子容易形成层状 胶束。
(3)温度升高使非离子活性剂的聚集数明显升高
对离子型活性剂的聚集数影响不大
34
八、增溶作用 当溶液中表面活性剂的浓度达到或超过CMC时, 原来不溶于水或微溶于水的物质(有机物)的溶解 度显著增加

简单水热合成法制备介孔ZSM-5分子筛

简单水热合成法制备介孔ZSM-5分子筛

简单水热合成法制备介孔ZSM-5分子筛周颖;张利雄【摘要】本文以NaOH、四丙基溴化铵(TPABr)、Al2(SO4)3·18H2O和硅溶胶(SiO2-sol)为原料,采用水热合成法,通过简单的原料比例调变,制备具有介孔结构的ZSM-5分子筛,考察合成配方中水含量、Si含量、A1含量和TPABr含量对介孔、形貌的影响.采用X线衍射仪(XRD)、傅里叶变换红外光谱仪(FT IR)、扫描电子显微镜(SEM)和N2吸附-脱附等对样品进行表征.结果表明:在前驱液摩尔配比n(SiO2)∶n(Al2O3)∶n(Na2O)∶n(TPABr)∶n(H2O)=100∶1∶8.75∶12∶2 600的情况下,于180 ℃下反应36 h,可制得直径为18~20 μm的球形ZSM-5分子筛,分子筛表面由二级纳米晶粒堆砌而成,总比表面积为371 m2/g,介孔率为32.1%,介孔孔径为2.0nm.水含量的增加和Si含量的降低分别有助于二级晶粒更为紧密地堆积和向长条状生长,而Al和TPABr含量的增加则会导致颗粒难以成型且颗粒的尺寸的减小.另外,水和Al含量的增加及Si含量的降低会导致样品总孔容、介孔率和孔径的减小,而样品比表面积则随水含量的降低及Al、Si含量的增加而减小.TPABr 含量的调变对样品介孔性质影响不大.【期刊名称】《南京工业大学学报(自然科学版)》【年(卷),期】2016(038)001【总页数】9页(P19-26,32)【关键词】ZSM-5沸石;介孔分子筛;水热合成【作者】周颖;张利雄【作者单位】南京工业大学化工学院材料化学工程国家重点实验室,江苏南京210009;南京工业大学化工学院材料化学工程国家重点实验室,江苏南京210009【正文语种】中文【中图分类】O643.3沸石分子筛以独特的微孔结构和优良的催化性能被广泛应用于精细化工和石油化工等领域[1~2],但微孔结构不利于大分子的扩散[3],限制了它在大分子参与的催化反应中的应用,同时狭小的孔道结构也增加了在催化反应过程中积碳的可能性。

模板法

模板法
阳极氧化铝膜
多孔硅 金属模板天然高法
多孔阳极氧化铝膜(AAO)带有高度有序的纳 米级阵列孔道,作为模板来制备纳米材料和纳米
阵列复合结构。
氧化铝模板结构示意图
阳极氧化铝模板合成一维纳米结构示意图
硬模板多孔硅及二氧化硅模板法
多孔硅的表面高密度分布的纳米孔使其具有很 大的比表面积,从而容易进行物理吸附,并表
戊四醇等,结合使用微乳法、胶束法、液-液界面法 等制备技术,使得表面活性物质在纳米材料合成领域 得到广泛应用。
软模板其他模板法
有机大分子模板 LB膜
囊泡
层状液晶
……
在纳米材料领域,模板合成是一种简便有效的方 法,可以合成各种纳米材料。
但存在以下几个问题:(1)有些生物材料是仿
模板法及其在纳米材料制备中的应用
模板法基本原理和优点
模板法基于模板的空间限域作用实现对合成纳米材 料的大小、形貌、结构等的控制。相比于其他方法有如 下显著的优点: 模板法合成纳米材料具有相当的灵活性 实验装置简单,操作条件温和 能够精确控制纳米材料的尺寸、形貌和结构
能够防止纳米材料团聚现象的发生
景的一种模板。常用的有DNA、蛋白质、矿物骨架、
植物体及微生物等。
软模板表面活性剂模板法
利用表面活性剂分子胶束模
板制备六方相中孔分子筛。
软模板表面活性剂模板法
在纳米材料合成中常用的表面活性剂有 SDBS(十二烷基苯磺酸钠)、SDS(十二烷基硫酸钠)、
CTBA(十六烷基三甲基溴化铵)、聚氧乙烯醚类、季
现出很大的表面还原性。
二氧化硅介孔材料具备规整可调的孔道结构和 较大的比表面积,孔内可渗透目标材料形成预 期的各类纳米阵列。
硬模板其他硬模板法

《纳米材料制备技术》7_一维纳米材料的制备_模板法_自组装法

《纳米材料制备技术》7_一维纳米材料的制备_模板法_自组装法

Fe纳米线的AAO模板合成
Fe纳米线的局部放大TEM照片
Aspect ratio l/d
200
180
160
140
120
100
80
60
4002源自468t/min
纳米线的长径比与沉积时间近似成正比
自组装制备有序In2O3 纳米线
• 电沉积: 将8.5g/L InCl3 和25g/L Na3C6H5O7·2H2O混合液于 室温下通三探头直流电将铟纳米线电沉积进纳米孔洞中。 • 氧化: 电沉积后,自组装体系在不同的温度下于空气中加热
模板法合成纳米线一般具有以下几个显著的特点:
利用一维形貌的模板来引导一 维纳米结构的形成
• 适用于多种材料体系, 理论上可以制备出任意材料的纳米线 ;
• 适合于多种制备方法;
• 可以合成单分散的纳米线或是有序微阵列体系。
对模板的要求:具有一维纳米结构且形状容易控制的物质
多孔模板法合成纳米线研究进展
• 较高的稳定性,强的限域作用;
• 后处理过程复杂;
由于氧化铝膜模板一般具有孔径在纳米级 的平行阵列孔道,其孔径和孔深度可以通

反应物与模板的相容性影响纳米结构的形貌
过制备条件方便调控,而且相对于聚合物 膜能经受更高的温度、更加稳定、孔分布
• 硬模板结构比较单一, 形貌变化较少
也更加有序,因此已成为制备一维纳米材 料最为有效的模板。
氮化物纳米线制备的普适公式: MO(g) + C(纳米管) + NH3 → MN(纳米棒) + H2O + CO + H2
合成GaN 纳米线:
此后, 这一方法得到了广泛应用, 进一步扩展用于氧化物、金属等 纳米线的制备。

模板法

模板法
➢ 阳极氧化铝膜 ➢ 多孔硅 ➢ 金属模板天然高分子材料 ➢ 分子筛 ➢ ……
a
4
硬模Байду номын сангаас阳极氧化铝模板法
多孔阳极氧化铝膜(AAO)带有高度有序的纳 米级阵列孔道,作为模板来制备纳米材料和纳米 阵列复合结构。
氧化铝模板结构示意图
阳极氧化铝模板合成一维纳米结构示意图
a
5
硬模板多孔硅及二氧化硅模板法
多孔硅的表面高密度分布的纳米孔使其具有很 大的比表面积,从而容易进行物理吸附,并表 现出很大的表面还原性。
模板法研究趋势:
➢开发性能优良、适合批量生产的新型模板 ➢解决如何除去模板且保证去除工艺不对所合
成的纳米材料的形貌和性质产生不良影响的 难题
a
15
谢谢!
a
16
模板法及其在纳米材料制备中的应用
a
1
模板法基本原理和优点
模板法基于模板的空间限域作用实现对合成纳米材 料的大小、形貌、结构等的控制。相比于其他方法有如 下显著的优点: 模板法合成纳米材料具有相当的灵活性 实验装置简单,操作条件温和 能够精确控制纳米材料的尺寸、形貌和结构 能够防止纳米材料团聚现象的发生
a
8
软模板生物分子模板法
一些具有特殊结构的生物大分子、细胞组织和 某些活细胞,它们自身纳米级结构单元的优越性 和易获得性,使其成为纳米材料合成中极具前景 的一种模板。常用的有DNA、蛋白质、矿物骨架、 植物体及微生物等。
a
9
软模板表面活性剂模板法
利用表面活性剂分子胶束模 板制备六方相中孔分子筛。
二氧化硅介孔材料具备规整可调的孔道结构和 较大的比表面积,孔内可渗透目标材料形成预 期的各类纳米阵列。
a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档