【精品】2016年江苏省盐城市阜宁县九年级上学期期中数学试卷带解析答案
阜宁期中考试数学试卷九上

一、选择题(每题4分,共40分)1. 下列选项中,不是一元二次方程的是()A. \(x^2 - 5x + 6 = 0\)B. \(2x^2 - 4x + 2 = 0\)C. \(x^2 + 3x + 4 = 5\)D. \(3x^2 + 2x - 1 = 0\)2. 若\(a > 0\),则下列不等式中正确的是()A. \(a^2 > a\)B. \(a^2 < a\)C. \(\sqrt{a^2} > a\)D. \(\sqrt{a^2} < a\)3. 下列函数中,是反比例函数的是()A. \(y = x^2\)B. \(y = \frac{1}{x}\)C. \(y = 2x\)D. \(y = 3 - x\)4. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)5. 下列等式中,正确的是()A. \((a + b)^2 = a^2 + b^2\)B. \((a - b)^2 = a^2 - b^2\)C. \((a + b)^2 = a^2 + 2ab + b^2\)D. \((a - b)^2 = a^2 - 2ab + b^2\)6. 若\(a > b\),则下列不等式中正确的是()A. \(a^2 > b^2\)B. \(a^2 < b^2\)C. \(\sqrt{a^2} > \sqrt{b^2}\)D. \(\sqrt{a^2} < \sqrt{b^2}\)7. 下列选项中,不是一次函数的是()A. \(y = 2x + 1\)B. \(y = 3\)C. \(y = -x^2 + 4x\)D. \(y = \frac{1}{x}\)8. 若\(a > 0\),则下列不等式中正确的是()A. \(a^2 > a\)B. \(a^2 < a\)C. \(\sqrt{a^2} > a\)D. \(\sqrt{a^2} < a\)9. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)10. 下列等式中,正确的是()A. \((a + b)^2 = a^2 + b^2\)B. \((a - b)^2 = a^2 - b^2\)C. \((a + b)^2 = a^2 + 2ab + b^2\)D. \((a - b)^2 = a^2 - 2ab + b^2\)二、填空题(每题4分,共40分)1. 若\(x^2 - 5x + 6 = 0\),则\(x\)的值为______。
2016年江苏省盐城四中九年级上学期数学期中试卷与解析

2015-2016学年江苏省盐城四中九年级(上)期中数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的.)1.(3分)下列方程中,属于一元二次方程的是()A.x+2y=5 B.x2+y=3 C.3x=x2﹣4 D.x+=32.(3分)一元二次方程x2﹣kx﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3.(3分)有15位同学参加智力竞赛,已知他们的得分互不相同,取八位同学进入决赛,小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的()A.平均数B.众数C.最高分数D.中位数4.(3分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S甲2=0.55,S乙2=0.60,S丙2=0.50,S丁2=0.40,则成绩最稳定的是()A.甲B.乙C.丙D.丁5.(3分)如图,点P为⊙O外一点,点A、B在圆上,PA、PB交优弧AB于点C、D,若∠AOB=60°,则判断∠APB大小正确的是()A.∠APB=30°B.∠APB>30°C.∠APB<30°D.不能确定6.(3分)下列说法中,正确的是()A.长度相等的弧叫等弧B.直角所对的弦是直径C.同弦所对的圆周角相等D.等弧所对的弦相等7.(3分)一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,4,现随机从口袋里取出一张卡片,这张卡片与口袋外的两张卡片上的数能构成三角形的概率是()A.B.C.D.18.(3分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3) B.(3,5) C.(5,4) D.(4,5)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.(3分)方程x2﹣3x=0的根为.10.(3分)已知关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,则m=.11.(3分)如图,⊙O是△ABC的外接圆,已知∠OAB=40°,则∠ACB为.12.(3分)一组数据8,7,8,6,6,8的众数是.13.(3分)数据11、12、13、14、15的方差是.14.(3分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.15.(3分)一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是枚.16.(3分)如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是.17.(3分)如图,在平面直角坐标系xOy中,直线AB经过点A(﹣4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为.18.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+1)*2=0的解为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)解方程:(1)x2﹣4x+1=0(2)2(x﹣3)2=x(x﹣3)20.(8分)已知关于x的一元二次方程(a+1)x2﹣x+a2﹣3a﹣3=0有一根是1.(1)求a的值;(2)求方程的另一根.21.(8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数y=x+1图象上的概率.22.(8分)如图:已知P是半径为5cm的⊙O内一点.解答下列问题:(1)用尺规作图找出圆心O的位置.(要求:保留所有的作图痕迹,不写作法)(2)用三角板分别画出过点P的最长弦AB和最短弦CD.(3)已知OP=3cm,过点P的弦中,长度为整数的弦共有条.23.(10分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小明已根据成绩表算出了甲成绩的平均数和方差,请你完成下面两个问题.甲、乙两人射箭成绩统计表(1)求m的值和乙的平均数及方差;(2)请你从平均数和方差的角度分析,谁将被选中.24.(10分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O 交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.25.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.26.(10分)如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求弧DE、弧DF的长度之和(结果保留π).27.(10分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?28.(14分)如图,矩形AOBC,A(0,3)、B(6,0),点E在OB上,∠AEO=30°,点P从点Q(﹣4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t秒.(1)求点E的坐标;(2)当∠PAE=15°时,求t的值;(3)以点P为圆心,PA为半径的⊙P随点P的运动而变化,当⊙P与四边形AEBC 的边(或边所在的直线)相切时,求t的值.2015-2016学年江苏省盐城四中九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的.)1.(3分)下列方程中,属于一元二次方程的是()A.x+2y=5 B.x2+y=3 C.3x=x2﹣4 D.x+=3【解答】解:A、x+2y=5是二元一次方程,故本选项错误;B、x2+y=3是二元二次方程,故本选项错误;C、3x=x2﹣4是一元一次方程,故本选项正确;D、x+=3是分式方程,故本选项错误.故选:C.2.(3分)一元二次方程x2﹣kx﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【解答】解:∵△=(﹣k)2﹣4×1×(﹣1)=k2+4,∵k2≥0,∴△>0,∴方程有两个不相等的实数根;故选:A.3.(3分)有15位同学参加智力竞赛,已知他们的得分互不相同,取八位同学进入决赛,小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的()A.平均数B.众数C.最高分数D.中位数【解答】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选:D.4.(3分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S甲2=0.55,S乙2=0.60,S丙2=0.50,S丁2=0.40,则成绩最稳定的是()A.甲B.乙C.丙D.丁【解答】解:∵S甲2=0.55,S乙2=0.60,S丙2=0.50,S丁2=0.40,∴丁的方差最小,∴成绩最稳定的是丁;故选:D.5.(3分)如图,点P为⊙O外一点,点A、B在圆上,PA、PB交优弧AB于点C、D,若∠AOB=60°,则判断∠APB大小正确的是()A.∠APB=30°B.∠APB>30°C.∠APB<30°D.不能确定【解答】解:如图,∵∠AOB与∠ACB为优弧AB所对的圆心角和圆周角,∴∠ACB=∠AOB=×60°=30°,∵∠ACB是△PBC的外角,∴∠APB<∠ACB=30°.故选:C.6.(3分)下列说法中,正确的是()A.长度相等的弧叫等弧B.直角所对的弦是直径C.同弦所对的圆周角相等D.等弧所对的弦相等【解答】解:A、能互相重合的弧是等弧,故选项错误;B、90°的圆周角所对的弦是直径,故选项错误;C、同弦所对的圆周角相等或互补,故选项错误;D、正确.故选:D.7.(3分)一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,4,现随机从口袋里取出一张卡片,这张卡片与口袋外的两张卡片上的数能构成三角形的概率是()A.B.C.D.1【解答】解:∵一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,∴共有4种等可能的结果,∵这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的有:3,2,4;4,2,4;共2种情况,∴能构成三角形的概率是:=.故选:B.8.(3分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3) B.(3,5) C.(5,4) D.(4,5)【解答】解:过点P作PD⊥MN于D,连接PQ.∵⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,∴OM=2,NO=8,∴NM=6,∵PD⊥NM,∴DM=3∴OD=5,∴OQ2=OM•ON=2×8=16,OQ=4.∴PD=4,PQ=OD=3+2=5.即点P的坐标是(4,5).故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.(3分)方程x2﹣3x=0的根为x1=0,x2=3.【解答】解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.故答案为:x1=0,x2=3.10.(3分)已知关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,则m=4.【解答】解:∵关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,∴△=b2﹣4ac=(﹣4)2﹣4m=0,解得:m=4.故答案为:4.11.(3分)如图,⊙O是△ABC的外接圆,已知∠OAB=40°,则∠ACB为50°.【解答】解:∵OA=OB,∴∠OBA=∠OAB=40°,∴∠AOB=180°﹣∠OAB﹣∠OBA=100°,∴∠ACB=∠AOB=50°.故答案为:50°.12.(3分)一组数据8,7,8,6,6,8的众数是8.【解答】解:数据8出现了3次,出现次数最多,所以此数据的众数为8.故答案为8.13.(3分)数据11、12、13、14、15的方差是2.【解答】解:平均数=(11+12+13+14+15)÷5=13,方差=[(11﹣13)2+(12﹣13)2+(13﹣13)2+(14﹣13)2+(15﹣13)2]=2.故答案为:2.14.(3分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.15.(3分)一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是8枚.【解答】解:不透明的布袋中的棋子除颜色不同外,其余均相同,共有n+2个棋子,其中黑色棋子n个,根据古典型概率公式知:P(黑色棋子)==80%,解得n=8.故答案为:8.16.(3分)如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是4.【解答】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,∴AE=CE,FB=CF,PA=PB=2,∴△PEF的周长=PE+EF+PF=PA+PB=4.故填空答案:4.17.(3分)如图,在平面直角坐标系xOy中,直线AB经过点A(﹣4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ.【解答】解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣4,0)、B(0,4),∴OA=OB=4,∴AB=4∴OP=AB=2,∴PQ=;故答案为:.18.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+1)*2=0的解为﹣3或1.【解答】解:根据规定运算,方程(x+1)*2=0可化为(x+1)2﹣22=0,移项,得(x+1)2=4,两边开平方,得x+1=±2,解得x1=1,x2=﹣3,故答案为:﹣3或1.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)解方程:(1)x2﹣4x+1=0(2)2(x﹣3)2=x(x﹣3)【解答】解:(1)方程移项得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)方程移项得:2(x﹣3)2﹣x(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x)=0,解得:x1=3,x2=6.20.(8分)已知关于x的一元二次方程(a+1)x2﹣x+a2﹣3a﹣3=0有一根是1.(1)求a的值;(2)求方程的另一根.【解答】解:(1)将x=1代入方程(a+1)x2﹣x+a2﹣3a﹣3=0可得(a+1)﹣1+a2﹣3a﹣3=0,解可得:a=﹣1,a=3;a=﹣1时,原方程是一元一次方程,故舍去;则a=3;(2)由(1)得:a=3,则原方程为4x2﹣x﹣3=0,且其中有一根为1,设另一根是m,则m•1=m=﹣,故m=﹣.21.(8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数y=x+1图象上的概率.【解答】解:(1)画树状图如图所示:∴点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数y=x+1图象上,==.∴P(点P在一次函数y=x+1的图象上)22.(8分)如图:已知P是半径为5cm的⊙O内一点.解答下列问题:(1)用尺规作图找出圆心O的位置.(要求:保留所有的作图痕迹,不写作法)(2)用三角板分别画出过点P的最长弦AB和最短弦CD.(3)已知OP=3cm,过点P的弦中,长度为整数的弦共有4条.【解答】解:(1)如图所示:点O即为所求;(2)如图所示:AB,CD即为所求;(3)如图:连接DO,∵OP=3cm,DO=5cm,∴在Rt△OPD中,DP==4(cm),∴CD=8cm,∴过点P的弦中,长度为整数的弦共有:4条.故答案为:4.23.(10分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小明已根据成绩表算出了甲成绩的平均数和方差,请你完成下面两个问题.甲、乙两人射箭成绩统计表(1)求m的值和乙的平均数及方差;(2)请你从平均数和方差的角度分析,谁将被选中.【解答】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则m=30﹣7﹣7﹣5﹣7=4,=30÷5=6,S2乙=[(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2]=1.6.(2)因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.24.(10分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O 交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【解答】(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.25.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.26.(10分)如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求弧DE、弧DF的长度之和(结果保留π).【解答】(1)证明:根据题意得:BD=CD=BC,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD,即AD平分∠BAC;(2)解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°,∵BD=CD=BC,∴△BDC为等边三角形,∴∠DBC=∠DCB=60°,∴∠DBE=∠DCF=55°,∵BC=6,∴BD=CD=6,∴的长度=的长度==;∴、的长度之和为+=.27.(10分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.28.(14分)如图,矩形AOBC,A(0,3)、B(6,0),点E在OB上,∠AEO=30°,点P从点Q(﹣4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t秒.(1)求点E的坐标;(2)当∠PAE=15°时,求t的值;(3)以点P为圆心,PA为半径的⊙P随点P的运动而变化,当⊙P与四边形AEBC 的边(或边所在的直线)相切时,求t的值.【解答】解:(1)在Rt△AOE中,OA=3,∠AEO=30°,∴OE==3,∴点E的坐标为(3,0);(2)如图1所示:∵∠PAE=15°,∠AEO=30°,∴∠APO=∠PAE+∠AEO=45°,∴OP=OA=3,∴QP=7,∴t=7秒;如图,∵∠AEO=30°,∠PAE=15°,∴∠APE=15°=∠PAE,∴AE=PE,∵AE==6,∴t=QP=OQ+OE+PE=10+3;∴t=7或10+3s.(3)∵PA是⊙P的半径,且⊙P与AE相切,∴点A为切点,如图2所示:∵AE=6,∠AEO=30°,∴PE==4,∴QP=QE﹣PE=(4+3)﹣4=4﹣,∴t=(4﹣)秒.当点P与O重合时,⊙P与AC相切,∴t=4秒;当PA=PB时,⊙P与BC相切,设OP=x,则PB=PA=6﹣x,在Rt△OAP中,x2+32=(6﹣x)2,解得:x=,∴t=4+=(秒);∴t=4﹣或4或秒.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
【初三数学】盐城市九年级数学上期中考试测试卷(含答案)

新人教版数学九年级上册期中考试试题及答案一、细心选一选。
(每小题3分,共42分) 1.观察下列图案,既是中心对称图形又是轴对称图形的是( ) A .B .C .D .2.方程3x 2﹣1=0的一次项系数是( ) A .﹣1 B .0C .3D .13.方程x (x ﹣1)=0的根是( ) A .x=0 B .x=1 C .x 1=0,x 2=1D .x 1=0,x 2=﹣14.在平面直角坐标系中,点A (﹣3,1)与点B 关于原点对称,则点B 的坐标为( )A .(﹣3,1) B .(﹣3,﹣1)C .(3,1)D .(3,﹣1)5.一元二次方程x 2﹣2x ﹣7=0用配方法可变形为( ) A .(x+1)2=8 B .(x+2)2=11 C .(x ﹣1)2=8 D .(x ﹣2)2=116.下列方程中,是关于x 的一元二次方程的是( )。
A .0122=+-y xB .1212-=+x xC .01212=+x D .122=+y y7.设x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,则=( )A .﹣2B .2C .3D .﹣38.将抛物线y=﹣2x 2向左平移3个单位,再向下平移4个单位,所得抛物线为( )A .y=﹣2(x ﹣3)2﹣4B .y=﹣2(x+3)2﹣4C .y=﹣2(x ﹣3)2+4D .y=﹣2(x+3)2+49.若抛物线y=x 2+2x+c 与y 轴交点为(0,﹣3),则下列说法不正确的是( ) A .抛物线口向上 B .当x >﹣1时,y 随x 的增大而减小 C .对称轴为x=﹣1 D .c 的值为﹣310.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y=﹣(x+1)2+2上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 211.三角形两边的长是3和4,第三边的长是方程x 2﹣12x+35=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对12.△ABC 是等边三角形,点P 在△ABC 内,PA=2,将△PAB 绕点A 逆时针旋转得到△P 1AC ,则P 1P 的长等于( )A .2B .C .D .113.在一次会议中,每两人都握了一次手,共握手21次,设有x 人参加会议,则可列方程为( ) A .x (x+1)=21B .x (x ﹣1)=21C .D .14.已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如下表:则当y <6时,x 的取值范围是( )A .﹣3<x <3B .﹣1<x <3C .x <﹣1或x >3D .x >3 二、用心填一填(每小题4分,共16分)15.把方程2x 2﹣1=5x 化为一般形式是16.关于x 的一元二次方程kx 2﹣x+1=0有实数根,则k 的取值范围是 . 17.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是 .18.(3分)抛物线y=+5的顶点坐标是三、耐心解一解(本大题满分62分) 19.(每小题5分,共10分)(1)03522=--x x (2)36)1(2=+x20.(9分)如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,求∠B的度数.21.(9分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?22.(10分)我县某村2015年的人均收入为10000元,2017年人均收入为12100元,若2015年到2017年人均收入的年平均增长率相同.(1)求人均收入的年平均增长率;(2)2016年的人均收入是多少元?23.(12分) 已知二次函数y=x2﹣2mx+m2﹣3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴都有两个交点.(2)当m的值改变时,该函数的图象与x轴两个交点之间的距离是否改变?若不变,请求出距离;若改变,请说明理由24.(12分)如图直线4y与x轴、y轴相交于点A、B,抛物线经过A、B=x-2+两点,点C(-1,0)在抛物线上,抛物线的顶点为点D,直线l垂直于x轴.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBD是以B D为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;参考答案及评分标准一、细心选一选(每小题3分,共42分)二、用心填一填(每小题4分,共16分)15.2x 2﹣5x -1=0 16. k ≤且k ≠0. 17. 150°. 18.(1,5). 三、解答题(62分)19.(每小题5分,共10分) (1)解:3,5,2-=-==c b a49242542=+=-ac b 2249)5(242⨯±--=-±-=a acb b x ………2分 =475± ………4分 21475,347521-=-==+=x x ………5分(2)解:61±=+x ………2分 61=+x 或61-=+x ………4分∴7,521-==x x ………5分 20.解:根据旋转性质得△COD ≌△AOB , ∴CO=AO , 由旋转角为40°, 可得∠AOC=∠BOD=40°, ∴∠OAC=140÷2=70°,∠BOC=∠AOD ﹣∠AOC ﹣∠BOD=10°, ∠AOB=∠AOC+∠BOC=50°, 在△AOB 中,由内角和定理得∠B=180°﹣∠OAC ﹣∠AOB=180°﹣70°﹣50°=60°. ………8分 答:∠B 的度数为60°. ………1分 21.解:(1)∵AB=x 米, ∴BC=(24﹣4x )米,∴S=AB •BC=x (24﹣4x )=﹣4x 2+24x (0<x <6); ………5分 (2)S=﹣4x 2+24x=﹣4(x ﹣3)2+36, ∵0<x <6,∴当x=3时,S 有最大值为36平方米; ………4分 22. 解:(1)设人均收入的年平均增长率为x ,依题意,得 10000(1+x )2=12100,解得:x 1=0.1=10%,x 2=﹣2.1(不合题意,舍去), ………5分 答:人均收入的年平均增长率为10%; ………6分(2)2016年的人均收入为:10000(1+x )=10000(1+0.1)=11000(元). 答:该购物网站8月份到10月份销售额的月平均增长率为10%. ………10分 23. (1)证明:y=x 2﹣2mx+m 2﹣3, ∵a=1,b=﹣2m ,c=m新人教版数学九年级上册期中考试试题及答案一、细心选一选。
2016-2017学年江苏省盐城中学九年级(上)期中数学试卷

江苏省盐城中学九年级(上)期中模拟数学试卷(2)一、选择题:(本大题共8小题,每小题3分,共24分)1.(3分)下面的函数是二次函数的是()A.y=3x+1B.y=x2+2x C.D.2.(3分)下列图形中既是中心对称图形,又是轴对称图形的是()A.正三角形B.正四边形C.正五边形D.正七边形3.(3分)若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是()A.2B.3C.4D.64.(3分)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:则该函数图象的对称轴是()A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=0 5.(3分)抛物线y=2x2如何平移可得到抛物线y=2(x﹣3)2﹣4 ()A.向左平移3个单位,再向上平移4个单位B.向左平移3个单位,再向下平移4个单位C.向右平移3个单位,再向上平移4个单位D.向右平移3个单位,再向下平移4个单位6.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是()A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.217.(3分)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.8.(3分)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合二、填空题:(本大题共10小题,每小题3分,共30分)9.(3分)有一组数据:﹣3、﹣4、0、2、7,则这组数据的极差.10.(3分)母线长为2cm,底面圆的半径为1cm的圆锥的侧面积是cm2.11.(3分)如图,正六边形ABCDEF内接于半径为6的圆,则B、E两点间的距离为.12.(3分)抛物线y=2(x﹣1)2+2沿y轴翻折所得的抛物线的解析式是.13.(3分)如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则∠ACG=°.14.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是.15.(3分)如图,某数学兴趣小组将边长为1的正方形铁丝框ABCD变形为以A 为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.16.(3分)学校有一个圆形喷水池,喷出的水流呈抛物线,一条水流的高度h (单位:m)与水流运动时间t(单位:s)之间的关系式为h=10t﹣t2,那么水流从喷出至回落到地面所需要的时间是s.17.(3分)若二次函数y=(x﹣1)2+k的图象过A(﹣1,y1)、B(2,y2)、C(5,y3)三点,则y1、y2、y3的大小关系正确的是.18.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是.三、解答题:(本大题共有10小题,其中第19题~22题每题8分,第23题~26题每题10分,第27题、第28题每题12分,共96分)19.(8分)求下列二次函数的顶点坐标.(1)y=x2﹣4x+8(2)y=﹣2x2﹣6x+3.20.(8分)如图,扇形OAB的圆心角∠AOB=120°,半径OA=6cm.(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹);(2)求弧AB的长及扇形OAB的面积.21.(8分)已知抛物线y=x2﹣mx+m﹣2.(其中m是常数)(1)求证:不论m取何值,该抛物线与x轴一定有两个不同的交点;(2)不论m取何值,抛物线都经过一个定点,则这个定点的坐标为.22.(8分)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的关系式;(2)求不等式x2+bx+c>x+m的解集(直接写出答案).23.(10分)某班为确定参加学校投篮比赛的人选,在A、B两位投篮高手间进行了6此投篮比赛,每次10投,将他们的命中成绩统计如下:请根据统计图所给信息,完成下列问题:(1)完成表格的填写;(2)如果这个班只能在A、B之间选派一名学生参赛,该选派谁呢?请你利用学过的统计量对问题进行多角度分析说明,并作出决策.24.(10分)如图,抛物线y=x2﹣x+2与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.25.(10分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.26.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销,据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并直接写出自变量的取值范围.(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)27.(12分)【发现】数学兴趣小组在一次数学学习研讨中,发现如下命题:如图1,AB∥CD,连接AC、AD、BC、BD,则S△ACD S△BCD(填>、<或=);【应用】如图2,半圆的直径AB=26,C、D是半圆的3等分点,求弦AC、弦AD 与弧CD围成的阴影部分的面积;【探究】(1)如图3,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥EF∥CD,AB=26,CD=10,EF=24,求图中阴影部分面积.(2)如图3,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥EF∥CD,AB=a,CD=b,EF=c,则a、b、c满足什么关系时图中阴影部分面积等于圆的面积的一半.(直接写出结果)28.(12分)如图,在平面直角坐标系xOy中,二次函数y=a(x+1)(x﹣3)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点,顶点M 的纵坐标为﹣4.(1)直接写出点A的坐标,点B的坐标;(2)求出二次函数的解析式;(3)如图1,在平面直角坐标系xOy中找一点D,使得△ACD是以AC为斜边的等腰直角三角形,试求出点D的坐标;(4)如图2,若过点M作直线MN∥y轴,点P是直线MN上的一个动点,是否存在某一位置使得∠APC=45°,若存在,直接写出点P的坐标,若不存在,说明理由.2016-2017学年江苏省盐城中学九年级(上)期中数学试卷参考答案一、选择题:(本大题共8小题,每小题3分,共24分)1.B;2.B;3.D;4.B;5.D;6.B;7.D;8.D;二、填空题:(本大题共10小题,每小题3分,共30分)9.11;10.2π;11.12;12.y=2(x+1)2+2;13.45;14.86.5;15.1;16.10;17.y2<y1<y3;18.①③④⑤;三、解答题:(本大题共有10小题,其中第19题~22题每题8分,第23题~26题每题10分,第27题、第28题每题12分,共96分)19.;20.;21.(1,﹣1);22.;23.;24.;25.;26.;27.=;28.(﹣1,0);(3,0);。
2015-2016年盐城市盐都区九年级上期中数学试卷含答案解析

2015-2016学年江苏省盐城市盐都区九年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1下列方程中是关于 x 的一元二次方程的是( )2.已知OA=3cm ,以O 为圆心,3cm 为半径作O O ,则点A 与O O 的位置关系是( )A .点A 在O O 上B .点A 在O O 内C .点A 在O O 外D .不确定23. 方程x =2x 的解是()4.如图,AB 为O O 的直径,点 C 在O O 上,/ A=30。
,则/ B 的度数为()5. 判断一元二次方程x 2- 2x+仁0的根的情况是()A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根6.三角形的外心是三角形中 ( )A .三条高的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点 7.正六边形的每个内角为 ()A. 135° B . 120° C . 100° D . 90 8.把所有正偶数从小到大排列,并按如下规律分组:(2) , (4, 6) , ( 8, 10, 12), (14, 16,18, 20),…,现有等式A m = (i , j )表示正偶数 m 是第i 组第j 个数(从左往右数).如A 2= (1, 1), A 10= (3 , 2) , A 18= (4 , 3),贝U A 2016可表示为()A . x+3=5B . 2x - 3y=4C .2D . x - 2x - 3=0A . x=2B . x=0C . x i =2, X 2=OD . x i =-,X 2=0D . 6045°A. (45, 18)B. (45, 19)C. (44, 18)D. (44, 19)、填空题(共10小题,每小题3分,满分30 分)9. _______________________________________________ 使二次根式(冠有意义的x的取值范围是__________________________________________________ .IT尸一10. 已知反比例函数__________________________ K的图象经过点(2, 3),则m= .2 211•若将一元二次方程x +4x - 7=0化为(x+2)=k,贝U k= ____________ .12.如图,将直角三角板45°的角的顶点放在圆心O上,斜边和一直角边分别与O O相交于A、B两点,C是优弧AB上任意一点(与A、B不重合),则/ ACB的度数是 _________________ .13.已知分式x+1的值为0,则x= ________________14.如图,四边形ABCD是O O的内接四边形,若/ D=100。
盐中初三期中数学试卷答案

一、选择题1. 下列各数中,有理数是()A. √2B. πC. 3/4D. -1/2答案:C解析:有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
在给出的选项中,只有3/4是分数,因此是有理数。
2. 若a,b,c是等差数列的前三项,且a+b+c=12,a+c=8,则b=()A. 4B. 6C. 8D. 10答案:B解析:由等差数列的性质,可知b是a和c的算术平均数,即b=(a+c)/2。
将a+c=8代入得b=4。
再由a+b+c=12,代入b=4,得a+c=8,所以a=2,c=6。
因此,b=6。
3. 若函数f(x)=2x-1在区间[1,3]上单调递增,则函数g(x)=f(x^2)-f(x)在区间[1,3]上的单调性是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A解析:首先求出f(x^2)-f(x)的表达式,即f(x^2)-f(x)=2x^2-1-(2x-1)=2x^2-2x。
由于f(x)=2x-1在区间[1,3]上单调递增,因此x^2也在区间[1,3]上单调递增。
由于x^2-1也在区间[1,3]上单调递增,所以2x^2-2x也在区间[1,3]上单调递增。
4. 在直角坐标系中,点A(2,3),B(-3,1),则线段AB的中点坐标是()A. (1,2)B. (-1,2)C. (1,1)D. (-1,1)答案:B解析:线段AB的中点坐标可以通过计算两点坐标的平均值得到。
即中点坐标为((2-3)/2, (3+1)/2)=(-1/2, 2)。
由于题目选项中没有-1/2,因此选择最接近的答案B(-1,2)。
5. 若a,b,c是三角形的三边长,且a+b+c=10,a^2+b^2=36,则三角形面积S的最大值是()A. 4B. 5C. 6D. 7答案:C解析:由勾股定理可知,若a^2+b^2=c^2,则三角形是直角三角形。
由题意,a^2+b^2=36,所以三角形是直角三角形。
设c为斜边,则c=6。
阜宁初三期中试卷数学答案
1. 下列各数中,有理数是:()A. √-1B. √2C. πD. -√2答案:D解析:有理数包括整数和分数,其中-√2是一个负的平方根,属于有理数。
2. 下列函数中,一次函数是:()A. y = 2x + 3B. y = x^2 + 2C. y = √xD. y = x^3答案:A解析:一次函数的特点是函数图像是一条直线,只有选项A符合这一特点。
3. 已知等腰三角形底边长为6,腰长为8,则其面积为:()A. 24B. 30C. 32D. 36答案:B解析:等腰三角形的面积公式为S = (底边长× 高) / 2。
作高,将等腰三角形分成两个等腰直角三角形,高为√(腰长^2 - (底边长/2)^2) = √(8^2 - 3^2) = √(64 - 9) = √55。
所以面积为(6 × √55) / 2 = 3√55,近似值为30。
4. 若x + y = 5,xy = 6,则x^2 + y^2的值为:()A. 19B. 21C. 23D. 25答案:A解析:根据平方差公式,(x + y)^2 = x^2 + 2xy + y^2,代入x + y = 5,xy = 6,得到25 = x^2 + 2×6 + y^2,解得x^2 + y^2 = 25 - 12 = 13。
5. 在直角坐标系中,点A(2,3),点B(-3,4),则线段AB的中点坐标为:()A. (-1, 3.5)B. (1, 3.5)C. (0, 3.5)D. (2, 3.5)答案:A解析:线段AB的中点坐标为两点坐标的平均值,即((-3+2)/2, (4+3)/2) = (-1, 3.5)。
6. 若x^2 - 5x + 6 = 0,则x的值为_________。
答案:2或3解析:这是一个一元二次方程,可以通过因式分解或求根公式求解,得到x的值为2或3。
7. 已知函数y = kx + b,若k = 2,b = -1,则当x = 3时,y的值为_________。
江苏省--九年级上段考数学试卷--盐城市阜宁县
23.商场某种商品平均每天可销售 30 件,每件盈利 50 元.为了尽快减少库存,商场决定采 取适当的降价措施.经调查发现,每件商品每降价 1 元,商场平均每天可多售出 2 件.设每 件商品降价 x 元.据此规律,请回答: (1)商场日销售量增加 件,每件商品盈利 元(用含 x 的代数式 表示); (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到 2100 元? 24.如图,在 Rt△ABC 中,∠ACB=90°,AC=6,CB=8,AD 是△ABC 的角平分线,过 A,D,C 三点的圆与斜边 AB 交于点 E,连接 DE. (1)求证:AC=AE; (2)求△ACD 外接圆的直径.
25.如图,已知 AB 是⊙O 的直径,点 C、D 在⊙O 上,点 E 在⊙O 外,∠EAC=∠D=60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当 BC=4 时,求劣弧 AC 的长.
26.随着人们经济收入的提高及汽车产业的快速发展,汽车已经越来越多进入普通家庭,成 为居民消费新的增长点,据某市交通部门统计,2011 年底全是汽车拥有量为 15 万辆,而截 止到 2013 年底全市汽车拥有量已达到 21.6 万辆. (1)求 2011 年底到 2013 年底该市汽车拥有量的年平均增长率; (2)为了保护环境,缓解汽车拥堵情况,从 2014 年起,该市交通部分拟控制汽车总量,要 求到 2015 年底全市汽车拥有量不超过 23.196 万辆;另据统计,该市从 2014 年起每年报废 的汽车数量是上年底汽车拥有量的 10%,假定在这种情况下每年汽车新增数量相同,请你计 算出该市每年新增汽车数量最多不能超过多少万辆.
【5套打包】盐城市初三九年级数学上期中考试测试卷(含答案)
新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A.40°B.50°C.25°D.60°答案C13.如图,C、D是线段AB上的点,若AB=8,CD=2,则图中以A、C、D、B为端点的所有线段的长度之和为A.24 B.22C.20 D.26答案D14.角α和β互补,α>β,则β的余角为A.α–βB.180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.答案 1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于 .答案 2419.如图所示,O 是直线AB 上一点,OC 是∠AOB 的平分线.(1)图中互余的角是 ; (2)图中互补的角是 . 答案 (1)∠AOD 与∠DOC (2)∠AOD 与∠BOD,∠AOC 与∠BOC20.如图,OM 、ON 分别是∠BOC 和∠AOC 的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC 在∠AOB 内绕点O 转动时,∠MON 的值 改变.(填“会”或“不会”)1()2αβ-90αβ︒-答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BO新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=84.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,95.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>19.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B 时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y 随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.7.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12【分析】根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选:C.8.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1【分析】先求出方程(x﹣1)2﹣4=0的解,得出函数与x轴的交点坐标,根据函数的性质得出答案即可.【解答】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3,故选:C.9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.10.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2【分析】本题考查二次函数最小(大)值的求法.【解答】解:设矩形的长为x,则宽为,矩形的面积=()x=﹣x2+4x,S最大===4,故矩形的最大面积是4cm2.故选:A.二.填空题(共6小题)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程x2+(x+3)2=65 ,化成一般形式为x2+3x﹣28=0 .【分析】首先表示出两个数字进而利用勾股定理列出方程再整理即可.【解答】解:设较小的数为x,则另一个数字为x+3,根据题意得出:x2+(x+3)2=65,整理得出:x2+3x﹣28=0.故答案为:x2+(x+3)2=65,x2+3x﹣28=0.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=﹣3 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得ab=﹣3.故答案为:﹣3.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有①.【分析】根据a的值可以判定开口方向和开口大小,利用顶点式直接找出对称轴和顶点坐标,利用对称轴和开口方向确定y随着x的增大而增大对应x的取值范围.【解答】解:①因为a=3>0,它们的图象都是开口向上,大小是相同的,故此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是(0,1),y=3(x﹣1)2的对称轴是x=1,顶点坐标是(1,0),故此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3(x﹣1)2当x>1时,y随着x的增大而增大,故此选项错误;④它们与x轴都有一个交点,故此选项错误;综上所知,正确的有①.故答案是:①.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是x=2 .【分析】因为点(﹣2,0),(6,0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=求解即可.【解答】解:∵抛物线与x轴的交点为(﹣2,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==2,即x=2.故答案是:x=2.15.函数y=x2﹣2x+2的图象顶点坐标是(1,1).【分析】根据二次函数解析式,进行配方得出顶点式形式,即可得出顶点坐标.【解答】解:y=x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,∵抛物线开口向上,当x=1时,y最小=1,∴顶点坐标是(1,1).故答案为:(1,1).16.点P(﹣2,3)关于x轴对称点的坐标是(﹣2,﹣3),关于原点对称点的坐标是(2,﹣3),关于y轴的对称点的坐标是(2,3);【分析】利用关于原点对称点的坐标性质以及关于x轴、y轴对称的点的坐标性质分别得出答案.【解答】解:点P(﹣2,3)关于原点的对称点的坐标为:(2,﹣3),关于x轴的对称点的坐标为(﹣2,﹣3),关于y轴的对称点的坐标为(2,3).故答案为:(﹣2,﹣3);(2,﹣3);(2,3).三.解答题(共9小题)17.解方程:x2﹣6x+5=0(配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣5,等式两边同时加上一次项系数一半的平方32.得x2﹣6x+32=﹣5+32,即(x﹣3)2=4,∴x=3±2,∴原方程的解是:x1=5,x2=1.18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.【分析】直接利用交点式写出抛物线的解析式.【解答】解:抛物线的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?【分析】设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据共要比赛28场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据题意得:=21,整理得:x2﹣x﹣42=0,解得:x1=7,x2=﹣6(不合题意,舍去).答:共有7个队参加足球联赛.20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.【分析】(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.【解答】解:(1)设这两年该企业投入科研经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2.答:这两年该企业投入科研经费的年平均增长率为20%.(2)7200×(1+20%)=8640(万元).答:2019年该企业投入科研经费8640万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B 时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?【分析】(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式,求出其解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由题意,得1=a(0﹣4)2+2.6,解得:a=﹣0.1.故y=﹣0.1(x﹣4)2+2.6.答:抛物线的解析式为:y=﹣0.1(x﹣4)2+2.6;(2)由题意,得当y=0时,﹣0.1(x﹣4)2+2.6=0,解得:x1=+4,x2=﹣+4<0(舍去),故x=+4.答:这个同学推出的铅球有(+4)米远.22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.【分析】(1)计算判别式的中得到△=24,然后根据判别式的意义得到结论;(2)把x=2代入方程k2+4k=2,再把2k2+8k+2018表示为2(k2+4k)+2018,然后利用整体代入的方法计算.【解答】(1)证明:△=(2k)2﹣4(k2﹣6)=24>0,所以方程有两个不相等的实数根;(2)把x=2代入方程得4+4k+k2﹣6=0,所以k2+4k=2,所以2k2+8k+2018=2(k2+4k)+2018=2×2+2018=2022.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为6000 元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(40﹣x)元,平均每月可售出[(40﹣x)×200+600] 个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.【分析】(1)根据总盈利=单件获利乘以销量列出代数式;(2)根据“当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个”列出代数式(3)设每个台灯的售价为x元.根据每个台灯的利润×销售数量=总利润列出方程并解答;【解答】解:(1)依题意得:未降价之前,该店每月台灯总盈利为600×(40﹣30)=6000元.故答案是:6000.(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(x﹣30)元,平均每月可售出[(40﹣x)×200+600]个故答案为:(x﹣30),[(40﹣x)×200+600].(2)设每个台灯的售价为x元.根据题意,得(x﹣30)[(40﹣x)×200+600]=8400,解得x1=36(舍),x2=37.当x=36时,(40﹣36)×200+600=1400>1210;当x=37时,(40﹣37)×200+600=1200<1210;答:每个台灯的售价为37元.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.【分析】(1)根据运动时间求出PA,BQ,利用分割法求△DPQ的面积即可.(2)分别求出表示出DP2,PQ2,DQ2,进而得到PQ2+DQ2=DP2,得出答案;(3)假设运动开始后第x秒时,满足条件,则有QP=QD,表示出QP2,QD2,列出等式,构建方程方程,求出方程的解,根据时间大于0秒小于6秒,即可解答.【解答】解:(1)经过1秒时,AP=1,BQ=2,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,AB=CD=6cm,BC=AD=12cm,∴PB=6﹣1=5(cm),CQ=BC﹣BQ=12﹣2=10(cm),∴S△DPQ=S矩形ABCD﹣S△ADP﹣S△PBQ﹣S△DCQ=72﹣×1×12﹣×6×2﹣×6×10=30(cm2).(2)当t=秒时,AP=,BP=6﹣=,BQ=×2=3,CQ=12﹣3=9,∴在Rt△DAP中,DP2=DA2+AP2=122+()2=,在Rt△DCQ中,DQ2=DC2+CQ2=62+92=117,在Rt△QBP中,QP2=QB2+BP2=32+()2=,∴DQ2+QP2=117+=,∴DQ2+QP2=DP2,∴△DPQ为直角三角形;(3)假设运动开始后第x秒时,满足条件,则:QP=QD,∵OP2=PB2+BQ2=(6﹣x)2+(2x)2,QD2=QC2+CD2=(12﹣2x)2+62,∴(12﹣2x)2+62=(6﹣x)2+(2x)2,整理,得:x2+36x﹣144=0,解得:x=﹣18±6,∵0<6﹣18<6,∴运动开始后第6﹣18秒时,△DPQ是以PD为底的等腰三角形.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为(2,0),B点坐标为(5,0);(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.【分析】(1)y=,令y=0,解得:x=2或5,即可求解;(2)证明△OAC≌△DBC(SAS),则BD=OA=2,∠OBD=60°,即可求解;(3)分OD是平行四边形的边、OD是平行四边形的对角线两种情况,分别求解.【解答】解:(1)y=,令y=0,解得:x=2或5,故答案为:(2,0)、(5,0);(2)连接CD、BD,由(1)知:OA=2,AB=3,等边三角形ABC的边长为3,∵△ABC为等边三角形,∴AC=BC,∠ACB=60°=∠CAB,∴∠CAO=120°,∵∠COD=60°,且OD=OC,则△OCD为等边三角形,∴OD=CD=CO,则∠OCD=60°=∠OCA+∠ACD,而∠ACB=60°=∠ACD+∠DCB,∴∠OCA=∠DCB,而CO=CD,CA=CB,∴△OAC≌△DBC(SAS),∴BD=OA=2,∠CBD=∠CAO=120°,而∠CBO=60°,∴∠OBD=60°,则y D=﹣BD sin∠OBD=﹣2×=﹣,故点D的坐标为(4,﹣),当x=4时,y==﹣,故点D在抛物线上;(3)抛物线的对称轴为:x=,设点M(,s),点N(m,n),n=m2﹣m+5,①当OD是平行四边形的边时,当点N在对称轴右侧时,点O向右平移4个单位,向下平移个单位得到D,同样点M向右平移4个单位,向下平移个单位得到N,即:+4=m,s﹣=n,而n=m2﹣m+5,解得:s=则点M(,);当点N在对称轴左侧时,同理可得:点M(,);②当OD是平行四边形的对角线时,则4=+m,﹣=n+s,而n=m2﹣m+5,解得:s=,故点M的坐标为:(,)或(,)或(,).新九年级上册数学期中考试试题及答案一、选择题(每小题4分,共48分)1.(4分)﹣6的绝对值是()A.﹣6B.﹣C.D.62.(4分)如图所示的几何体,它的左视图是()A.B.C.D.3.(4分)为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量4.(4分)计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1C.x2D.15.(4分)下列命题是真命题的是()A.对角线相互垂直的四边形是平行四边形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相等且相互平分的四边形是矩形6.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,……,按此规律排列下去,则第⑤个图案中三角形的个数为()A.14个B.15个C.16个D.17个7.(4分)抛物线y=2(x﹣2)2﹣1关于x轴对称的抛物线的解析式为()A.y=2(x﹣2)2+1B.y=﹣2(x﹣2)2+1C.y=﹣2(x﹣2)2﹣1D.y=﹣(x﹣2)2﹣18.(4分)如图,在等腰△ABC中,AB=AC,tan C=2,BD⊥AC于点D,点G是底边BC上一点,过点G向两腰作垂线段,垂足分别为E、F,若BD=4,GE=1.5,则BF的长度为()A.0.75B.0.8C.1.25D.1.359.(4分)如图,MN是垂直于水平面的一棵树,小马(身髙1.70米)从点A出发,先沿水平方向向左走10米到B点,再经过一段坡度i=4:3,坡长为5米的斜坡BC到达C点,然后再沿水平方向向左行走5米到达N点(A、B、C、N在同一平面内),小马在线段AB的黄金分割点P处()测得大树的顶端M的仰角为37°,则大树MN的高度约为()米(参考数据:tan37°≈0.75,sin37°≈0.60,≈2.236,≈1.732).A.7.8米B.8.0米C.8.1米D.8.3米10.(4分)抛物线y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(﹣1,0),则下列结论:①abc>0;②2a﹣b=0;③3a+c>0;④a+b>am2+bm(m为一切实数);⑤b2>4ac;正确的个数有()A.1个B.2个C.3个D.4个11.(4分)如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC 中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣612.(4分)已知关于x的二次函数y=(k﹣1)x2+(2k﹣3)x+k+2的图象在x轴上方,关于m的分式方程有整数解,则同时满足两个条件的整数k值个数()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)13.(4分)计算:﹣10+=.14.(4分)函数y=x2+图象上的点P(x,y)一定在第象限.15.(4分)在二次函数y=ax2+2ax+4(a<0)的图象上有两点(﹣2,y1)、(1,y2),则y1﹣y20(填“>”、“<”或“=”).16.(4分)如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为.17.(4分)周末秋高气爽,阳光明媚,小赵带爷爷到滨江路去散步,祖孙俩在长度为600米的A、B路段上往返行走,他们从A地出发,小赵陪爷爷走了两圈一同回到A地后,就开始匀速跑步,爷爷继续匀速散步,如图反映了他们距离A地的路程s(米)与小赵跑步的时间t(分钟)的部分关系图(他们各自到达A地或B地后立即掉头,调头转身时间忽略不计),则小赵跑步过程中祖孙第四次与第五次相遇地点间距为米.18.(4分)重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.20.(8分)在大课间活动中,同学们积极参加体育锻炼,小段同学就本班同学“我最擅长的体育项目”进行了一次调查统计,下面是她通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;补全条形统计图;在扇形统计图中,“其他”部分所对应的圆心角度数为度;(2)学校将举办冬季运动会,该班已推选5位同学参加乒乓球活动,其中有2位男同学(A,B)和3位女同学(C,D,E),现从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.四、解答题(每小题10分,共50分)21.(10分)计算:(1)因式分解:(x﹣2y)2﹣(2x+5y)2;(2)解方程:(公式法)2x(x﹣3)=x2﹣1.22.(10分)在目前万物互联的时代,人工智能正掀起一场影响深刻的技术革命.谷歌、苹果,BAT,华为……巨头们纷纷布局人工智能,有人猜测,互联网+过后,我们可能会迎来机器人+,教育从幼儿抓起,近年来我国国内幼儿教育机器人发展趋势迅猛,市场上出现了满足各类要求的幼教机器人产品.“双十一“当天,某品牌幼教机器人专卖店抓住机遇,对最畅销的A款幼教机器人进行促销.一台A款幼教机器人的成本价为850元,标价为1300元.(1)一台A款幼教机器人的价格最多降价多少元,才能使利润率不低于30%;(2)该专卖店以前每周共售出A款幼教机器人100个,“双十一“狂购夜中每台A款幼教机器人在标价的基础上降价2m元,结果这天晚上卖出的A款幼教机器人的数量比原来一周卖出的A款幼教机器人的数量增加了m%,同时这天晚上的利润比原来一周的利润增加了m%,求m的值.23.(10分)在▱ABCD中,点E为CD边上一点,点F为BC中点,连接BE,DF交于点G,且GA=GD:(1)如图1,若AB=AE=BG=6,AE⊥CD,求AG2的值;(2)如图2,若EM平分∠BEC,且EM∥DF,过点G作GN⊥BE交AE于点N且GN=GE,求证:AE⊥CD.24.(10分)阅读材料:若关于x的一元二次方程ax2+bx+c=0(a≠0,a、b、c为常数)的根均为整数,称该方程为“快。
2014-2015年江苏省盐城市阜宁县九年级(上)期中数学试卷和答案
2014-2015学年江苏省盐城市阜宁县九年级(上)期中数学试卷一、选择题(每小题3分,计24分)1.(3分)方程(x﹣1)(x+2)=0的根是()A.x 1=1,x2=﹣2 B.x1=﹣1,x2=2 C.x1=﹣1,x2=﹣2 D.x1=1,x2=2 2.(3分)某校九年级有19名同学参加语文阅读知识竞赛,预赛成绩各不相同,要取前10名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这19名同学成绩的()A.中位数B.众数C.平均数D.极差3.(3分)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1•x2的值是()A.3 B.﹣3 C.2 D.﹣24.(3分)2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小5.(3分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解6.(3分)下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个 B.3个 C.2个 D.1个7.(3分)如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC8.(3分)如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为()A.34πcm2B.128πcm2C.32πcm2D.16πcm2二、填空题(每小题3分,计30分)9.(3分)一元二次方程x2﹣9=0的解是.10.(3分)一组数据:2011,2012,2013,2014,2015的方差是.11.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.12.(3分)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是.13.(3分)某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是.14.(3分)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②函数的图象;③圆;④平行四边形;⑤正六边形.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是.15.(3分)下表为某班学生成绩的次数分配表.已知全班共有38人,且众数为50分,中位数为60分,则x2﹣y之值为.16.(3分)如图,⊙O 的内接四边形ABCD 中,∠BCD=138°,则∠BOD 的度数是 .17.(3分)图中△ABC 的外心坐标是 .18.(3分)钟表的分针长为4,从8:25到9:10,分针扫过的区域(图形)与圆锥的侧面展开图全等,则这个圆锥底面圆的半径是 .三、解答题(共96分)19.(8分)解方程:①4x 2=(x ﹣1)2②2x 2﹣8x ﹣16=0(需用配方法解)20.(8分)如图.AB 是半圆O 的直径,O 为AB 中点,C 、D 两点在弧AB 上,且AD ∥OC ,连接BC 、BD .若CD 的度数为63°,求的度数.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?22.(8分)如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8cm,CD=2cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求出(1)中所作圆的半径.23.(10分)如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.24.(10分)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.25.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.26.(10分)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率.27.(12分)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.(1)直线AC与⊙O有怎样的位置关系?为什么?(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)28.(12分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),求t值(单位:秒).2014-2015学年江苏省盐城市阜宁县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,计24分)1.(3分)方程(x﹣1)(x+2)=0的根是()A.x1=1,x2=﹣2 B.x1=﹣1,x2=2 C.x1=﹣1,x2=﹣2 D.x1=1,x2=2【解答】解:∵x﹣1=0或x+2=0,∴x1=1,x2=﹣2.故选:A.2.(3分)某校九年级有19名同学参加语文阅读知识竞赛,预赛成绩各不相同,要取前10名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这19名同学成绩的()A.中位数B.众数C.平均数D.极差【解答】解:19个不同的成绩按从小到大排序后,中位数及中位数之后的共有10个数,故只要知道自己的成绩和中位数就可以知道是否获奖了.故选:A.3.(3分)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1•x2的值是()A.3 B.﹣3 C.2 D.﹣2【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,∴x1•x2==﹣3.故选:B.4.(3分)2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小【解答】解:A、科比罚球投篮2次,不一定全部命中,故本选项错误;B、科比罚球投篮2次,不一定全部命中,故本选项正确;C、∵科比罚球投篮的命中率大约是83.3%,∴科比罚球投篮1次,命中的可能性较大,故本选项正确;D、科比罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.5.(3分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选:C.6.(3分)下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个 B.3个 C.2个 D.1个【解答】解:经过不在同一条直线上三点可以作一个圆,∴①错误;任意一个圆一定有内接三角形,并且有多个内接三角形,∴②错误;任意一个三角形一定有一个外接圆,并且只有一个外接圆,∴③正确;三角形的外心是三角形三边的垂直平分线的交点,到三角形的三个顶点距离相等,∴④正确.故选:C.7.(3分)如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC【解答】解:A、∵CD是⊙O的直径,弦AB⊥CD于点G,∴AG=BG,故正确;B、∵直线EF与⊙O相切于点D,∴CD⊥EF,又∵AB⊥CD,∴AB∥EF,故正确;C、只有当弧AC=弧AD时,AD∥BC,当两个互不等时,则不平行,故选项错误;D、根据同弧所对的圆周角相等,可以得到∠ABC=∠ADC.故选项正确.故选:C.8.(3分)如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为()A.34πcm2B.128πcm2C.32πcm2D.16πcm2【解答】解:若大半圆的圆心为O,过点O作OE⊥AB于点E,连接OB,∵弦AB与小半圆相切,AB∥CD,∴小圆半径为OE,∴OE⊥AB,EB=AB=8cm,在Rt△OBE中,OB2=OE2+EB2,∴OB2﹣OE2=EB2=64,S阴影=﹣==32πcm2;故图中阴影部分的面积为32πcm2.故选C.二、填空题(每小题3分,计30分)9.(3分)一元二次方程x2﹣9=0的解是x1=3,x2=﹣3.【解答】解:∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.10.(3分)一组数据:2011,2012,2013,2014,2015的方差是2.【解答】解:这组数据的平均数是:(2011+2012+2013+2014+2015)÷5=2013,则方差是:[(2011﹣2013)2+(2012﹣2013)2+(2013﹣2013)2+(2014﹣2013)2+(2015﹣2013)2]=2;故答案为:2.11.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.12.(3分)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是80°或100°.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故答案为80°或100°.13.(3分)某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是25%.【解答】解:设平均每月增长的百分率是x,160(1+x)2=250x=25%或x=﹣225%(舍去).平均每月增长的百分率是25%.故答案为:25%.14.(3分)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②函数的图象;③圆;④平行四边形;⑤正六边形.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是0.8.【解答】解:∵五张卡片:①线段;②函数的图象;③圆;④平行四边形;⑤正六边形中,既是轴对称图形,又是中心对称图形的①②③⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:=0.8;故答案为:0.8.15.(3分)下表为某班学生成绩的次数分配表.已知全班共有38人,且众数为50分,中位数为60分,则x2﹣y之值为57.【解答】解:∵全班共有38人,∴x+y=38﹣(2+3+5+6+3+4)=15,又∵众数为50分,∴x>6,x>y,∴x≥8,当x=8时,y=7,中位数是第19,20两个数的平均数,都为60分,则中位数为60分,符合题意;当x=9时,y=6,中位数是第19,20两个数的平均数,则中位数为(50+60)÷2=55分,不符合题意;同理当x=10,11,12,13,14,15时,中位数都不等于60分,不符合题意.则x=8,y=7.则x2﹣y=64﹣7=57.故答案为:57.16.(3分)如图,⊙O的内接四边形ABCD中,∠BCD=138°,则∠BOD的度数是84°.【解答】解:四边形ABCD是圆内接四边形,∠BCD=138°,∴∠A=180°﹣138°=42°.∵∠BOD与∠A是同弧所对的圆心角与圆周角,∴∠BOD=2∠A=84°.故答案为:84°.17.(3分)图中△ABC的外心坐标是(5,2).【解答】解:作BC和AB的垂直平分线,它们相交于点P,如图,则点P为△ABC的外心,P点坐标为(5,2).故答案为(5,2).18.(3分)钟表的分针长为4,从8:25到9:10,分针扫过的区域(图形)与圆锥的侧面展开图全等,则这个圆锥底面圆的半径是3.【解答】解:∵圆锥侧面展开图的弧长为:=6π,∴圆锥的底面圆的半径为:6π÷2π=3,故答案为3.三、解答题(共96分)19.(8分)解方程:①4x2=(x﹣1)2②2x2﹣8x﹣16=0(需用配方法解)【解答】解:(1)4x2﹣(x﹣1)2=0,(2x+x﹣1)(2x﹣x+1)=0,2x+x﹣1=0或2x﹣x+1=0,所以x1=,x2=﹣1;(2)x2﹣4x﹣8=0,x2﹣4x=8,x2﹣4x+4=8+4,(x﹣2)2=12,x﹣2=±2,所以x1=2+2,x2=2﹣2.20.(8分)如图.AB是半圆O的直径,O为AB中点,C、D两点在弧AB上,且AD∥OC,连接BC、BD.若CD的度数为63°,求的度数.【解答】解:∵AB是直径,∴∠D=90°,∵AD∥OC,∴∠OEB=∠D=90°,∴OC⊥BD,∴的度数是:180°﹣63°﹣63°=54°.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【解答】解:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.22.(8分)如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8cm,CD=2cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求出(1)中所作圆的半径.【解答】解:(1)作图如下,(2)设圆P的半径为r,∵AB⊥CD,AB=8cm,CD=2cm,∴AD=AB=4cm,PD=(r﹣2)cm,在Rt△APD中,AP2=AD2+DP2,∴r2=42+(r﹣2)2,解得r=5,∴⊙P的半径为5cm.23.(10分)如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.【解答】(1)证明:连接OD,∵EF是⊙O的切线,∴OD⊥EF,又∵BH⊥EF,∴OD∥BH,∴∠ODB=∠DBH,∵OD=OB,∴∠ODB=∠OBD∴∠OBD=∠DBH,即BD平分∠ABH.(2)解:过点O作OG⊥BC于点G,则BG=CG=4,在Rt△OBG中,OG===.24.(10分)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【解答】解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1•x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.25.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.26.(10分)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率.【解答】解:(1)画树状图得:共有20种等可能的结果,(2)∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为:=;(3)∵2名主持人恰好1男1女的情况有12种,∴2名主持人恰好1男1女的概率为:=.27.(12分)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.(1)直线AC与⊙O有怎样的位置关系?为什么?(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【解答】解:(1)直线AC与⊙O相切.理由如下:连结BC、OD、OC,OC交BD于E,如图,∵∠BOC=2∠BDC=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠ACO=180°﹣∠A﹣∠AOC=90°,∴OC⊥AC,∴AC为⊙O的切线;(2)解:∵OC⊥AC,BD∥AC,∴OC⊥BD,∴BE=DE=BD=3,∵∠OBE=30°,∴OE=BE=3,OB=2OE=6,∴CE=OE,∴OC和BD互相垂直平分,∴四边形BODC为菱形,=S△OBE,∴S△CDE∴由弦CD、BD与弧BC所围成的阴影部分的面积=S==6π(cm2).扇形BOC28.(12分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),求t值(单位:秒).【解答】解:∵△ABC为等边三角形,MN∥AC,∴△BNM为等边三角形,当⊙P与AB相切D点时,如图1,连结PD,则PD⊥AB,PD=,在Rt△PDM中,∵∠PMD=60°,∴DM=PD=1,∴PM=2,∴QP=4﹣2=2,∴t=2(秒);作AE⊥MN于E,CF⊥MN于F,如图2,在Rt△AEM中,∵∠EMD=60°,AM=2cm,∴EM=1,AE=EM=,同理可得CF=,∴当⊙P与AC相切时,点P在线段EF上,∵QE=4﹣1=3,QF=OE+EF=3+4=7,∴3≤t≤7;当⊙P与BC相切D点时,如图3,连结PD,则PD⊥AB,PD=,在Rt△PDN中,∵∠PND=60°,∴DN=PD=1,∴PN=2,∴QP=QM+MN+PN=4+2+2=8,∴t=8(秒)综上所述,t的值为2或3≤t≤7或8.第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省盐城市阜宁县九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的.)1.(3分)数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、2.(3分)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,下列选项中正确的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≥03.(3分)如图,⊙O的直径AB=10,CD是⊙O的弦,CD⊥AB,垂足为P,且OP=4,则CD的长为()A.3 B.4 C.6 D.84.(3分)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4) B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)5.(3分)下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式6.(3分)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26 7.(3分)如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为()A.15°B.30°C.45°D.60°8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中错误的是()A.a>0 B.当x≥1时,y随x的增大而增大C.c<0 D.当﹣1<x<3时,y>0二、填空题(本大题共10题,每题3分,共30分.把答案填在答题卡中对应的横线上).9.(3分)一元二次方程x2=9的解是.10.(3分)二次函数y=2x2﹣3的最小值是.11.(3分)数据11、12、13、14、15的方差是.12.(3分)请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的解析式.13.(3分)若抛物线y=kx2﹣2x﹣1顶点在x轴上,则k值是.14.(3分)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.15.(3分)将抛物线y=2(x+1)2向上平移3个单位,再向左平移2个单位,那么得到的抛物线顶点坐标为.16.(3分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为.(结果保留π)17.(3分)如图所示,半圆O的直径AB=10cm,弦AC=6cm,弦AD平分∠BAC,AD的长为cm.18.(3分)一段抛物线y=﹣x(x﹣3),(0≤x>3),记为C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C672.若P(2015,m)在图象上,则m=.三、解答题(本大题共10题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)解方程:(1)2(x+2)2﹣8=0(2)2(x﹣3)2=x(x﹣3)20.(8分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.21.(8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.(Ⅱ)求摸出的两个球号码之和等于5的概率.22.(8分)已知:如图,在四边形ABCD中,∠B=∠D=90°.求证:四边形ABCD 有外接圆.23.(10分)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.24.(10分)已知二次函数y=﹣x2+6x﹣8.(1)该函数图象的对称轴是,顶点坐标;(2)选取适当的数据填入下表,并描点画出函数图象;(3)求抛物线与坐标轴的交点坐标;(4)利用图象直接回答当x为何值时,函数值y大于0?25.(10分)已知圆心O到直线m的距离为d,⊙O的半径为r.(1)当d、r是方程x2﹣9x+20=0的两根时,判断直线m与⊙O的位置关系?(2)当d、r是方程x2﹣4x+p=0的两根时,直线m与⊙O相切,求p的值.26.(10分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.27.(12分)为了节能环保,新建的阜益路上路灯都是太阳能路灯.已知太阳能路灯售价为5000元/个,有甲、乙两经销商销售此产品.甲用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若政府投资120万元,最多能购买多少个太阳能路灯?28.(12分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.2015-2016学年江苏省盐城市阜宁县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的.)1.(3分)数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【解答】解:数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选:C.2.(3分)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,下列选项中正确的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≥0【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,∴△=b2﹣4ac>0.故选:A.3.(3分)如图,⊙O的直径AB=10,CD是⊙O的弦,CD⊥AB,垂足为P,且OP=4,则CD的长为()A.3 B.4 C.6 D.8【解答】解:连接OC,如图所示:∵CD⊥AB,∴PC=PD=CD,∠OPC=90°,∵⊙O的直径AB=10,∴OC=5,由勾股定理得:PC===3,∴CD=2PC=6.故选:C.4.(3分)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4) B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)【解答】解:∵二次函数y=ax2的对称轴为y轴,∴若图象经过点P(﹣2,4),则该图象必经过点(2,4).故选:A.5.(3分)下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式【解答】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选:B.6.(3分)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26【解答】解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.02与y=0.03之间,∴对应的x的值在3.24与3.25之间,即3.24<x<3.25.故选:C.7.(3分)如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为()A.15°B.30°C.45°D.60°【解答】解:∵OA=OC,∴∠A=∠C=15°;∴∠BOC=2∠A=30°;故选:B.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中错误的是()A.a>0 B.当x≥1时,y随x的增大而增大C.c<0 D.当﹣1<x<3时,y>0【解答】解:A、抛物线的开口方向向上,则a>0.故A选项错误;B、根据图示知,当x≥1时,y随x的增大而减小,故B选项错误;C、根据图示知,该抛物线与y轴交与负半轴,则c<0.故C选项错误;D、根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是3,则抛物线与x轴的另一交点的横坐标是﹣1,所以当﹣1<x<3时,y<0.故D选项正确.故选:D.二、填空题(本大题共10题,每题3分,共30分.把答案填在答题卡中对应的横线上).9.(3分)一元二次方程x2=9的解是x1=3,x2=﹣3.【解答】解:x2=9解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.10.(3分)二次函数y=2x2﹣3的最小值是﹣3.【解答】解:二次函数y=2x2﹣3的顶点坐标是(0,﹣3),且抛物线的开口方向是向上,则当x=0时,二次函数y=2x2﹣3的最小值是﹣3.故答案是:﹣3.11.(3分)数据11、12、13、14、15的方差是2.【解答】解:平均数=(11+12+13+14+15)÷5=13,方差=[(11﹣13)2+(12﹣13)2+(13﹣13)2+(14﹣13)2+(15﹣13)2]=2.故答案为:2.12.(3分)请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的解析式y=﹣x2+1(答案不唯一).【解答】解:抛物线解析式为y=﹣x2+1(答案不唯一).故答案为:y=﹣x2+1(答案不唯一).13.(3分)若抛物线y=kx2﹣2x﹣1顶点在x轴上,则k值是﹣1.【解答】解:根据题意得:△=4+4k=0,且k≠0.解得:k=﹣1.故答案是:﹣1.14.(3分)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.【解答】解:∵从1到6的数中3的倍数有3,6,共2个,∴从中任取一张卡片,P(卡片上的数是3的倍数)==.故答案为:.15.(3分)将抛物线y=2(x+1)2向上平移3个单位,再向左平移2个单位,那么得到的抛物线顶点坐标为(﹣3,3).【解答】解:抛物线y=2(x+1)2的顶点坐标为(﹣1,0),∵向上平移3个单位,再向左平移2个单位,∴平移后的抛物线的顶点坐标为(﹣3,3).故答案为:(﹣3,3).16.(3分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为π.(结果保留π)【解答】解:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为=π.故答案为:π17.(3分)如图所示,半圆O的直径AB=10cm,弦AC=6cm,弦AD平分∠BAC,AD的长为4cm.【解答】解:连接BC、OD、BD,如图,∵AB为半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,∵AB=10,AC=6,∴BC==8,∵AD平分∠BAC,∴∠CAD=∠BAD,∴弧CD=弧BD,∴OD垂直平分BC,∴OE=AC=3,BE=BC=4,∴DE=OD﹣OE=2,在Rt△BDE中,BD==2,在Rt△ADB中,AD==4.18.(3分)一段抛物线y=﹣x(x﹣3),(0≤x>3),记为C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C672.若P(2015,m)在图象上,则m=﹣2.【解答】解:令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C672在x轴下方,相当于抛物线C1向右平移3×(672﹣1)=2013个单位得到得到C671,再将C671绕点A671旋转180°得C672,∴抛物线C672的解析式为y=(x﹣2013)(x﹣2013﹣3)=(x﹣2013)(x﹣2016),∵P(2015,m)在第672段抛物线C672上,∴m=(2015﹣2013)(2015﹣2016)=﹣2.故答案是:﹣2.三、解答题(本大题共10题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)解方程:(1)2(x+2)2﹣8=0(2)2(x﹣3)2=x(x﹣3)【解答】解:(1)2(x+2)2﹣8=0,(x+2)2=4,x+2=±2,X1=﹣4,x2=0;(2)移项得:2(x﹣3)2﹣x(x﹣3)=0,(x﹣3)(2x﹣6﹣x)=0,x﹣3=0,2x﹣6﹣x=0,x1=3 x2=6.20.(8分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是345,极差是24.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是2008年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;(3)这五年的全年空气质量优良天数的平均数===343.2天.21.(8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.(Ⅱ)求摸出的两个球号码之和等于5的概率.【解答】解:(Ⅰ)方法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种;方法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种.(Ⅱ)设两个球号码之和等于5为事件A,摸出的两个球号码之和等于5的结果有2种,它们是:(2,3)(3,2),∴P(A)=.22.(8分)已知:如图,在四边形ABCD中,∠B=∠D=90°.求证:四边形ABCD 有外接圆.【解答】证明:∵∠ABC=90°,∴AC是△ABC的外接圆⊙O的直径,而∠ADC=90°,∴点D在⊙O上,即四边形ABCD有外接圆.23.(10分)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.【解答】解:设增长率为x,根据题意2014年为2500(1+x)万元,2015年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元.24.(10分)已知二次函数y=﹣x2+6x﹣8.(1)该函数图象的对称轴是x=3,顶点坐标(3,1);(2)选取适当的数据填入下表,并描点画出函数图象;(3)求抛物线与坐标轴的交点坐标;(4)利用图象直接回答当x为何值时,函数值y大于0?【解答】解:(1)∵二次函数y=﹣x2+6x﹣8=﹣(x﹣3)+1,∴对称轴为直线x=3,顶点坐标为(3,1);故答案为x=3,(3,1);(2)列表并画图:(3)令y=0,则﹣x2+6x﹣8=0,解得x1=2,x2=4,令x=0,则y=﹣8,∴抛物线与坐标轴的交点坐标(2,0)(4,0)(0,﹣8),(4)由图象可知:当2<x<4时,函数值y大于0.25.(10分)已知圆心O到直线m的距离为d,⊙O的半径为r.(1)当d、r是方程x2﹣9x+20=0的两根时,判断直线m与⊙O的位置关系?(2)当d、r是方程x2﹣4x+p=0的两根时,直线m与⊙O相切,求p的值.【解答】解:(1)解方程x2﹣9x+20=0得d=5,r=4或d=4,r=5,当d=5,r=4时,d>r,此时直线m与⊙o相离;当d=4,r=5时,d<r,此时直线m与⊙o相交;(2)当直线m与⊙O相切时,d=r,即16﹣4p=0,解得:p=4.26.(10分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.【解答】(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°,∴∠DOP=180°﹣120°=60°,∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°,∴OD ⊥DP ,∵OD 为半径,∴DP 是⊙O 切线;(2)解:∵∠P=30°,∠ODP=90°,OD=3cm ,∴OP=6cm ,由勾股定理得:DP=3cm ,∴图中阴影部分的面积S=S △ODP ﹣S 扇形DOB =×3×3﹣=(﹣π)cm 227.(12分)为了节能环保,新建的阜益路上路灯都是太阳能路灯.已知太阳能路灯售价为5000元/个,有甲、乙两经销商销售此产品.甲用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.(1)分别求出y 1、y 2与x 之间的函数关系式;(2)若政府投资120万元,最多能购买多少个太阳能路灯?【解答】解:(1)由题意可知,当x≤100时,购买一个需5000元,故y1=5000x;当x≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以x≤+100=250.即100≤x≤250时,购买一个需5000﹣10(x﹣100)元,故y1=6000x﹣10x2;当x>250时,购买一个需3500元,故y1=3500x;所以y2=5000×80%x=4000x;(2)当0<x≤100时,y1=5000x≤500000<1200000;当100<x≤250时,y1=6000x﹣10x2=﹣10(x﹣300)2+900000<1200000;所以,由3500x=1200000,解得;由4000x=1200000,解得x=300.故选择甲商家,最多能购买342个路灯.28.(12分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.【解答】(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,)代入y=ax2得:a=,∴二次函数的解析式为y=x2;(2)证明:∵点P在抛物线y=x2上,∴可设点P的坐标为(x,x2),过点P作PB⊥y轴于点B,则BF=|x2﹣1|,PB=|x|,∴Rt△BPF中,PF==x2+1,∵PM⊥直线y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥y轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。