浅谈桩基负摩阻力
浅析桩的负摩擦力

浅析桩的负摩擦力摘要:现在很多工程问题和事故跟桩的负摩擦力有关,因此桩的负摩擦力是工程中讨论的热点问题之一。
本文针对桩基负摩擦力的成因﹑中性点位置和负摩擦力计算及其消减等问题进行讨论与分析。
关键词:桩基负摩擦力成因中性点消减一、前言工程中通过桩基将上部荷载传给基土,因此基土对桩侧面有摩擦力及对桩端有端阻力。
桩土之间相对位移不同会产生不同方向的摩擦力。
当桩相对于土有向下的位移,则在桩上产生向上的摩擦力,即正摩擦力;当桩周围土相对于桩有向下的位移,则在桩侧产生向下的摩擦力,即负摩擦力。
我们知道,正摩擦力对桩有支撑作用,而负摩擦力将会降低桩基的承载力从而成为桩的附加荷载,因此负摩擦桩在工程中存在重大隐患。
二、负摩擦力产生的条件和影响因数(一)负摩擦力产生的条件由上知,当桩周围的土相对桩产生向下的位移时才产生负摩擦力,因此产生负摩擦力需要一定的条件。
发生负摩擦力的一般情况如下:1)桩穿过欠压密的软粘土或新填土,而支承于较坚硬的土层(硬粘性土﹑中密沙土砾石层或岩层)时;2)桩侧软土地面因大面积堆载而下沉;3)抽排地下水,使土体有效应力增大,从而引起桩周围土下沉时;4)高度敏感的粘土层,由于打桩使之发生触变效应;5)自重湿陷性黄土下沉和冻土融化下沉;6)在采用压桩法沉桩的桩基中,由于桩身上段在压力解除后会产生向上的回弹,将使桩侧产生负摩擦力;7)设在膨胀土地基中的桩,由于周期性季节气候变化使土产生胀缩变形;8)下桩基建成后,由于河床的大量冲刷和随后的大量沉淀淤积,形成欠固结的淤泥回淤在桩的周围,该淤泥层将随时间而固结沉降,从而将会产生一定的负摩擦力。
(二)负摩擦力的影响因数影响桩侧负摩擦力的因素很多,桩周围土层的性质和桩基沉降及地面沉降的大小﹑沉降速度﹑稳定性等都对负摩擦力大小有影响。
其中,土层的抗减强度越高,负摩擦力极限值越大;土层厚度越厚,负摩擦力越大;土层的压缩性越大,沉降速度越快,负摩擦力越大。
此外,桩基类型对负摩擦力影响也很大。
桩的负摩阻力 PPT

粘土 侧阻力qsk=40kPa 饱和重度γsat=18kN/m3
粉质粘土 侧阻力qsk=50kPa 饱和重度γsat=20kN/m3
砂卵石 侧阻力qsk=80kPa 端阻力qpk=2500kPa
地下水位 10m
10m 2m
【解】
计算中性点深度: 第一层土: 第二层土:
L n 0 .8 L 0 0 .8 2 0 1 6 m
桩的负摩阻力
4.桩基础
正摩阻力
负摩阻力
桩侧摩阻力示意图
4.桩基础
1. 桩的负摩阻力概念 正摩阻力:桩相对于周围土向下运动,土对桩
施加向上的摩擦力。这种摩擦力构成了承压桩承载 力的一部分。
负摩阻力:桩相对于周围土向上运动,土对桩 施加向下的摩擦力。这种摩擦力构成了承压桩荷载 的一部分,减少了桩的承载力,还可能引起较大的 沉降。
>1时,取 =1。
【例题】某端承灌注桩桩径1.0m,桩长22m,桩周土性 参数如图所示,地面大面积堆载 p=60kPa,桩周沉降变 形土层下限深度 20m,试按桩基规范计算下拉荷载标 准值(已知中性点深度 Ln / L0=0.8,粘土负摩阻力系数 取0.3,粉质粘土负摩阻力系数取0.4,负摩阻力群桩效
4.桩基础
桩周土沉降可能引起桩侧负摩阻力时,应根据 工程具体情况考虑负摩阻力对桩基承载力和沉降的 影响;当缺乏可参照的工程经验时,可按下列规定 验算:
对于摩擦型基桩可取桩身计算中性点以上侧阻力 为零,并可按下式验算基桩承载力:
Nk Ra
4.桩基础
对于端承型基桩除应满足上式要求外,尚应考虑
负摩阻力引起基桩的下拉荷载
下拉荷载:
n
Q g nn uq s n iL i 1 .0 3 .1 4 ( 3 0 1 0 5 0 6 ) 1 8 8 4 k N
桩基负摩阻力计算

桩基负摩阻力计算桩基负摩阻力是指在桩基施工过程中,桩基锚固深度以下的土层与桩基之间产生的负摩阻力。
它是桩基在受到荷载时所能产生的抗拔能力的重要指标之一。
正确计算桩基负摩阻力对于保证桩基的安全和稳定至关重要。
桩基负摩阻力的计算是基于摩擦作用和有效应力理论的。
摩擦作用是指土体颗粒间由于相互接触而产生的抗拔力,它与土体密实程度、土壤类型、桩身形状等因素相关。
有效应力理论是指土体中由于土层破坏或变形而引起的有效应力改变,有效应力的变化会影响负摩阻力的大小。
在计算桩基负摩阻力时,需要确定以下几个关键因素:1.土壤特性:土壤的类型、孔隙比、含水量等会影响负摩阻力的大小。
通常可以通过现场土壤取样和实验室试验来获取土壤特性参数。
2.桩身形状:桩的形状、直径、长度等都会对负摩阻力的计算产生影响。
不同形状的桩会受到不同的桩土侧阻力分布。
3.荷载:荷载的大小和施加方式都会对负摩阻力的计算产生影响。
一般情况下,负摩阻力随着施加荷载的增大而增大。
计算桩基负摩阻力的常用方法包括摩擦桩法和剪切桩法。
摩擦桩法是指土体与桩体之间通过摩擦力传递荷载,桩基负摩阻力的大小与侧面土壤的负摩阻力成正比。
剪切桩法是指通过土壤与桩体之间的剪切破坏形成负摩阻力,桩基负摩阻力的大小与土壤的剪切强度参数相关。
计算桩基负摩阻力的步骤如下:1.确定桩的直径和长度,以及桩基的锚固深度。
2.根据现场土壤取样和实验室试验结果,确定土壤特性参数,如饱和黏聚力、内摩擦角、重度等。
3.根据桩身形状和荷载大小,选择适当的计算方法,如摩擦桩法或剪切桩法。
4.进行负摩阻力的计算,根据土壤特性参数和桩身形状,采用相关公式或曲线来计算负摩阻力的大小。
5.验证计算结果的合理性,进行桩基负摩阻力的安全检查,确保其能够满足工程要求。
需要注意的是,桩基负摩阻力的计算是一个复杂的过程,受到多种因素的影响。
为了保证计算结果的准确性,建议在计算过程中进行合理的取样和试验,尽可能考虑实际情况中的各种因素。
桩基负摩阻力问题探讨

江三 角洲 西北 部 ,地貌 属珠 江三 角洲 冲 积平 原之 低缓 小 山丘 。三 水 前 言 基 桩竖 向承 载力 由桩 侧摩 阻与 端 阻两 部分 组 成 。然 而, 当桩穿 过 盆 地位 于云开一 城一 增 梅州 挤压 , 推覆构 造带 中段 ,属北西 向张性断 陷盆 高 压缩性 土层 时, 侧阻 变成 附加荷 载作 用 于桩 身, 桩 导致 基桩 竖 向承载 地 ,盆地 内东 西向断 裂 ,北 东 向断裂和北 西 向断 裂 比较发 育 ,场地 地
一
、
力下 降 ,出现所 谓的 “ 负摩 阻力现 象” 。 负摩阻 力问题 广泛存在 于桩 质 构造 比较复杂 。根据 《 岩土 工程勘 察报 告 》,本 项 目采用 了高强 预
基工程 中,由于桩侧 负摩 阻力 作用而 导致 的工程 事故 时有发 生 ,本 文 应 力混 凝土 管桩 , 以强风 化砂 质 泥 岩层作 为 桩基 持力层 ,桩 端 阻力特
e 陷性黄 土湿陷引起 土层下沉 ; ) 湿 f地震 液化 。 ) ( ) 响负摩 阻力 大小 的主要 因索 3 影
取 K 1 8 7 1 KN a = 8 .6
( ) 摩阻力计 算 2 负 a计 算 中性点深 度l。 中性 点在 桩身 某一 深度处 的桩 土位移量 相 ) n
等 ,该处 称为 中性点 。 中性 点是 正 、负 摩阻力 的分界点 。根据 《 筑 建 桩 基技术规 范 》J J 420 ,查表54 —取1 0 G —08 9 .42 =1m . 本 工程素填 土主要成 分为砂 土粉 土 ,查表 5 .2 中性点深度 比 .4 得 4.
体 的形 状等也都是影 响负摩 阻力大小 的 因素。
§ n=02 .5
桩周 土的特性是 最直接 最主要 的影 响因素 ,其 次桩端 地基土特 性
负摩阻力

负摩阻力:以桩负摩阻力为例,就是当桩身穿越软弱土层支承在坚硬土层上,当软弱土层因某种原因发生地面沉降时,桩周围土体相对桩身产生向下位移,这样使桩身承受向下作用的摩擦力,软弱土层的土体通过作用在桩侧的向下的摩擦力而悬挂在桩身上;这部分作用于桩身的向下摩擦力,称为负摩阻力。
按受力情况桩分为:端承桩和摩擦桩二种判断砂井与砂桩区别标1、功能区别桩本身是承受荷载的而砂井本身增加的地基承载力一般不计,仅用来排水固结土基2、施工区别砂桩直径较大,成孔后直接灌砂振动密实,成桩后就能发挥承载作用砂井直径较小(70左右),所以成孔后,要用编制袋等盛砂入孔。
之后一般要堆载预压,砂井就起排水管的作用,进程缓慢得让你难受。
现在类似的有塑料排水板,为加快固结,常采用真空排水。
砂井不需振实,能保持自然状态就可。
附加应力在地基中的分布规律如图集中力在地基中引起的附加应力是向深部、四周传播.1.在集中力F作用线上,σz随深度增加而递减;2、在地面下水平面上,σz向两侧逐渐减小;3、在r>0的竖直线上,随z的增加,σz从小增大,至一定深度后又随z的增加而变小;4、距离地面越远,附加应力分布的范围越广当地基表面作用有几个集中力时,可分别算出各集中力在地基中引起的附加应力,然后根据应力叠加原理求出附加应力的总和。
在实际工程中,建筑物荷载都是通过一定尺寸的基础传递给地基的。
对于不同的基础形状和基础底面的压力分布,都可利用布氏公式,通过积分法或等代荷载法求得地基中任意点的附加应力值σz。
具体求解时又分为空间和平面问题的附加应力。
若基础的长度与宽度之比l/b<10时,地基中的附加应力计算问题属于空间问题。
直剪试验中三种不同试验方法1.快剪:试样施加竖向压力σ后,立即快速施加水平剪应力使试样剪切破坏。
2.固结快剪:允许试样在竖向压力下充分排水,待固结稳定后,再快速施加水平剪应力使试样剪切破坏。
3.慢剪:允许试样在竖向压力下排水,待固结稳定后,以缓慢速率施加水平剪应力使试样剪切破坏。
浅述桥梁桩基设计中桩侧土的负摩阻力问题及湿陷性黄土地区桥梁的桩基设计

铁 路 作 为 国 民 经 济 的 动 脉 , 国 防 、 治 、 济 在 政 经
等 领 域 发 挥 着 重 要 作 用 , 别 是 , 前 大 规 模 铁 路 建 特 目
设 , 在 成 为 区 域 经 济 发 展 中 的 火 车 头 。 铁 路 桥 梁 正 在
固结 下 沉 ; 桩 数 很 多 的 密 集 群 桩 打 桩 时 , 桩 周 土 ④ 使 中 产 生 很 大 的 超 孔 隙 水 压 力 , 桩 停 止 后 桩 周 土 的 打 再 固 结 作 用 引 起 下 沉 ; 在 黄 土 、 土 中 的 桩 , 黄 ⑤ 冻 因 土湿 陷 、 土融化产 生地 面下沉 。 冻 由 此 可 见 , 桩 穿 过 软 弱 高 压 缩 性 土 层 而 支 撑 当 在 坚 硬 的 持 力 层 上 时 最 易 发 生 桩 的 负 摩 阻 力 问题 。 对 于 桥 梁 桩 基 工 程 , 别 要 注 意 桥 头 路 堤 高 填 土 的 特
等 。
基 础 , 土 壤 可 能 出 现 湿 陷 或 固 结 下 沉 时 应 考 虑 桩 当 侧 的 负 摩 阻 力 的作 用 。
1 桩 侧 负 摩 阻 力 的 产 生
1 1 负 摩 阻 力 的 产 生 机 理 .
2 自重 湿 陷性 黄 土 地 区 的 桩 基 设 计 黄 土 在 外 荷 载 或 自重 的作 用 下 , 水 浸 湿 后 , 受 土 的 结 构 迅 速 破 坏 , 生 显 著 湿 陷 变 形 , 度 也 随 之 降 发 强 低 的 , 为 湿 陷 性 黄 土 。 中黄 土 在 上 覆 土 层 自重 应 称 其
桩 侧 摩 阻 力 是 通 过 桩 土 之 间 的 相 对 位 移 而 产 生
的 。
一
般 情 况 下 , 基 受 荷 载 作 用 后 , 相 对 于 桩 侧 桩 桩
浅述桥梁桩基负摩阻力的计算

其中 , 为第 i 层土体 的负摩 擦力 ,P ; 为第 i 土体 的 k ah 层
厚 度 , 为桩 长 , m; m。
态 。一般说来 , 桩侧 土与桩 的粘着力 和桩表面负摩 阻力 的大小取 决于土的抗剪 强度。桩 的负摩阻力 虽有 时效 , 出于 安全考 虑 , 但 设计 中可取其最大值 。
量的影响 。负摩 阻力 的强度则与基桩沉 降及桩侧 土压 缩沉降 、 沉 降速率 、 稳定历时等 因素有关 , 且它 随时 间的变化 和分 布也 比较 复杂 。为确定 负摩 阻力强度大小 , 应研究产生 负摩 阻力 时桩一 土
相互作用的特点 、 沿桩 身土 体 的抗剪 强度 特征 及 桩侧 的应 力状
一
项极其重要 的因素 , 尤其是在 软土地区。本文 围绕桥梁桩 基负 载越大 , 中性点位置越深 。
摩阻力 的产生机理 、 算方 法及防 治措施 等开展研 究 , 出了若 2 3 负摩 阻力强度 的计 算 计 提 . 干建议 , 供设计参考 。 工程实践中 , 主要采用如下三种方法来 计算 负摩擦力 :
第3 6卷 第 l 0期 20 10 年 4 月
山 西 建 筑
S HANXI ARCHI] 兀 瓜 E 1
Vl. 6 No. 0 0 3 1 1
A r 2 1 p. 0 0
・7 ・ 5
文章 编 号 :0 96 2 {0 0 1—0 50 10 —8 52 1 )00 7 —2
土体类 别 新填土和砂( r .) D ≤O 2 粉质砂( ≤O 2 , Dr . )砂质粉 土( 屯≥0 7 ) .5
黏土质砂 ( r . )砂质黏土( D ≤O2 , 也≥0 7 ) . 5
2 2 中性 点的位 置 .
关于桩基负摩阻力的探讨

口
受负摩阻力 的桩 , 桩 身下段 相对桩侧土体产 生向下 位移 , 土体对桩 产 生向上 的正摩阻力 ; 桩身上段 , 桩侧土 体相对桩产 生向下位 移 , 土体 对桩 产生 向下 的负摩 阻力。对桩受力进行分析必将会 发现桩身 中部存 在 中性点 , 该点处桩 和桩侧 土体的相对位移为零 , 同时也意味着摩擦力 为零 , 该点处 桩轴 力最大 。中性 点位置 的确 定对负摩 阻力计算 有重要 影 响。桩周 土欠 固结 程度越大 , 欠固结 土层 越厚 , 桩 端持力层 越硬 , 中 性 点位置越深 。地面堆 载越重 中性 点位置 越深 。中性 点的位置 , 在初 期也 是有变 化的 , 随着桩 的沉 降增加而 向上 移动 , 当沉 降趋于稳 定 , 中 性点 也将稳定在 某一 固定 的深 度 l 处 。除此 以外 高压缩性 土层 中性点 深度l 随桩端持 力层 的强度和 刚度 的增大 而增大 。要 精确计算 出 1 很 难, 一般 可近似按桩 基规范方法计算。 ( 1 . 取 值见表 1 ) 表 1中性 点深 度 l
对负摩 阻力进行学习研究 , 并应用于实际工程 中。 二、 产生负摩阻力的条件 根据《 建筑桩基技术规 范》 ( J G J 一 9 4 — 2 0 0 8 ) 5 . 4 . 2 条规定 , 符合下列条 件 之一的桩基 , 当桩周 土层 产生的沉降超过基桩 的沉 降时 , 在计算基桩 承载力时应计入桩侧 负摩阻力 : ①桩穿越较厚松 散填 土 、 自重湿 陷性黄 土、 欠 固结土 、 液化土层 进入相对较硬土层时 ; ②桩周存 在软弱土层 , 邻 近 桩侧地 面承受局部 较大 的长期 荷载 , 或地 面大面 积堆载 ( 包 括填土 ) 时; ③ 由于 降低地 下水位 , 使桩周 土有效应 力增大 , 并 产生显著 压缩沉 降时。综 上所述的情况都是引起负摩 阻力 的原 因。 三、 负摩 阻力的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈桩基负摩阻力
摘要:桩基工程中桩侧负摩阻力所产生的下拽力可能引起桩体破坏、桩基不均匀沉降等诸多工程灾害,严重影响着建筑物的安全,而桩的负摩阻力的大小受多种因素的影响,目前其准确数值很难计算。
本文简要介绍和阐述了桩侧负摩阻力产生的条件和机理,目前桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。
关键词:负摩阻力中性点成因影响因素防治措施
引言:在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已成为一个很普遍的问题。
下面对负摩阻力的问题进行分析、阐述。
1负摩阻力的成因
桩基工程中, 当桩体与桩周土产生相对位移时,桩侧就会产生摩阻力。
当桩体的沉降量大于桩周土的沉降量时, 摩阻力为正;当桩周土的沉降量大于桩体的沉降量时,摩阻力为负。
单桩负摩阻力作用机理如图1 所示[。
桩侧负摩阻力非但不能为承担上部荷载作出贡献, 反而要产生作用于桩侧的下拽力,称为分布于桩侧表面的荷载。
下拽力作用于桩体上, 可能会造成桩身破坏、桩端地基屈服或破坏, 以及上部结构不均匀沉降等问题。
图1单桩负摩阻力作用机理示意
单桩负摩阻力一般可能由以下原因或组合造成:
①未固结的新近回填土地基:桩基穿过欠固结土层后支撑在硬土层中,使得桩侧土因固结发生的沉降超过桩的沉降;
②地面超载:桩侧地面受到较大的地面荷载产生的沉降超过桩的沉降;
③孔隙水压力消散引起的固结沉降:群桩施工中敏感度较高的黏土受扰动,超孔隙水压力使得土体上涌,重塑后因超孔隙水压力消散而重新固结;
④地下水位降低;桩侧土层地下水位大幅下降,导致有效应力增加引起土层下沉;
⑤湿陷性地基:桩基穿过湿陷性土,湿陷性土因浸水湿陷导致土层发生沉降;
⑥地震液化:桩基穿过液化土层,地震液化引起桩侧土沉降;
⑦以压桩法沉桩后,桩身上部压力消失后发生回弹,产生负摩阻力。
影响负摩阻力大小的主要因素主要有:桩周土的特性、桩端土特性(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等。
2单桩负摩阻力计算方法
目前国内外计算单桩负摩阻力的常用方法有极限分析法、荷载传递法、弹性或弹塑性理论法、剪切位移法、数值分析法等。
2.1极限分析法
Johanessen 和B jerrum 提出了利用有效应力法计算负摩阻力的方法;李光熠等利用滑移位移计对钢管桩负摩阻力进行了量测, 并用有效应力法进行了一些分析;张厚先从理论和实用角度出发, 对有效应力法和基于有效应力法的派生方法进行了改进和完善;陆明生基于对单桩的表面负摩阻力的模型试验研究及有限元分析, 在Kerisel 总应力法基础上提出了估算单桩下拉荷载的经验公式。
我国《建筑桩基技术规范》(JGJ94-2008)采用的就是利用有效应力法计算单桩负摩阻力的方法。
规范规定:桩周土沉降可能引起桩侧负摩阻力时, 应根据工程具体情况考虑负摩阻力对桩基承载力和沉降的影响;并给出了当缺乏可参照的工程经验时, 单桩负摩阻力标准值的验算公式。
2.2荷载传递法
A lonsoetal 采用一系列简化的荷载传递函数来求解单桩或群桩的负摩阻力;周国林基于桩的荷载传递函数概念, 建立了单桩负摩阻力传递机理的力学模型;赵明华等[ 7 ]对佐藤悟双折线模型进行改进, 以荷载传递法建立了桩基负摩阻力计算公式,并考虑了桩—土相互作用、土体的分层特性以及土体沉降的时间效应。
赵明华等建立了桩侧阻力的荷载传递模型。
2.3弹性或弹塑性理论法
弹性或弹塑性理论法假定土体为弹性或弹塑性连续体, 以Mindlin 解或以有限元格式为基础求解。
Poulos 和Mat tes 应用Mindlin 解获得了计算单桩负摩阻力的理论解;Poulos 和Davis[结合Terzagh i 一维固结理论考虑了桩侧负摩阻力与时间的关系, 并将计算结果同实测结果进行了对比;Sm all 应用B io t 固结理论对土体沉降模型进行改进, 以求解与时间相关的单桩负摩阻力的理论解;高绍武等[ 9 ] 提出了利用B io t 固结理论和F redho lm 积分方程并借助Laplace变换求解来计算成层土中单桩负摩阻力的方法。
这些均属于弹性或弹塑性理论法。
2.4剪切位移法
袁灯平等[利用Terzaghi 一维固结理论和Cookeetal 的剪切位移法, 并考虑了桩土相互作用, 得出地层沉降公式。
地层在沉降过程中, 因桩土界面阻力作用使桩侧土体产生剪切变形,
一般受荷桩周土体的剪切变形可理想地视为一同心圆柱体, 建立其竖向平衡微分方程,随着地层固结沉降的增加, 桩侧土的剪切变形也变大, 界面处土体的应力应变表现为明显的非线性, 采用双曲线模型作为土的本构模型。
桩端处荷载位移采用双曲线传递函数, 根据桩身周围土位移和桩端土位移变形相容, 可得桩侧摩阻力分布及桩轴力分布情况。
2.5数值分析法
Wong 和Teh 在桩土界面处引入双曲线弹簧来表征桩土之间的相互作用, 建立了成层地基土体单桩负摩阻力数值计算模型;Chowetal 建立了群桩负摩阻力的简化数值计算模型;屠毓敏利用Terzaghi 一维固结理论和土层分层总和法, 求得堆载作用下土层沉降随深度和时间变化规律, 用有限差分法研究了非均质地基土中的情况;Jeongetal 采用三维有限元法计算群桩负摩阻力, 并对桩土界面滑移对负摩阻力的影响进行了重点分析。
3中性点的确定
当考虑桩侧负摩阻力影响时,桩基计算的首要问题是桩侧负摩阻力的确定及中性点位置的确定,然后对桩基承载力进行验算。
中性点——桩侧负摩阻力并不一定发生于整个软弱压缩土层中。
桩周土的压缩与地表作用荷载及土的压缩性质有关,并随深度逐渐减小;而桩在外荷载作用下,桩底的下沉量为一定值,桩身压缩变形随深度相应减小。
在特定的桩断面上,该深度以上土的下沉量大于桩的下沉量,则该断面以上的桩受负摩阻力;该深度以下土的下沉量小于桩的下沉量,则该断面以下的桩受正摩阻力;该点就是桩土位移相等、摩阻力为0的临界点,则该断面的轴向力最大,称为中性点。
中性点是摩阻力、桩、土相对位移和轴向压力沿桩身变化的特征点。
中性点以上桩的位移小于桩侧土的位移,中性点以下桩的位移大于桩侧土的位移。
因此,中性点是桩、土、位移相等的断面,中性点以上轴向压力随深度递增,中性点以下轴向压力随深度递减。
负摩阻力计算一般仅考虑中性点以上部分。
4负摩阻力对桩基的影响及防治措施
负摩阻力对于桩基性能的不利影响可以概括为三个方面:
①负摩阻力的存在造成桩侧正摩阻力减小,负摩阻力更是对桩身施加的附加荷载,从而引起桩基实际荷载的增加和有效承载力的降低;
②负摩阻力的出现大大地减少了桩侧土体提供的荷载抗力,使桩的承载力依靠中性点以下桩侧和桩端土体来提供,使得桩端土体沉降的增加而造成桩基沉降的增加;
③负摩阻力形成了对桩基的附加荷载,造成桩身轴力的增大并使得桩身最大轴力不出现在桩顶,而是出现在中性点处,从而降低了桩身强度安全度。
对于摩擦桩,应着重考虑对基础沉降敏感的上部结构的不利影响;对端承桩,由于中性点在桩端底部,应着重考虑负摩阻力对桩身强度的不利影响。
可见,在工程中因为负摩阻力的存在一般都是有害的, 因此在工程实践中大家都希望能
尽量降低负摩阻力。
根据理论研究和实际应用, 减少桩基负摩阻力的措施可归纳为以下几种:
①涂层法。
若是预制打入桩, 打桩前在中性点以上桩身涂1 mm 厚的沥青等能降低摩阻力的涂料或采用薄膜隔离层工艺, 降低桩表面的负摩阻力;目前这种方法应用比较普遍,效果也不错;
②桩套管保护法。
在中性点以上桩段的外面, 套上一段直径大于桩径的套管, 隔离负摩阻力, 此法需很多钢材, 会较大增加工程投资;这种方法会使施工难度加大;
③采用预钻孔法, 此方法是打入桩之前先钻孔, 其直径比桩径略大, 深度达到中性点, 而在中性点以下用打入或其它常规方法施工以保证桩的正摩阻力, 中性点以上则用膨润土泥浆填充, 从而消减负摩阻力;
④软基加固法。
为了消减桩基负摩阻力, 在基桩施工之前, 先对软土地基地段进行加固处理, 如进行预压、强夯、挤密, 甚至复合地基加固, 使之有效地加速地基固结, 降低浅层地基土的可压缩性, 从而达到消减负摩阻力的效果;
⑤分时段施工法。
该法可以缓解负摩阻力的作用;
⑥支承桩柱法。
尽量减少穿过产生负摩阻力区域的桩侧面积, 在可能的情况下采用细长桩, 而在桩端采用扩大桩头来提高端承能力, 这只适合于端承桩。
诚然, 在实际工程中, 应根据不同的工程情况, 选用相应的措施消减负摩阻力。
结论:
综上所述,地基问题是很复杂的,而理论研究往往又与工程实践相距甚远。
所以要依据理论,但不要完全依赖于理论,对具体工程作具体分析。
例如上面提到的负摩阻力的产生及计算方法,从理论上来说是对的,但要在工程实践中具体介定却很困难,估算可以作为参考,但不能作为定论。
又如采用隔离的方法,故然可以避开负摩阻力,但有用的正摩阻力也被“避开”了。
如果采用套筒,桩周又失去了侧限,反而不利。
生产实践中会遇到很多预料不到的问题,并不是想象的那么容易。
负摩阻力桩的桩土相互作用十分复杂。
尽管国内外对这个问题的研究持续了几十年,但许多问题还有待进一步的研究。
参考文献:
[1]《建筑桩基技术规范》(JGJ94-2008)
[2]孔纲强, 杨庆, 郑鹏一, 栾茂田单桩负摩阻力计算方法比较分析防灾减灾工程学报
第28 卷第1 期。