大学物理习题详解(第三版_北京邮电大学出版社)

合集下载

大学物理学 北京邮电·第3版.修订版下册习题答案要点

大学物理学 北京邮电·第3版.修订版下册习题答案要点

习题99.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,S q E 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1 的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图 ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如题9.7图所示 由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为 ()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥ ∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 9.12 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外 (3) 2R r > 0=∑q ∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-=2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320r E ερ=∴ O 点电场'd33030r E ερ= ; (2) ρ+在O '产生电场d π4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 00033)(3ερερερdr r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1 的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题9.17图示0π41ε=O U 0)(=-Rq R q 0π41ε=O U )3(R q R q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r q q F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4r rQ E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R QR r qr εεε+-=rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内)11(π420R r Q r r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求: (1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε=3R r >时 302π4r rQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F习题1010.3 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题10.3图10.4 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B 方向相反,即21B B≠.10.5 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.10.6 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题10.6图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 10.6 图10.7 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场? 解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.10.8 已知磁感应强度0.2=B Wb ·m -2 的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题10.8图所示题10.8图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或24.0-Wb )题10.9图10.9 如题10.9图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题10.9图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.10.10 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题10.10图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题10.10图解:如题10.10图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T52010103310502050102-⨯=⨯++-=..)..(πμπμI I B B T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题10.11图10.11 如题10.11图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题10.11图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)2ωmR J J+ (B) 02)(ωR m J J + (C)02ωmR J(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度 在距孔为R的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。

(B)动量不变,动能改变。

(C)角动量不变,动量不变。

(D)角动量改变,动量改变。

(E)角动量不变,动能、动量都改变。

[答案:(E)]3.2填空题(1) 半径为30cm的飞轮,从静止开始以0.5rad·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度aτ= ,法向加速度a n= 。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第十一章_习题11_答案

大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第十一章_习题11_答案

习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。

[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。

[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。

[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。

[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。

[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。

[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。

[答案:端点,221l B ω;中点,0]11.3一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j 夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)(2)解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r I ab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s-1d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=ADIvbvBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t abd d 2ΦεtBR B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示(1)ab(2)cd解: 由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直 ∴ ⎰=⋅ll 0d旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N(1)(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ==∴ abhN IL ln π220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ。

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十七章 习题17答案

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册  第十七章 习题17答案

习题1717.1选择题(1) 由实验得知,原子核的半径R近似地与质量数A的立方根成正比,R=R0A1/3(R0是常数),由此得出:[ ]A.各原子核的密度是相同的B.在各种不同元素的原子核内,核子间隔不同C.质子和中子的质量,体积近似相等D.质子数和中子数的比例在各种不同元素的原子核内近似相等[答案:A ](2) 放射性同位素有天然的和人工的两类,其中[ ]A.天然的轻、重核都有,人工的多为轻核B.天然的多为重核,人工的轻、重核皆有C.天然的多为轻核,人工的可任意选择;D.人工的多为重核,天然的可任意选择[答案:B ](3) 下述说法不正确的是:[ ]A.核力具有饱和性;B.核力与电荷有关;C.核力是短程力;D.核力是强作用力。

[答案:B ](4) 原子核自旋角动量的确切含义应该是:[ ]A.核子自旋角动量和电子自旋角动量的矢量和;B.由于核于没有轨道角动量,故核自旋角动量意义与电子的相同;C.核子自旋角动量和轨道角动量的矢量和;D.原子总自旋角动量扣除电子自旋角动量的结果。

[答案:C ](5) 欲使238U发生裂变,入射中子应为[ ]A.热中子;B.快中子;C.热中子和快中子;D.任意速度的中子。

[答案:B ]17.2填空题(1) 原子核发生 衰变时,其电子是从转化为时放出的。

[答案:中子; 质子](2) 基本粒子之间主要存在着下列三种相互作用:__________、__________、__________.[答案:强相互作用; 电磁相互作用; 弱相互作用](3) 基本粒子之间的强相互作用只是发生在__________________________之间,强相互作用是通过交换_____________________来实现的.[答案:强子与强子; 介子;](4) 基本粒子的电磁相互作用是在________________________________________之间发生的,电磁相互作用是通过交换___________________来实现的.[答案:带电粒子及具有磁矩的粒子; 光子;](5) 除重子与轻子以外,所有实物粒子之间都存在弱相互作用,其强度极弱,相对其它作用是微不足道的,它只是在________________和_____________过程中才起作用.[答案: 衰变; 俘获 ]17.3按照原子核的质子—中子模型,组成原子核X AZ 的质子数和中子数各是多少?核内共有多少个核子?这种原子核的质量数和电荷数各是多少?答:组成原子核X AZ 的质子数是Z,中子数是A-Z.核内共有A 个核子.原子核的质量数是A ,核电荷数是Z .17.4原子核的体积与质量数之间有何关系?这关系说明什么?答:实验表明,把原子核看成球体,其半径R 与质量数A 的关系为1/30R R A=,说明原子核的体积与质量数A 成正比关系.这一关系说明一切原子核中核物质的密度是一个常数.即单位体积内核子数近似相等,并由此推知核的平均结合能相等.结合能正比于核子数,就表明核力是短程力.如果核力象库仑力那样,按照静电能的公式,结合能与核子数A 的平方成正比,而不是与A 成正比.17.5什么叫原子核的质量亏损?如果原子核X AZ 的质量亏损是Δm ,其平均结合能是多少? 答:原子核的质量小于组成原子核的核子的质量之和,它们的差额称为原子核的质量亏损.设原子核的质量为x M ,原子核X AZ 的质量亏损为:x n p M m Z A Zm m --+=∆])([平均结合能为 Amc A E E 20ΔΔ== 17.6已知23290Th 的原子质量为232.03821u ,计算其原子核的平均结合能.解:结合能为 MeV 5.931])([ΔH ⨯--+=M m Z A Zm E nTh 23290原子 M =232.03821u, Z =90, A =232.氢原子质量 m H =1.007825u ,m n =1.008665u.MeV1.766.56MeV5.931]03821.232008665.1)90232(007825.190[Δ=⨯-⨯-+⨯=∴E∴平均结合能为 MeV 614.723256.1766Δ0===A E E17.7什么叫核磁矩?什么叫核磁子(N μ)? 核磁子N μ和玻尔磁子B μ有何相似之处?有何区别?质子的磁矩等于多少核磁子?平常用来衡量核磁矩大小的核磁矩Iμ'的物理意义是什么?它和核的g 因子、核自旋量子数的关系是什么?答:原子核自旋运动的磁矩叫核磁矩,核磁子是原子核磁矩的单位,定义为:227m A 10.05.51.18361π4⋅⨯===-B p N m eh μμ式中p m 是质子的质量.核磁子与玻尔磁子形式上相似,玻尔磁子定义为eB m ehπμ4=,式中e m 是电子的质量. 质子的磁矩不等于N μ.质子的磁矩N P μμ79273.2=.平常用来衡量核磁矩大小的是核磁矩在外磁场方向分量的最大值I μ',它和原子核g 因子、自旋量子数的关系是N I I I g μμ='.17.8核自旋量子数等于整数或半奇整数是由核的什么性质决定?核磁矩与核自旋角动量有什么关系?核磁矩的正负是如何规定的?答:原子核是由质子和中子组成.质子和中子的自旋均为21.因此组成原子核的质子和中子数的奇、偶数决定了核自旋量子数为零或21的奇、偶倍数. 核磁矩与自旋角动量的关系是: I pII P m eg 2=μ I μ的正负取决于I g 的正负.当I μ与I P平行时I μ 为正,当I μ与I P反平行时,I μ为负.17.9什么叫核磁共振?怎样利用核磁共振来测量核磁矩?答:原子核置于磁场中,磁场和核磁矩相互作用的附加能量使原子核能级发生分裂.当核在电磁辐射场中时,辐射场是光子组成的,当光子的能量hv 等于核能级间隔时,原子核便吸收电磁场的能量,称为共振吸收,这一现象称为核磁共振.在磁场中核能级间隔为:B g E N I μ=∆共振吸收时,B g E h N I μυ=∆=通常用核磁矩在磁场方向分量的最大值I μ'来衡量磁矩的大小,N I I I g μμ=',则有B Ih Iμυ'=∴ Bh II υμ=',已测出I ,υ,现测得B 就可以算出I μ'.17.10什么叫核力?核力具有哪些主要性质?答:组成原子核的核子之间的强相互作用力称为核力.核力的主要性质:(1)是强相互作用力,主要是引力.(2)是短程力,作用距离小于m 1015-,(3)核力与核子的带电状况无关.(4)具有饱和性.17.11什么叫放射性衰变?α,β,γ射线是什么粒子流?写出23892U的α衰变和23490Th 的β衰变的表示式.写出α衰变和β衰变的位移定则. 答:不稳定的原子核都会自发地转变成另一种核而同时放出射线,这种变化叫放射性衰变.α射线是带正电的氦核He 42粒子流,β射线是高速运动的正、负电子流,γ射线是光子流.ee υ~Pa Th HeTh 012349123490422349023892++→+→- α衰变和β衰变的位移定则为:α衰变 He Y X 4242+→--A z A z β衰变 e A z A z υ~e Y X 0++→-+e A z Azυ++→+-e Y X 01117.12什么叫原子核的稳定性?哪些经验规则可以预测核的稳定性? 答:原子核的稳定性是指原子核不会自发地从核中发出射线而转变成另一种原子核的性质.以下经验规则可预测核的稳定性:(1)原子序数大于84的核是不稳定的.(2)原子序数小于84的核中质子数和中子数都是偶数的核稳定.(3)质子或中子数等于幻数2、8、20、28、50、82、126的原子核特别稳定. (4)质子数和中子数之比1=pn的核稳定.比值越大,稳定性越差.17.13写出放射性衰变定律的公式.衰变常数λ的物理意义是什么?什么叫半衰期1/2T ? 1/2T 和λ有什么关系?什么叫平均寿命τ?它和半衰期1/2T 、和λ有什么关系? 答:tN N λ-0e=,衰变常数NtN d /d -=λ的物理意义是:表示在某时刻,单位时间内衰变的原子数与该时刻原子核数的比值.是表征衰变快慢的物理常数. 原子核每衰变一半所需的时间叫半衰期.1/2ln 2T λ=平均寿命τ是每个原子核衰变前存在时间的平均值.λτ1=1/2ln 2T τ=.17.14测得地壳中铀元素23592U只占0.72%,其余为23892U ,已知23892U的半衰期为4.468×910y ,23592U的半衰期为7.038×810y ,设地球形成时地壳中的23592U和23892U是同样多,试估计地球的年龄.解:按半衰期 λλ693.02ln ==T对U 23592: 1011810.6930.6939.847101/7.03810T λ-===⨯⨯y 对U 23892: 102920.6930.693 1.551101/4.46810T λ-===⨯⨯y 按衰变定律tN N λ-=e0,可得17.15放射性同位素主要应用有哪些?答:放射性同位素主要在以下几个方面应用较广泛:医学上用于放射性治疗和诊断;工业上用于无损检测;农业上用放射性育种;考古学、地质学中用于计算生物或地质年代;生物学中作示踪原子等等.17.16为什么重核裂变或轻核聚变能够放出原子核能?答:轻核和重核的平均结合能较小,而中等质量)60~40(=A 的核平均结合能较大,因此将重核裂变成两个中等质量的核或轻核聚变成质量数较大的核时平均结合能升高,从而放出核能.17.17原子核裂变的热中子反应堆主要由哪几部分组成?它们各起什么作用?答:热中子反应堆的主要组成部份有堆芯、中子反射层、冷却系统、控制系统、防护层. 堆芯是放置核燃料和中子减速剂的核心部份,维持可控链式反应,释放原子核能.冷却系统与换能系统合二为一,再通过冷却系统将堆芯释放出的核能输送到堆芯以外. 控制系统是通过控制棒插入堆芯的长度,控制参加反应的中子数,使反应堆保持稳定的功率. 中子反射层是阻挡中子从反应堆中逸出. 防护层是反应堆的安全屏障.17.18试举出在自然界中存在负能态的例子.这些状态与狄拉克的负能态有什么区别?答:例如物体在引力场中所具有的引力势能;正电荷在负电荷电场中的静电能,都是自然界中的负能态.这些负能态是能够观测到的,具有可观测效应.狄拉克的负能态是观测不到的,没有可观测效应.17.19将3MeV 能量的γ光子引入狄拉克真空,结果产生1MeV 的电子,此时还将产生什么?它的能量是多少?答:把能量大于电子静能两倍MeV 022.1220=>c m E 的γ光子引入真空,它有可能被负能量电子的一个电子所吸收,吸收了这么多能量的电子有可能越过禁区而跃迁到正能量区,并表现为一个正能量的负电子-e ;同时,留下的空穴表现为一个正能量的正电子+e .这一过程称为电子偶的产生,可写为-++→e e γ按题意,根据能量守恒,正电子的能量为MeV 217.20试证明任何能量的γ光子在真空中都不可能产生正、负电子对.证明:设由γ光子转化成的一对正负电子其动量分别为1p 和2p,在电子的质心系中应有120p p +=并且正负电子的总能量应大于22c m e .按照相对论,光子动量与能量的关系为pc E =,动量等于零而能量不等于零的光子是不存在的.显然γ光子转换成正负电子,同时满足能量守恒和动量守恒是不可能的,即在真空中无论γ光子能量多大,都不可能产生正负电子对.但是γ光子与重原子核作用时便可转化为正负电子对.。

大学物理学答案_第3版_(下册)_北京邮电大学

大学物理学答案_第3版_(下册)_北京邮电大学

q ⎨T sin θ = F = 1 q 2 ⎪ 4πε (2l sin θ ) 2r ,当被考察的场点距源点电荷很近(r →0)时,则场强 E = q 8-4 在真空中有 A ,B 两平行板,相对距离为 d ,板面积为 S ,其带电量分别为+ 和-.则大学物理习题及解答习题八8-1 电量都是的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库 仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题 8-1 图示(1) 以 A 处点电荷为研究对象,由力平衡知: q ' 为负电荷1 q2 1 2 cos30︒ = 4πε a 2 4πε 00 qq ' ( 3 a) 23解得(2)与三角形边长无关.q ' = - 3q3题 8-1 图题8-2 图8-2 两小球的质量都是 m ,都用长为 l 的细绳挂在同一点,它们带有相同电量,静止时两线 夹角为 2θ ,如题 8-2 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带 的电量.解: 如题 8-2 图示⎧T cos θ = mg ⎪ e 0解得 q = 2l sin θ 4πε 0mg tan θ8-3 根据点电荷场强公式E = q4πε 02 →∞,这是没有物理意义的,对此应如何理解?解:4πε r 2 0r0 仅对点电荷成立,当 r → 0 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是 无限大.qq这两板之间有相互作用力 q 2 f ,有人说 f = 4πε 0 d 2 ,又有人说,因为 f = qE , E = q ε S 0,所wor d 格式.整理版,另一板受它的作用力2εS2εS,这是两板间相互作用p=ql,场点到偶极子中心O点的距离为r,矢量r 与l的夹角为r和垂直于的分量E=2πεr3,Eθ=4πεr3p分解为与r平行的分量p sinθ和垂直于r的分量p sinθ.与导线中点相距2=5.0cm处Q点的场强.mλd xE=⎰d E=⎰2l4πε(a-x)2q2以f=εS.试问这两种说法对吗?为什么?f到底应等于多少?解:题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强E=qεS0看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为q q q2E=f=q=2εS000的电场力.8-5一电偶极子的电矩为θ,(见题8-5图),且r>>l.试证P点的场强E在r方向上的分量E分别为r Eθp cosθp sinθr0证:如题8-5所示,将∵r>>l∴场点P在r方向场强分量E=rp cosθ2πεr3垂直于r方向,即θ方向场强分量E=p sinθ4πεr3题8-5图题8-6图8-6长l=15.0cm AB上均匀地分布着线密度λ=5.0x10-9C·-1(1)在导线的延长线上与导线B端相距a1=5.0cm处P点的场强;(2)在导线的垂直平分线上d解:如题8-6图所示(1)在带电直线上取线元d x,其上电量dq在P点产生场强为d E=P1λd x4πε(a-x)2lP P-02λ11=[-]4πεl l0a-a+22wor d格式.整理版4πεx2+d2l,即Q只有y分量,4πεl4πεR积分0=λlπε(4a2-l2)用l=15c m,λ=5.0⨯10-9C⋅m-1,a=12.5c m代入得EP=6.74⨯102N⋅C-1方向水平向右(2)同理d E=Q1λd x02方向如题8-6图所示由于对称性⎰d E=0EQx∵d EQy=1λd x4πεx2+d202d2x2+d22E=⎰d E=2Qy Qy=λl2πεl2+4d202dλ2l⎰2l-2d x(x2+d2)232以λ=5.0⨯10-9C⋅cm-1,l=15cm,d2=5cm代入得E=EQ Qy=14.96⨯102N⋅C-1,方向沿y轴正向8-7一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强.解:如8-7图在圆上取dl=Rdϕ题8-7图dq=λd l=Rλdϕ,它在O点产生场强大小为d E=λR dϕ4πεR20方向沿半径向外则λd E=d E sinϕ=sinϕdϕxE=⎰πxd E=d E cos(π-ϕ)=yλλsinϕdϕ=4πεR2πεR00-λ4πεRcosϕdϕE=⎰πy-λ4πεRcosϕdϕ=0wor d格式.整理版8-8 均匀带电的细线弯成正方形,边长为l ,总电量为 .(1)求这正方形轴线上离中心为 r处的场强 E ;(2)证明:在 r >> l 处,它相当于点电荷 产生的场强 E .l 24 l 2 l 2 4 2l 2 l 2 4 2 l 2 l 24 2 方向沿 OP ∴ q q q∴E = E =x λ2πε R 0,方向沿 x 轴正向.qqq解: 如 8-8 图示,正方形一条边上电荷 4 在 P 点产生物强 d E P 方向如图,大小为λ(cos θ - cos θ )d E =12P4πε r 2 +l∵cos θ = 1 2 r 2 +l 22∴cos θ = - cos θ2 1λ ld E =P4πε r 2 + r 2 +d E P 在垂直于平面上的分量 d E ⊥ = d E P cos β∴d E = ⊥ 4πε 0 r λl l 2 2 + 4r 2 + l 22 r r2 +l 2 4题 8-8 图由于对称性, P 点场强沿 OP 方向,大小为E = 4 ⨯ d E =4λlrP⊥4π ε (r 2 + ) r 2 +∵λ =q 4lqrE =P4πε (r 2 + ) r 2 +8-9(1)点电荷位于一边长为 a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题 8-9(3)图所示,在点电荷 的电场中取半径为 R 的圆平面. 在wor d 格式.整理版(2)电荷在顶点时,将立方体延伸为边长 2a 的立方体,使 处于边长 2a 的立方体中心,则 6ε 对于边长 a 的正方形,如果它不包含 所在的顶点,则 24ε q(3)∵通过半径为 R 的圆平面的电通量等于通过半径为 R + x 的球冠面的电通量,球冠∑ qsε q = 0 E = 0当 r = 5 cm 时,.....该平面轴线上的 A 点处,求:通过圆平面的电通量.(α = arctanRx )q ⎰ E ⋅ d S =解: (1)由高斯定理 sε立方体六个面,当 q 在立方体中心时,每个面上电通量相等∴ 各面电通量Φ = e q 6ε0 .q边长 2a 的正方形上电通量Φ = qeq Φ = qe0 , 如果它包含 所在顶点则 Φ = 0 e.如题 8-9(a)图所示.题 8-9(3)图题 8-9(a)图题 8-9(b)图 题 8-9(c)图2 2面积*S = 2π( R 2 + x 2 )[1 -xR 2 + x 2]∴Φ= qε0 0 S 4π( R 2 + x 2 ) = q 2ε0 [1 -x R 2 + x 2 ] *关于球冠面积的计算:见题 8-9(c)图S = ⎰ α 2πr sin α ⋅ r d α 0= 2πr 2 ⎰ αsin α ⋅ d α 0= 2πr 2(1 - cos α )8-10 均匀带电球壳内半径 6cm ,外半径 10cm ,电荷体密度为 2×10 -5C ·m -3求距球心 5cm ,8cm ,12cm 各点的场强.⎰ E ⋅ d S = E 4πr 2 = 解: 高斯定理0 ,∑,∑ qεwor d 格式.整理版r=8cm时,∑q=pρ()3E=≈3.48⨯104N⋅C-1,方向沿半径向外.4πεr233(r外3-r内3)4π()3E=≈4.10⨯104∴N⋅C-1∑q解:高斯定理s单2πεr∑q=012ε12ε12εn:垂直于两平面由σ1面指为σ2面......4π3(r3-r内)..4πr3-r2内∴0∑q=ρr=12cm时,ρr3-r3外内4πεr24π沿半径向外.8-11半径为R1和R2(R2>R1)的两无限长同轴圆柱面,位长度上分别带有电量λ和-λ,试求:(1)r<R1;(2)R1<r<R2;(3)r>R2处各点的场强.⎰E⋅d S=ε取同轴圆柱形高斯面,侧面积S=2πrl⎰E⋅d S=E2πrl则S对(1)r<R1(2)R1<r<R2∑q=0,E=0∑q=lλλE=∴0沿径向向外(3)r>R2∴E=0题8-12图8-12两个无限大的平行平面都均匀带电,电荷的面密度分别为σ1和σ2,试求空间各处场强.解:如题8-12图示,两带电平面均匀带电,电荷面密度分别为σ1与E=(σ-σ)n12两面间,0σ2,σ1面外,E=-(σ+σ)n12σ2面外,0E=(σ+σ)n12w ord格式.整理版3εd3∴O点电场;(2)+在O'产生电场ρ4πεd33εOO'(3)设空腔任一点P相对O'的位矢为r',相对O点位矢为r(如题8-13(b)图)PO=3εPO'=-3ερ ρρdPO'=(r-r')=OO'=3ε3ε3εrr8-14一电偶极子由=1.0×10-6CM=pE=qlE=1.0⨯10-6⨯2⨯10-3⨯1.0⨯105=2.0⨯10-4N⋅m8-15两点电荷q1=1.5×10C,q2=3.0×10C,相距1=42cm,要把它们之间的距离变为r.....8-13半径为R的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r<R的小球体,如题8-13图所示.试求:两球心O与O'点的场强,并证明小球空腔内的电场是均匀的.解:将此带电体看作带正电ρ的均匀球与带电-ρ的均匀小球的组合,见题8-13图(a).(1)+ρ球在O点产生电场E10=0,-ρ球在O点产生电场E204πr3ρ=34πεd3OO'r3ρE=OO'4πd3ρE=3OO'10'-ρ球在O'产生电场E20'=0∴O'点电场ρE=0'题8-13图(a)题8-13图(b)ρE则0,ρ 'E0,E=E+EP PO∴000∴腔内场强是均匀的.q偶极子放在1.0×105N·C-1解:∵电偶极子p在外场E中受力矩M=p⨯Ed=0.2cm,把这电∴max代入数字Mmax-8-8r2=25cm,需作多少功?wor d格式.整理版A=⎰r2F⋅d r=⎰r212q q d r qq11r24πεr24πεr rr18-16如题8-16图所示,在A,B两点处放有电量分别为+,-的点电荷,A B间距离为2R,现将另一正试验点电荷0从O点经过半圆弧移到C点,求移动过程中电场力作的q q(-)=04πεR Rq q=-q4πε(3R-R)6πεR6πεRdq=λR dθ产生O点d E如图,由于对称性,O点场强沿y轴负方向λR dθE=⎰d E=⎰24πεR2=λ4πεR(2)AB电荷在O点产生电势,以∞U=⎰A=⎰2R4πεx4πεx4πεB R4πελd x解:.....=12(-)0012=-6.55⨯10-6J外力需作的功A'=-A=-6.55⨯10-6J题8-16图q qq功.解:如题8-16图示∴1U=O1U=OA=q(U-U)=o0O C8-17如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强和电势.解:(1)由于电荷均匀分布与对称性,AB和CD段电荷在O点产生的场强互相抵消,取d l=R dθ则题8-17图πcosθyπ-20ππsin(-)-sin0[22]-λ=2πεRU=0同理CD产生1λd xλ=ln2000λU=ln22wor d格式.整理版上的线电荷密度.(电子质量 0=9.1×10-31kg ,电子电量 e =1.60×10-19C) 2πε r∴2πε r 0 8-20 根据场强 E 与电势U 的关系 E = -∇U ,求下列电场的场强:(1)点电荷 q 的电场; (2)总电量为,半径为 R 的均匀带电圆环轴上一点;*(3)偶极子 p = ql 的 r >> l 处(见题∂U q E =- r = r∴ 0 为 r 方向单位矢量. (2)总电量 ,半径为 R 的均匀带电圆环轴上一点电势( )p= ql 在 r >> l 处的一点电势∂r 2πε r 3.....半圆环产生U = 3 πR λ λ= 4πε R 4ε 0∴U = U + U + U = O 1 2 3 λ λln 2 + 2π ε 4ε8-18 一电子绕一带均匀电荷的长直导线以 2×104m ·s -1 的匀速率作圆周运动.求带电直线 m解: 设均匀带电直线电荷密度为 λ ,在电子轨道处场强电子受力大小λE =2πε rF = eE = ee λe λ v 2= mr得2πε mv 2λ = = 12.5 ⨯ 10 -13e C ⋅ m -18-19 空气可以承受的场强的最大值为 E =30kV ·cm -1,超过这个数值时空气要发生火花放 电.今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场∴U = E d = 1.5 ⨯ 10 4 Vq8-20 图).解: (1)点电荷U =q4πε r题 8-20 图∂r 0 4πε r 2 0 rq∴ (3)偶极子U = q 4πε R 2 + x 2 0 ∂U qx E =- i = ∂x 4πε R 2 + x 2 3 / 2 0i∴q 1 1 ql cos θU = [ - ] =4πε l l 4πε r 20 (r - cos θ ) (1 + cos θ ) 02 2∂U p cos θE =- = r 0wor d 格式.整理版r ∂θ 4πε r 3证: 如题 8-21 图所示,设两导体 A 、B 的四个平面均匀带电的电荷面密度依次为σ 1 , 2 s32 4 σ E d1 ∂U p sin θE =- = θ 08-21 证明:对于两个无限大的平行平面带电导体板(题 8-21 图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而 符号相同.σ ,σ3 , σ4题 8-21 图(1)则取与平面垂直且底面分别在 A 、 B 内部的闭合柱面为高斯面时,有⎰ E ⋅ d S = (σ + σ )∆S = 02 3 ∴σ 2 + σ 3 = 0说明相向两面上电荷面密度大小相等、符号相反;(2)在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即σ σ σ σ 1 - - - = 0 2ε 2ε 2ε 2ε0 0 0 0 又∵σ 2 + σ 3 = 0∴ σ 1 =σ4说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板 A ,B 和 C 的面积都是 200cm 2,A 和 B 相距 4.0mm ,A 与 C 相距 2.0 mm . B , C 都接地,如题 8-22 图所示.如果使 A 板带正电 3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则 A 板的电势是多少?解: 如题 8-22 图示,令 A 板左侧面电荷面密度为σ 1 ,右侧面电荷面密度为σ2题 8-22 图(1)∵ UAC= U AB ,即∴E dACAC= E dABABσ E d 1 = AC = AB = 2 ∴ 2 ABAC且σ 1 + σ2q = AS1 =3 AAC= 1 dε R R R R qU = ⎰∞E ⋅ d r = ⎰∞4πε r 2 4πε RR 2R 2 (2)外壳接地时,外表面电荷 + q 入地,外表面不带电,内表面电荷仍为 - q .所以球壳电 4πε R 4πε R q得 σ2 =q2q A , σ A 3S 3S 而2 q = -σ S = - q = -2 ⨯ 10 -7C 1 C (2)q = -σ S = -1⨯10-7 CB 2σU = E d = 2.3 ⨯ 103A AC ACV8-23 两个半径分别为 1 和 2 ( 1 < 2 )的同心薄金属球壳,现给内球壳带电+ ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电 + q ;球壳内表面带电则为 - q ,外表面带电为 + q ,且均匀分布,其电势题 8-23 图qd r q=0 0势由内球 + q 与内表面 - q 产生:U =q-q= 04πε R 4πε R0 2 0 2(3) 设此时内球壳带电量为 q ' ;则外壳内表面带 电量为 - q ' ,外壳外表面带电量为- q + q '(电荷守恒),此时内球壳电势为零,且得U = q ' A 0 1 q ' = - q ' 4πε R 0 R 1 qR22 + - q + q '= 04πε R0 2外球壳上电势U = q 'B 02-q ' 4πε R 02+ - q + q ' 4πε R0 2= (R - R )q 1 24πε R 2 0 28-24 半径为 R 的金属球离地面很远,并用导线与地相联,在与球心相距为 d = 3R 处有一点电荷+,试求:金属球上的感应电荷的电量.解: 如题 8-24 图所示,设金属球感应电荷为q ' ,则球接地时电势U O = 0为0.试求:q2F=-84πεr24πεr2804πεr21,2σ3,4,σ如图所示.由静电平衡条件,电荷守恒定律及维持AB =U可得以下6个方程由电势叠加原理有:得8-24图q'q+=0 U=4πεR4πε3R O00qq'=-38-25有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力F(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解:由题意知F=q24πεr2(1)小球3接触小球1后,小球3和小球1均带电q'=q2,小球3再与小球2接触后,小球2与小球3均带电3q''=q4∴此时小球1与小球2间相互作用力3q'q"3=F1002q (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为3.∴小球1、2间的作用力22q qF=3324=F90*8-26如题8-26图所示,一平行板电容器两极板面积都是S,相距为d,分别维持电势UA =U,UB=0不变.现把一块带有电量q的导体薄片平行地放在两极板正中间,片的面积也是S,片的厚度略去不计.求导体薄片的电势.解:依次设A,C,B从上到下的6个表面的面电荷密度分别为σσ,σ5,σ6U题8-26图⎪ 1 S S 0 d ⎪ 3 S ⎨σ + σ = q B = - ε 0U ⎪ 5 S d ⎪σ + σ = 0 ⎪ 42S d 2Sd 2S ε d 2ε S2 2 2ε S注意:因为 C 片带电,所以 2 ,若 C 片不带电,显然 C 2 数为 r,金属球带电 Q .试求:Qr Qr4πr 3 4πε ε r 3 Qr Qr外 =U = ⎰ ∞ E ⋅ dr = Q4πε r rU = ⎰ E ⋅ dr + ⎰∞ E ⋅ drrr解得所以 CB 间电场 ⎧ q 1 ε Uσ + σ = A = CU = 0 2 ⎪⎪σ + σ = q 4 ⎪ 6 ⎪ 2 3⎪σ + σ = 05 ⎩σ 1 = σ 2 + σ 3 + σ 4 + σ 5 + σ 6qσ = σ = 1 6ε U qσ = -σ = 0 - 2 3 ε U qσ = -σ = 0 + 4 5σ U qE = 4 = + 2 0 0d 1 qdU = U= E = (U + )CCB2 0U UU ≠ U =C8-27在半径为 R1的金属球之外包有一层外半径为 R 2的均匀电介质球壳,介质相对介电常ε(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.⎰ D ⋅ d S = ∑ q解: 利用有介质时的高斯定理 S(1)介质内 (R 1 < r < R 2 ) 场强D = ,E =内 0 r介质外 (r < R 2 ) 场强D = ,E 4πr 3 4πε r 3 0 (2)介质外 (r > R 2 ) 电势外;∞内 外介质内 ( R 1 < r < R 2 ) 电势U = ⎰R 2 E ⋅ dr + ⎰∞E ⋅ drR 1R 2= ⎰ R 2 + ⎰∞ε r 2 R 2 4πεE E⎰ D ⋅ d S = ∑ q dσDRRl(3)金属球的电势.....q 1 1 Q= ( - ) +4πε ε r R 4πε R0 r 2 0Q 1 ε - 1= ( + r )4πε ε r R0 r 2内 外Qdr Qdr R4πε 0 r 0 r 2Q 1 ε - 1= ( + r )4πε ε R R0 r 1 228-28 如题 8-28 图所示,在平行板电容器的一半容积内充入相对介电常数为εr 的电介质.试 求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题 8-28 图所示,充满电介质部分场强为 2 ,真空部分场强为 1 ,自由电荷面密度由 分别为 σ 2 与 σ 10 得D 1 = σ 1 , D 2 = σ2而D 1 = ε 0E 1 , D 2 = ε 0ε r EE = E =U122∴11σ D2 = 2 = ε r题 8-28 图 题 8-29 图8-29 两个同轴的圆柱面,长度均为l ,半径分别为 R 1 和 R 2 ( R 2 > R 1 ),且l >> R 2 - R 1 ,两柱面之间充有介电常数ε 的均匀电介质.当两圆柱面分别带等量异号电荷 Q 和- Q 时,求:(1)在半径 r 处( 1 < r < 2 =,厚度为 dr ,长为 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为 r 的同轴圆柱面 (S )⎰ D ⋅ d S = 2πrlD则 ( S )当 ( R 1 < r < R 2 ) 时,∑ q = QW=⎰d W=⎰Q2d r Q2R=ln2(2)去掉金属壳B,1作用在2上的库仑力仍是q.....∴D=Q2πrl(1)电场能量密度D2Q2w==2ε8π2εr2l2薄壳中d W=w dυ=Q2Q2d r2πr d rl=8π2εr2l24πεrl(2)电介质中总电场能量R2V R14πεrl4πεl R1(3)电容:∵W=Q22C∴Q22πεlC==2W ln(R/R)21*8-30金属球壳A和B的中心相距为r,A和B原来都不带电.现在A的中心放一点电荷q1,在B的中心放一点电荷q2,如题8-30图所示.试求:(1)q1对q2作用的库仑力,q2有无加速度;(2)去掉金属壳B,求q1作用在q2上的库仑力,此时q2有无加速度.解:(1)q1作用在q2的库仑力仍满足库仑定律,即F=1q1q24πεr2但q2处于金属球壳中心,它受合力为零,没有加速度.q qF=1q1q4πεr22,但此时2受合力不为零,有加速度.题8-30图题8-31图8-31如题8-31图所示,C1=0.25μF,C2=0.15μF,C3=0.20μF.C1上电压为50V.求:UAB.解:电容C1上电量电容C2与C3并联C23=C+C2Q=C U1131其上电荷Q23=Q1∴U=2QC23=23C U1C231=25⨯503535 V⎪ ⎨ 1 = ⎩ C + C C + C12 =4.0cm 和3 =5.0cm ,当内球带电荷 Q =3.0×10 CUAB .....= U + U = 50(1 + 25) = 861 28-32 C 1 和 C 2 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等 值电容是多少?如果两端加上 1000 V ? 解: (1) C 1 与 C 2 串联后电容(2)串联后电压比C ' = C C 1 2 C + C 12 200 ⨯ 300= = 120200 + 300 pFU U 1 = 2 C 2 = C13 2,而 U 1 + U 2 = 1000 ∴ U 1 = 600 V , U 2= 400 V即电容 C 1 电压超过耐压值会击穿,然后 C 2 也击穿.8-33 将两个电容器 C 1 和 C 2 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题 8-33 图所示,设联接后两电容器带电分别为 q 1 , q2题 8-33 图则 ⎧q + q = q - q 1 2 10 ⎪ q C U1 1 ⎪ q2 C 2U 2⎪U 1 = U220 = C U - C U1 2解得 (1) q 1 = C (C - C ) C (C - C ) 1 1 2 U , q = 2 1 2 2 1 2 1 2U (2)电场能量损失∆W = W - W1 1 q2 q 2= ( C U 2 + C U 2 ) - ( +2 ) 2 1 2 2 2C 2C1 22C C=1 2 U 2 C + C128-34 半径为R 1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R R -8(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电 Q ,外球壳内表面带电 - Q ,外表面带电 QQrR < r < R 时 4πε r 3Qr3 时 4πε r 3r > RW = ⎰ R 2 ε ( R 1 2 4πε r 2= ⎰ε ( ) R 32 8πε R 8πε R R R4πε r 3 W = 0 8πε R R ∴ J Q R R9-1 在同一磁感应线上,各点 B 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度 B 的方向?解: 在同一磁感应线上,各点 B 的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度 B 的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁题 8-34 图(1)在 r < R 1 和 R 2 < r < R3 区域E = 0E = 1 在120 E =20 ∴在 R 1 < r < R 2 区域1Q 1 0 0) 2 4πr 2 d r在r > R3 区域= ⎰ R 2R 1 Q 2 d r Q 2 1 1= ( - )8πε r 2 8πε R R0 0 1 2W 2∞ 1 Q Q 2 1 2 4πr 2 d r =0 4πε r 20 0 3∴ 总能量 Q 2 1 1 1W = W + W = ( - + )1 2 0 1 2 3= 1.82 ⨯ 10 -4 J(2)导体壳接地时,只有 R 1 < r < R 2 时 E = Q r0 ,2Q 2 1 1W = W = ( - ) = 1.01⨯ 10 -41 0 1 2(3)电容器电容C = 2W 1 1= 4πε /( - )2 0 1 2= 4.49 ⨯ 10 -12 F习题九场决定的,所以不把磁力方向定义为 B 的方向.⎰ B ⋅ d l = B 1 da - B 2 bc = μ 0 ∑ I = 0⎰⎰外 = 0 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这L L2πr题 9-2 图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大小在沿磁 感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明 B = B 1 2abcd∴ B = B12(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B 方向相反,即 B ≠ B .129-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路 定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部 B = μ nI ,外面 B =0,所以在载流螺线管 0外面环绕一周(见题 9-4 图)的环路积分B ·d l =0L外但从安培环路定理来看,环路 L 中有电流 I 穿过,环路积分应为B ·d l = μ IL外这是为什么?解: 我们导出 B = μ nl , B 内时图中环路 L 上就一定没有电流通过,即也是 ⎰ B ⋅ d l = μ ∑ I = 0 ,与外 0 ⎰ B ⋅ d l = ⎰ 0 ⋅ d l = 0 是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实外际上以上假设并不真实存在,所以使得穿过 L 的电流为 I ,因此实际螺线管若是无限长时,μ I只是 B 的轴向分量为零,而垂直于轴的圆周方向分量 B = 0 , r 为管外一点到螺线管轴外 ⊥的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存 在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定 那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度 B = 2.0 Wb ·m -2x 轴正方向,如题 9-6 图所 示.试求:(1)通过图中 abcd 面的磁通量;(2)通过图中 befc 面的磁通量;(3)通过图中 aefd 面的磁通量.解: 如题 9-6 图所示45半径为 R .若通以电流 I ,求 O 点的磁感应强度.解:如题 9-7 图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中12R R 2πR 22π (0.1 - 0.05) 2π ⨯ 0.050 1 0 2题 9-6 图(1)通过 abcd 面积 S 的磁通是1Φ = B ⋅ S = 2.0 ⨯ 0.3 ⨯ 0.4 = 0.24 Wb11(2)通过 befc 面积 S 的磁通量2Φ = B ⋅ S = 022(3)通过 aefd 面积 S 的磁通量3Φ = B ⋅ S = 2 ⨯ 0.3 ⨯ 0.5 ⨯ cos θ = 2 ⨯ 0.3 ⨯ 0.5 ⨯ = 0.24 Wb (或曰 - 0.24 Wb ) 3 3题 9-7 图9-7 如题 9-7 图所示, AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其AB 产生 B = 01μ ICD 产生 B = 0 ,方向垂直向里2CD 段产生 B = 3∴ B = B + B + B = 0 1 2 3 μ I μ I 30 (sin 90︒ - sin 60︒ ) = 0 (1 - ) ,方向 ⊥ 向里4π 2 μ I 3 π0 (1 - + ) ,方向 ⊥ 向里.2πR 2 69-8 在真空中,有两根互相平行的无限长直导线 L 和 L ,相距 0.1m ,通有方向相反的电1 2流,I =20A, I =10A ,如题 9-8 图所示.A ,B 两点与导线在同一平面内.这两点与导线 L1 2 2的距离均为 5.0cm .试求 A , B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题 9-8 图解:如题 9-8 图所示, B 方向垂直纸面向里Aμ I μ I B = + = 1.2 ⨯ 10 -4 TA(2)设 B = 0 在 L 外侧距离 L 为 r 处2 2μ I μI 则 0 - 2 = 02π (r + 0.1) 2πr2电阻 R2R 2π2R 2π 2 μ d I μ I d θd B = 0 0 πR 2π2 R2 2π2 R ∴ B =⎰2 0 B = ⎰ (-解得r = 0.1m题 9-9 图9-9 如题 9-9 图所示,两根导线沿半径方向引向铁环上的 A , B 两点,并在很远处与电源 相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解:如题 9-9 图所示,圆心 O 点磁场由直电流 A ∞ 和 B ∞ 及两段圆弧上电流 I 与 I 所产生, 12但 A ∞ 和 B ∞ 在 O 点产生的磁场为零。

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)2ωmR J J+ (B) 02)(ωR m J J + (C)02ωmR J(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度 在距孔为R的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。

(B)动量不变,动能改变。

(C)角动量不变,动量不变。

(D)角动量改变,动量改变。

(E)角动量不变,动能、动量都改变。

[答案:(E)]3.2填空题(1) 半径为30cm的飞轮,从静止开始以0.5rad·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度aτ= ,法向加速度a n= 。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理学第3版修订版北京邮电大学出版社上册第七章习题7答案解析

习 题 77、1选择题(1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型与统计假设,分子速度在x 方向的分量平方的平均值就是:(A) 2x υ=. (B) 2x υ=. [ ](C) 23x kT m υ= . (D) 2x kT mυ=. [答案:D 。

2222x y z υυυυ=++, 222213x y z υυυυ===,23kT mυ=。

](2) 一瓶氦气与一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们 [ ] (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.[答案:C 。

由32w kT =,w w =氦氮,得T 氦=T 氮 ; 由molpM RTρ=,ρρ=氦氮,T 氦=T 氮 ,而M M <mol 氦mol 氮,故p p >氦氮。

](3) 在标准状态下,氧气与氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ] (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3.[答案:C 。

由2mol M i E RT M =2ipV =,得111112222256E i pV i V E i pV i V ==⋅=。

](4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题7、1图所示,则此直线表示的过程为: [ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.[答案:B 。

由图得E =kV , 而2i E pV =,i 不变,2ik p =为一常数。

](5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T的关系为 [ ] (A) Z 与T 无关. (B).Z 与T 成正比 . (C) Z 与T 成反比. (D) Z 与T 成正比.[答案:C。

大学物理学 (第3版.修订版) 北京邮电大学出版社 上册 第七章习题7 答案

习 题 77.1选择题(1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值是:(A)2x υ=.(B) 2x υ= [ ](C) 23x kT m υ= . (D) 2x kT mυ=. [答案:D 。

2222x y z υυυυ=++, 222213x y z υυυυ===,23kT mυ=。

](2) 一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们 [ ] (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.[答案:C 。

由32w kT =,w w =氦氮,得T 氦=T 氮 ; 由molpM RTρ=,ρρ=氦氮,T 氦=T 氮 ,而M M <mol 氦mol 氮,故p p >氦氮。

](3) 在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ] (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3.[答案:C 。

由2mol M i E RT M =2ipV =,得111112222256E i pV i V E i pV i V ==⋅=。

](4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题7.1图所示,则此直线表示的过程为: [ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.题7.1图[答案:B 。

由图得E =kV , 而2i E pV =,i 不变,2ik p =为一常数。

] (5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T的关系为 [ ] (A) Z 与T 无关. (B).Z 与T 成正比 . (C) Z 与T 成反比. (D) Z 与T 成正比.[答案:C。

大学物理习题及解答(第三版_北京邮电大学出版社)

大学物理习题及解答(第三版 北京邮电大学出版社)习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12 ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =-② 222a m g m T =-③联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v2sin 21t g y α= 由①、②式消去t ,得 220sin 21x g v y ⋅=α2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解: 2s m 83166-⋅===m f a x x2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=j i v ϖϖϖ(2)m 874134)167(21)4832122(21)21(220j i j i j t a i t a t v r y x ϖϖϖϖϖϖϖ--=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk e v )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m k e )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 答: (1)∵ t v m kv a d d =-= 分离变量,得m t k v v d d -=即 ⎰⎰-=v v t m t k vv 00d d mkt e v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===t t t m k m k e k mv t e v t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='000d k mv t e v x t m k (4)当t=k m时,其速度为 e v e v ev v k m m k 0100===-⋅-即速度减至0v 的e 1. 2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下(2) 2m 对地加速度为 22g a a a =-'= 方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a ϖϖϖ+='∴g g g a a a 25422221=+=+'= a a '=arctan θo6.2621arctan ==,左偏上. 2-6一质量为m 的质点以与地的仰角θ=30°的初速0v ϖ从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o 30,则动量的增量为 0v m v m p ϖϖϖ-=∆ 由矢量图知,动量增量大小为0v m ϖ,方向竖直向下.2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p ϖϖϖ-=∆方向竖直向上, 大小mg mv mv p =--=∆)(12ϖ碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-8 作用在质量为10 kg 的物体上的力为i t F ϖ)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j ϖ6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t ϖϖϖϖ10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向, i p I i m p v ϖϖϖϖϖϖ111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则 ⎰⎰+-=+-=-=t t t F v m t m F v m p v m p 000000d )d (,ϖϖϖϖϖϖϖ于是⎰∆==-=∆t p t F p p p 0102d ϖϖϖϖϖ, 同理, 12v v ϖϖ∆=∆,12I I ϖϖ= 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去) 2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为 j t b i t a r ϖϖϖωωsin cos += 求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为 )cos sin (j t b i t a m v m p ϖϖϖϖωωω+-== 将0=t 和ωπ2=t 分别代入上式,得 j b m p ϖϖω=1,i a m p ϖϖω-=2,则动量的增量亦即质点所受外力的冲量为 )(12j b i a m p p p I ϖϖϖϖϖϖ+-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t = (2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将b a t =代入,得 b a I 22=(3)由动量定理可求得子弹的质量0202bv a v I m ==2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -km T2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得1,121+=+=k m m k km m ①又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+=②2211v m v m mv +=③联立①、③解得 12)1(kv v k v -+=④将④代入②,并整理得21)(2v v km T -=于是有km T v v 21±= 将其代入④式,有m kT v v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取 km T v v m kT v v 2,221-=+=证毕. 2-12 设N 67j i F ϖϖϖ-=合.(1) 当一质点从原点运动到m 1643k j i r ϖϖϖϖ++-=时,求F ϖ所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化. 解: (1)由题知,合F ϖ为恒力, ∴ )1643()67(k j i j i r F A ϖϖϖϖϖϖϖ++-⋅-=⋅=合 J 452421-=--=(2) w 756.045==∆=t A P(3)由动能定理,J 45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=s s k y ky y f y f A 1012d d d ①式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A ②由题意,有2)21(212k mv A A =∆== ③即 222122k k ky =-所以,22=y 于是钉子第二次能进入的深度为 cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为n P r k r E /)(=, 试求质点所受保守力的大小和方向.解: 1d )(d )(+-==n r nk r r E r F 方向与位矢r ϖ的方向相反,即指向力心.2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p =∆∆= 2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少?解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM G r mM G -=地月经整理,得R M M M r 月地月+==2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯m 1032.386⨯= 则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h(2)质量为kg 1的物体在P 点的引力势能为()r R M Gr M G E P ---=地月()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m kh gh m m v +-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。

大学物理学_上册_第三版_北京邮电大学出版社[1]-推荐下载


j
1
m

v

dr

3i

(t

t 3) j
4 m s1
0
4
(4) 则 (5)∵
dt
v0
v4

3i
3i 3
7j j , v4

m 3i
s 1 7
j
a

v

v4

v0

4
1j
m s2
t
4
a
4
dv
l2 h2 s2 将上式对时间 t 求导,得
2l dl 2s ds dt dt
根据速度的定义,并注意到 l , s 是随 t 减少的,



将 v船 再对 t 求导,即得船的加速度
v船

v船
v绳

ds dt


lv0 s


a
dl dt



l s

dl dt
(h2
dv船 dt
(s
v0 , v船
dr dr
大学物理习题及解答
1-1 | r |与 r 有无不同? d t 和 d t 有无不同? d t 和 d t 有无不同?其不同在哪里?试举例说明.
解:(1) r
dr
是位移的模, r 是位矢的模的增量,即 r
(2) d t 是速度的模,即 d t v dt .
dr
dt 只是速度在径向上的分量.
故它们的模即为

d2 dt
a
x
2

2
d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理解答(第三版 北京邮电大学出版社)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆;(2)t d d r 是速度的模,即t d d r ==v t sd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆtr t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a tr v ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

在1-1题中已说明t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=222d d d d t r t r a θ径。

或者概括性地说,前一种方法只考虑了位矢r 在径向(即量值)方面随时间的变化率,而没有考虑位矢r及速度v的方向随间的变化率对速度、加速度的贡献。

1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1) jt t i t r)4321()53(2-+++=m (2)将1=t ,2=t 代入上式即有j i r5.081-= mj j r4112+=mj j r r r5.4312+=-=∆m(3)∵ j i r j j r 1617,4540+=-= ∴ 104s m 534201204-⋅+=+=--=∆∆=j i ji r r t r v(4) 1s m )3(3d d -⋅++==j t i t r v则 j i v 734+= 1s m -⋅ (5)∵ j i v j i v73,3340+=+=204s m 1444-⋅==-=∆∆=j v v t v a (6) 2s m 1d d -⋅==j t va 这说明该点只有y 方向的加速度,且为恒量。

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得t s s t l ld d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴ t s v v t l v d d ,d d 0-==-=船绳 即θc o s d d d d 00v v s l t l s l t s v ==-=-=船或 s v s h s lv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d s v h s v s l s v s lv s v v s t s l t l st v a =+-=+-=-==船船1-5 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值.解: ∵x v v t x x v t v a d d d d d d d d ===分离变量: x x a d xd )62(d 2+==υυ 两边积分得 cx x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5m , v =0,求该质点在t =10s 时的速度和位置.解:∵ tt v a 34d d +== 分离变量,得 t t v d )34(d +=积分,得 12由题知,0=t ,00=v ,∴01=c故 2234t t v +=又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-7 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na aτ即 βωR R =2 亦即t t 18)9(22= 则解得923=t 于是角位移为rad67.29232323=⨯+=+=t θ1-8 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .)sin (sin 2cos2sin 200t R t R Rt v R t v x ωωθθθ-=-=-=解:(1)t 0dR bt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rba a n --==τϕ(2)由题意应有2402)(R bt v b b a -+==即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a =1-9 半径为R 的轮子,以匀速0v 沿水平线向前滚动:(1)证明轮缘上任意点B 的运动方程为x =R )sin (t t ωω-,y =R )cos 1(t ω-,式中0v =ω/R 是轮子滚动的角速度,当B 与水平线接触的瞬间开始计时.此时B 所在的位置为原点,轮子前进方向为x 轴正方向;(2)求B 点速度和加速度的分量表示式.解:依题意作出下图,由图可知题1-9图(1))cos 1()cos 1(2sin2sin 2t R R R y ωθθθ-=-==(2)⎪⎪⎩⎪⎪⎨⎧==-==)sin d d )cos 1(d d t R t y v t R t xv y x ωωω⎪⎪⎩⎪⎪⎨⎧====t v t R a t vt R a yy xx d d cos d d sin 22ωωωω1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图(1)在最高点,o 0160cos v v v x ==21s m 10-⋅==g a n 又∵1211ρv a n = ∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m8060cos 10)20(22222=︒⨯==n a v ρ1-11 飞轮半径为0.4 m ,自静止启动,其角加速度为 β=0.2 rad ·2s -,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度.解:当s 2=t 时,4.022.0=⨯==t βω1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n1-12 如题1-12图,物体A 以相对B 的速度v =gy 2沿斜面滑动,y 为纵坐标,开始时A 在斜面顶端高为h 处,B 物体以u 匀速向右运动,求A 物滑到地面时的速度.解:当滑至斜面底时,h y =,则gh v A 2=',A 物运动过程中又受到B 的牵连运动影响,因此,A 对地的速度为j gh i gh u v u v AA)sin 2()cos 2('αα++=+=地题1-12图1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v -=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ(2)小船看大船,则有2112v v v -=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅方向南偏东o87.361-14 当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后2 m 的甲板上,篷高4 m 但当轮船停航时,甲板上干湿两部分的分界线却在篷前3 m ,如雨滴的速度大小为8 m ·s -1,求轮船的速率. 解: 依题意作出矢量图如题1-14所示.题1-14图∵ 船雨雨船v v v -= ∴ 船雨船雨v v v += 由图中比例关系可知1s m 8-⋅==雨船v v习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =-②222a m g m T =- ③联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v 方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求 当t =2 s 时质点的 (1)位矢;(2)速度.解: 2s m 83166-⋅===m f a x x2s m 167-⋅-==mf a y y (1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=j i v (2)m 874134)167(21)4832122(21)21(220j i j i j t a i t a t v r y x --=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t m k ev )(0-;(2) 由0到t 的时间内经过的距离为 x =(k m v 0)[1-t m k e )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-=分离变量,得m t k v v d d -=即 ⎰⎰-=v v t m t k v v 00d d mkt e v v -=ln ln 0∴ t k ev v -=0 (2) ⎰⎰---===t t t m k m k e k mv t e v t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='000d k m v t e v x t k(4)当t=k m时,其速度为 e v e v ev v k m m k 0100===-⋅-即速度减至0v 的e 1. 2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下(2) 2m 对地加速度为22g a a a =-'= 方向向上1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a +='∴ g g g a a a 25422221=+=+'=a a '=arctan θo 6.2621arctan ==,左偏上.2-6一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆ 由矢量图知,动量增量大小为0v m ,方向竖直向下. 2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p -=∆方向竖直向上,大小mg mv mv p =--=∆)(12 碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-8 作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t 10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向, i p I i m p v 111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则 ⎰⎰+-=+-=-=t t t F v m t m F v m p v m p 000000d )d (, 于是⎰∆==-=∆t p t F p p p 0102d , 同理, 12v v ∆=∆,12I I= 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去) 2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a r ωωsin cos += 求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m p ωωω+-==将0=t 和ωπ2=t 分别代入上式,得 j b m p ω=1,i a m p ω-=2, 则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I +-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b at =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )( 将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量0202bv a v I m ==2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -km T2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得1,121+=+=k m m k km m ①又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+= ②2211v m v m mv +=③联立①、③解得 12)1(kv v k v -+=④将④代入②,并整理得21)(2v v km T -= 于是有 km Tv v 21±=将其代入④式,有m kTv v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取 km T v v m kT v v 2,221-=+= 证毕. 2-12 设N 67j i F -=合.(1) 当一质点从原点运动到m 1643k j i r ++-=时,求F 所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化. 解: (1)由题知,合F为恒力, ∴ )1643()67(k j i j i r F A++-⋅-=⋅=合J 452421-=--= (2) w 756.045==∆=t A P(3)由动能定理,J 45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=s s k y ky y f y f A 1012d d d ①式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A ②由题意,有2)21(212k mv A A =∆== ③即222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为n P r k r E /)(=, 试求质点所受保守力的大小和方向.解:1d )(d )(+-==n r nk r r E r F方向与位矢r 的方向相反,即指向力心. 2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p =∆∆=2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少?解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM G r mM G-=地月 经整理,得R M M M r 月地月+= =2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯ m 1032.386⨯=则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h (2)质量为kg 1的物体在P 点的引力势能为()r R M G rM G E P ---=地月 ()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得 ()()212221122mm khgh m m v +-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。

相关文档
最新文档