无卤阻燃剂成分
新型无卤阻燃剂二乙基次膦酸铝的合成及阻燃应用

新型无卤阻燃剂二乙基次膦酸铝的合成及阻燃应用王影洲;丁欣茹;姜浩;柏丽君;职慧珍;杨锦飞;黄小冬【摘要】使用双引发剂合成新型无卤阻燃剂二乙基次膦酸铝(AlPi).当反应温度为80℃、反应时间为2h、硫酸铝溶液浓度为0.1 mol/L、pH位于2.0-2.5时,产率为94.4%.产品结构通过FT-IR、ICP、1H NMR、31P NMR等分析手段表征,热重分析(TG)结果(T1%=391.88℃,T5%=429.38℃)表明产物热稳定性良好.当AlPi在尼龙66(PA66)中添加量为15%时,垂直燃烧测试(UL-94)达V-0级,极限氧指数(LOI)达33.2%,阻燃性能明显提高,且冲击强度、弯曲强度等力学性能指数仍保持在材料可使用范围内.【期刊名称】《南京师大学报(自然科学版)》【年(卷),期】2016(039)002【总页数】5页(P33-37)【关键词】二乙基次膦酸铝;阻燃剂;合成【作者】王影洲;丁欣茹;姜浩;柏丽君;职慧珍;杨锦飞;黄小冬【作者单位】南京师范大学化学与材料科学学院,江苏南京210023;南京师范大学化学与材料科学学院,江苏南京210023;南京师范大学化学与材料科学学院,江苏南京210023;南京师范大学化学与材料科学学院,江苏南京210023;南京师范大学化学与材料科学学院,江苏南京210023;南京师范大学化学与材料科学学院,江苏南京210023;南京师范大学化学与材料科学学院,江苏南京210023【正文语种】中文【中图分类】O621.3近年来,随着人们防火安全、环保意识的不断增强以及阻燃法规的日趋严格,开发无卤阻燃剂正成为当前研究热点[1-4].有机磷系阻燃剂是有机阻燃剂中最为重要的一种,被认为是替代卤系阻燃剂最有前景的阻燃剂之一,近年来发展十分迅速[5-7].其中烷基次膦酸盐具有无卤、阻燃效率高、疏水抑烟、热稳定性良好、对材料的电性能和机械性能影响较小等优点,特别适合作为小型、薄壁、透明电子电器原件材料[8-11].二乙基次膦酸铝最具代表性,阻燃性能优异,初始分解温度(T1%)高达405℃,相对漏电起痕指数(CTI)高达600 V.克莱恩公司研究人员[12-13]使用单引发剂,一水合次亚磷酸钠和乙烯于100℃反应6 h后,再与氢氧化铝反应2 h得到粗产品,依次使用乙酸、水、丙酮进行洗涤得到纯样品,产率为79.4%;杨丽等[1,14]使用过氧化二叔丁基单引发剂,一水合次亚磷酸钠和乙烯在135℃反应30 h后得到二乙基次膦酸(产率75.3%),再与硫酸铝反应得产品;杨丽等[15]又使用过氧化苯甲酰单引发剂,同样采用一水合次亚磷酸钠和乙烯为原料,降低温度(90℃)缩短反应时间(10 h)反应后,再与硫酸铝反应,将得到的粗产品经热水洗涤得纯样品,产率81%.本文采用双引发剂,以乙酸作溶剂、一水合次亚磷酸钠和乙烯为原料,90℃~100℃反应4 h后,再与硫酸铝反应2 h得到粗产品,室温水洗进一步提纯,制得纯样品.采用FT-IR,ICP,1H NMR,31P NMR等分析手段对产物的结构进行表征;同步热分析仪分析测试产品的热稳定性T1%=391.88℃,T5%=429.38℃;并将AlPi添加至PA66中对其进行阻燃改性,对改性后的PA66材料进行LOI测试、UL-94测试以及力学性能测试.当AlPi的添加量为15%时,UL-94达V-0级,LOI达到33.2%.故不仅进一步改进了该工艺,且反应条件温和、产率及产品热稳定性都有明显改善.1.1 主要仪器和试剂Tensor 27傅里叶红外光谱仪(德国布鲁克公司);STA449F3同步热分析仪(德国耐驰);AVANCE 400核磁共振波谱仪(德国布鲁克公司);Prodigy大色散全谱直读ICP光谱仪(美国利曼-徕伯斯公司);GSA-0.2 L磁力反应釜(威海威化机械厂);DW-1型无极调速增力搅拌器(巩义市英峪高科仪器厂);DF-101S集热式恒温加热磁力搅拌器(巩义市予华仪器有限责任公司).一水合次亚磷酸钠(AR,上海泰坦化学责任有限公司);十八水硫酸铝(AR,西陇化工股份有限公司).1.2 合成步骤合成步骤:第一步,一水合次亚磷酸钠与乙烯在乙酸中、在适当的引发剂及压力下生成二乙基次磷酸钠,见式(1);第二步,二乙基次膦酸钠与硫酸铝溶液反应生成二乙基次膦酸铝,见式(2).该方法的优点在于使用了双引发剂,大大缩短第一步反应时间,且在较低温度下即可进行,最终产率高达94.4%.实验操作:在反应釜中加入60 g乙酸和5.3 g一水合次亚磷酸钠,待其溶解后加入0.41 g引发剂1和0.365 g引发剂2.充入乙烯、检漏、排气(排出反应釜内的空气),再次充入乙烯,压力为1.6 MPa.100℃反应4 h后,冷却至室温,得浅黄色液体.旋蒸出溶剂,将其转移至500 mL四颈瓶中,80℃滴加0.1 mol/L硫酸铝溶液,反应2 h后抽滤,烘干得白色固体6.14 g,产率94.4%.2.1 最佳反应条件的确定AlPi的合成主要分为两步,第一步在高压反应釜内进行,对AlPi的合成影响较小.第二步反应在常压下进行,这一步影响因素有多种,如反应时间、反应温度、硫酸铝浓度等.优化实验主要针对第二步反应中的多种因素进行探究,除所研究的因素外,其它反应条件均采用1.2中条件.2.1.1 反应温度的影响探究反应温度对AlPi产率的影响,结果见表1.由表1可知,AlPi的产率随反应温度的升高而增加,当温度超过80℃时,产率基本保持不变,因此选择最佳反应温度为80℃.2.1.2 反应时间的影响探究反应时间对AlPi产率的影响,结果见表2.由表2可知,AlPi的产率随反应时间的延长而不断增加,当反应时间超过2 h时,产率仅增加0.2%,说明反应已基本结束,因此选择最佳反应时间为2 h.2.1.3 硫酸铝浓度的影响探究硫酸铝溶液浓度对AlPi热稳定性的影响,结果见表3.由表3可知,当硫酸铝溶液浓度分别为0.05 mol/L和0.10 mol/L时,AlPi的初始分解温度分别为391.89℃和391.88℃,二者仅相差0.01℃,因此选择0.10 mol/L更为合理.随着硫酸铝溶液的浓度逐渐增大,初始分解温度迅速下降.这可能是由于硫酸铝溶液浓度越高,反应速率越快,越容易形成不稳定的非晶型二乙基次膦酸铝,导致初始分解温度的下降.因此选择硫酸铝溶液最佳浓度为0.10 mol/L. 2.1.4 溶液pH的影响探究溶液pH对AlPi磷含量的影响,结果见表4.由表4可知,随着溶液pH值的降低,AlPi中的磷含量越来接近理论值(23.85%),当pH值在2.0~2.5时磷含量最接近理论值.主要是由于铝离子在水溶液中具有两性特征,反应体系的pH影响铝离子的存在形式[16].当溶液pH为4左右时,铝离子与羟基结合形成铝离子羟基团簇.故除了生成A[l(C2H5)2PO2]3外,还可能生成了A[l(C2H5)2PO2](2OH)、A[l(C2H5)2PO2](OH)2,影响产品的纯度和磷含量[1].从实验结果分析,选择溶液pH位于2.0~2.5之间.2.2 分析与表征2.2.1 元素含量分析ICP测试分析AlPi的P和Al元素的百分含量,分析结果见表5.由表1中的数据可知,铝含量、磷含量的实测值与理论值的差值均在误差值允许范围内.2.2.2 红外光谱分析图1是AlPi的红外光谱图.由图1可知,2 880 cm-1~2 980 cm-1是甲基上C-H吸收峰,2 959 cm-1为P-C吸收峰,1 416 cm-1、1 410 cm-1处是C-H之间的变形振动;1 271 cm-1和1 231 cm-1分别属于P=O和P-C的吸收峰,在2 400 cm-1处没有P-H吸收峰.说明所合成化合物具备目标产物官能团的特征吸收峰.2.2.3 热稳定性分析图2为AlPi在N2气氛下的热重曲线图.由图2可知,样品的初始分解温度为391.88℃,5%质量损失温度为429.38℃,429.38℃~500℃之间质量损失约为64.56%,500℃~900℃质量基本保持不变.热重分析表明样品具有良好的热稳定性.2.2.4 核磁共振光谱图3为AlPi的1H NMR谱图,图4为AlPi的31P NMR谱图,以D2O作溶剂,AVANCE 400核磁共振波谱仪检测.由图3可知,δ4.70 ppm处为溶剂D2O的化学位移;δ0.88 ppm~0.96 ppm之间的多重峰为甲基上质子氢的化学位移,δ1.34 ppm~1.43 ppm之间的多重峰属于亚甲基上质子氢的化学位移,两种质子峰的积分面积比约为3∶2,与目标分子结构相符.由图4可知,δ49.79 ppm处有1个单峰,符合目标分子的结构,同时表明产物纯度高.2.3 二乙基次膦酸铝在PA66中的应用2.3.1 试样制备将AlPi、PA66按照一定的比例混合均匀,通过双螺旋杆挤压机和切粒机于255℃~265℃下挤出造粒.干燥后用压片机于255℃~265℃,5 MPa压力下模压成型,然后置于5 MPa压力下冷压,再制成标准样条供实验使用.2.3.2 性能测试垂直燃烧测试(UL-94)按GB/T 2048-2008标准测试,极限氧指数(LOI)按GB/T 2406—1993标准测试,拉伸强度按GB/T 1040-2006标准测试,冲击强度按GB/T 1843—2008标准测试,弯曲强度按GB/T 9341—2008标准测试,测试结果如表6所示.由表6可知,随AlPi添加量的增加,PA66的阻燃性能逐渐提高,当添加量为15%时,阻燃级别达V-0级,LOI达到33.2%,并且燃烧时无滴落现象;PA66的拉伸强度和冲击强度随着AlPi添加量的增加有一定程度的下降,这主要是由于AlPi的加入增大了PA66分子之间的摩擦力使材料变脆所致.而弯曲强度却略微增大,这主要是由于AlPi的添加使PA66分子之间的摩擦力增大,阻碍分子运动.(1)使用双引发剂合成二乙基次膦酸铝.最佳反应条件为:温度为80℃、反应时间为2 h、硫酸铝溶液浓度为0.1 mol/L、pH位于2.0~2.5范围内,AlPi产率高达94.4%.(2)通过ICP、FT-IR、1H NMR、31P NMR等分析方法对产物结构进行表征,结果表明产物结构与目标化合物相符合.由TG分析可知,二乙基次膦酸铝初始分解温度为391.88℃,热稳定性好,具备优良阻燃剂特征.(3)AlPi在PA66中的应用研究表明,当添加量为15%时,复合材料的LOI达到33.2%,阻燃级别达到V-0级,弯曲强度、冲击强度等力学性能指数仍保持在材料可使用范围内.[1]杨丽,韩新宇,毕成良,等.新型阻燃剂二乙基次膦酸铝的合成研究[J].化学试剂,2011,33(4):340-342.[2] WEIL E D,LEVCHIK S V.Review of current flame retardant systemsfor epoxy resins[J].Journal of fire sciences,2004,22(2):25-40.[3] YAO Q,LEVCHIK S V,ALESSIP G R.Phosphorus-based flame retardant for thermoplastic polymer[J].Plastics additives and compounding,2007(6):26-30.[4] LEVCHIK S V,WEIL E D.A review of recent progress in phosphorus-based flame retardants[J].Journal of fire sciences,2006,24(5):345. [5]杜大江,曹芳利,陈佳,等.磷-氮协效型烷基次膦酸盐阻燃剂的合成及其在PBT中的应用[J].江汉大学学报(自然科学版),2015,43(1):19-23. [6]刘珂嘉,刘吉平.有机磷阻燃剂的现状及发展前景[C].襄阳:2014年全国阻燃学术年会.2014.[7] LU S Y,HAMERTON I.Recent development in the chemistry of halogen-free flame retardant polymers[J].Progress polymer sciences,2013,27(8):1 661-1 712.[8] SEBASTIAN H.Safety for thermoplastics[J].Special chemicals magazine,2008,28(9):28-30.[9] SCHMITT E.Phosphorus-based flame retardant for thermoplastics [J].Plastics additives and compounding,2007,9(3):26-30. [10]RAMANI A,DAHOE A E.On flame retardancy in polycaprolactma composites by aluminum diethylphosphinate and melamine polyphosphate in conjunction with organically modified montmorillonite nanoclay[J].Polymer degradation and stabilty,2014,105:1-11. [11]VAN DER VEEN I,de BOER J.Phosphorus flame retardant:properties,production,enviromental occurrence,toxicity and analysis [J].Chemosphere,2012,88(10):1 119-1 153.[12]克莱恩有限公司.二烷基次膦酸盐的制备方法:CN,ZL200410104691.6[P].2005-08-31.[13]克莱恩有限公司.二烷基次膦酸盐的制备方法:CN,ZL9881162.7[P].2001-01-01.[14]WO S,de CAMPO F.Process for the preparation of highly purified,dialkyle phosphinic acide:US,7 049 463 B2[P].2006-05-23.[15]YANG L,HAN X Y,LI L L,et al.Synthesis of aluminum diethylphosphinate by gas-liquid free radical additon reaction under atmospheric pressure[J].Advanced material research,2011,194:2 237-2 240.[16]汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,9(3):1-12.。
聚合物阻燃机理及阻燃剂概述

聚合物阻燃机理及阻燃剂概述根据Claudius年鉴记载,人类最早的阻燃历史可追述到炼金术和罗马帝国时代,从17世纪开始,有关聚合物阻燃的相关报道逐渐增多。
到现在为止,聚合物阻燃方面的研究已经非常成熟。
第二次世界大战之后,聚合物阻燃方面取得突飞猛进的发展,包括氯化石蜡-氧化锑协效体系的发现、阻燃填料的使用、聚合物阻燃性能的测试方法——氧指数法的采用、膨胀型阻燃体系的建立、含氯的不饱和聚合物以及本质阻燃高聚物的制备等等[14]。
这些进展为现代阻燃技术的发展奠定了基础,为人类的阻燃事业做出了巨大贡献。
按照阻燃剂与被阻燃基材的关系,阻燃剂可以分为反应型和添加型两种。
反应型阻燃剂是指阻燃剂作为高聚物的单体,或者作为辅助试剂而参与合成高聚物的化学反应最后成为高聚物的结构单元,这种阻燃方法相对较复杂且成本昂贵,不适于大范围推广。
而添加型阻燃剂是指阻燃剂与基材中的其他组分不发生化学反应,只是以物理方式分散于基材中。
由于添加型阻燃剂在阻燃聚乙烯加工过程中使用方便、加工工艺简单、价格相对较低廉,因而是目前实现聚乙烯阻燃最常用的方法之一。
常用的添加型阻燃体系主要有卤系阻燃复合体系、无卤阻燃复合体系以及其他常用复合体系。
1阻燃机理通常聚乙烯中有少量支链并发生交联,研究表明,PE在空气中燃烧时产生活性很大的HO·、H·和O·,这些自由基有促进燃烧的作用,同时足够的热量以及适合的氧气浓度都是聚乙烯燃烧时所必须的条件,因此只要切断以上三个要素中的任何一种都可以达到阻燃的效果。
所以对PE的阻燃可以通过以下途径:终止自由基链反应,捕获传递燃烧链式反应的活性自由基,即卤系阻燃剂的阻燃机理。
吸收热分解产生的热量,降低体系温度。
氢氧化铝、氢氧化镁及硼酸类无机阻燃剂是典型代表。
稀释可燃性物质和氧气浓度,使之降到着火极限以下,即氮系阻燃剂阻燃机理。
促进聚合物成炭,减少可燃性气体的生成,在材料表面形成一层膨松、有细孔的均质碳层,起到隔热、隔氧、抑烟、防止熔滴的作用,即膨胀阻燃剂的主要阻燃机理。
阻燃剂组成及成分分析

阻燃剂介绍
阻燃剂是能赋予易燃聚合物难燃性的功能性助剂,主要是针对高分子材料的阻燃设计的;阻燃剂有多种类型,按使用方法分为添加型阻燃剂和反应型阻燃剂。
添加型阻燃剂是通过机械混合方法加入到聚合物中,使聚合物具有阻燃性的,目前添加型阻燃剂主要有有机阻燃剂和无机阻燃剂,卤系阻燃剂(有机氯化物和有机溴化物)和非卤。
有机是以溴系、磷氮系、氮系和红磷及化合物为代表的一些阻燃剂,无机主要是三氧化二锑、氢氧化镁、氢氧化铝,硅系等阻燃体系。
反应型阻燃剂则是作为一种单体参加聚合反应,因此使聚合物本身含有阻燃成分的,其优点是对聚合物材料使用性能影响较小,阻燃性持久。
一般来讲有机阻燃具有很好的亲和力,在塑料中,溴系阻燃剂在有机阻燃体系中占据绝对优势,虽然在环保问题上有非议但一直难以有其他阻燃剂体系取代。
在非卤素阻燃剂中红磷是一种较好的阻燃剂,具有添加量少、阻燃效率高、低烟、低毒、用途广泛等优点;红磷与氢氧化铝、膨胀性石墨等无机阻燃剂复配使用,制成复合型磷/镁;磷/铝;磷/石墨等非卤阻燃剂,可使用阻燃剂量大幅降低,从而改善塑料制品的加工性能和物理机械性能。
但普通红磷在空气中易氧化、吸湿,容易引起粉尘爆炸,运输困难,与高分子材料相溶性差等缺陷,应用范围受到了限制。
为弥补这方面不足,可采用了微胶囊包覆工艺,使之成为微胶囊化红磷。
微胶囊化红磷除克服了红磷固有的弊端外,并具有高效,
低烟,在加工中不产生有毒气体,其分散性、物理、机械性能、热稳定性及阻燃性能均有提高和改善。
氢氧化铝和一些无机阻燃剂简介

1.氢氧化铝简介氢氧化铝(Aluminium hydroxide),化学式Al(OH)3,是铝的氢氧化物。
氢氧化铝既能与酸反应生成盐和水,又能与强碱反应生成盐和水,因此也是一种两性氢氧化物。
相对分子质量78.0,白色结晶粉末,无臭、无味。
氢氧化铝开始脱水温度为200℃,300℃失去结晶水,溶于无机酸和碱性水溶液,不溶于水和乙醇。
多品种氧化铝由于其在晶形结构等方面的不同,使其表现出各种不同的性质,氧化铝及其水合物性质各异,差别很大。
氢氧化铝常见的有三种晶体结构,水铝石(γ-Al(OH)3)、拜铝石(α1-Al(OH)3)、诺铝石(α2-Al(OH)3),之外还有不定型氢氧化铝。
2.氢氧化铝作为阻燃剂的应用2.1阻燃的原理氢氧化铝是塑料和有机聚合物一种理想的阻燃剂填充料。
因为氢氧化铝为白色粉末,物理性质和化学化学性质稳定,不吸潮,粒度可按需要加工生产,无毒无害,熟化时白度不变,具有填充、阻燃、消烟三大功能。
当塑料或聚合物与外部热源接触而燃烧时,可分为以下几个阶段:(1)加热,(2)分解,(3)起火,(4)燃烧,(5)蔓延。
所有阻燃剂的作用原理都是通过抑制上述的一个或几个燃烧阶段来达到阻燃的目的的。
对氢氧化铝来说,它主要在加热和分解这两个阶段起作用,当受热温度超过200℃时,氢氧化铝开始吸热分解,放出三个结晶水。
该反应是强烈的吸热反应,分解时每克Al(OH)3吸热达878J,并且在300℃-380℃之间,其分解率最大,而这一温度范围又是大多数聚合物的分解温度。
正是基于氢氧化铝分解时大量吸热,因此,当含氢氧化铝的聚合物加热时,氢氧化铝因分解吸热,从而抑制聚合物温度的升高,降低其分解率;其次氢氧化铝在受热分解时放出水蒸汽,不会产生有毒、可燃或有腐蚀性的气体,同时稀释了聚合物分解所产生的各种可燃气体,使起火更加困难。
合成材料的阻燃性能与填料氢氧化铝的粒度有很大关系,随粒度的变细,限氧限数上升。
其次,填料的细化还有助于合成材料光滑度和力学性能的改善。
含卤和无卤阻燃尼龙两者有什么区别?

含卤和无卤阻燃尼龙两者有什么区别?衡水金轮网销部讯;阻燃尼龙的分类可以说是五花八门,从很多角度都可以进行区分。
在颜色上主要划分为白色和黑色,对于顾客要求,可以定制生产其他颜色;在性能上区分比较繁杂,比如通过玻纤增强后可以做成增强阻燃尼龙,又通过细分玻纤含量衍生出更多品种如GF30%,通过马来酸酐接枝POE增韧改性后可以做成增韧阻燃尼龙,对于电子电器行业还会要求电绝缘性或者抗静电性等,从而可以生产某类产品专用料;对于使用阻燃剂还可以继续分类,含卤和无卤阻燃尼龙。
这个产品和火有解不开的缘分,专门为火而研发的产品,在近年来无卤阻燃尼龙在市场上走俏,为什么会有这变化呢?两者又有哪些不同呢?两者的区别主要区分就在阻燃剂上,阻燃剂分为含卤阻燃剂和无卤阻燃剂,通过是否含卤来进行区分的,从名词上可以很轻松区分两者的区别,然而有一个小细节有人可能会忽略掉,无卤阻燃剂并不是一定不含卤,它的定义为不含卤或者含有微量的卤。
在使用者的角度看,其实两者在使用工艺上并没有太大区别,包括温度、压力的设置,只是在生产时气味有些不同,比较明显的是在实际点燃上,含卤的会产生较多的对环境有害的烟尘,而无卤阻燃尼龙则没有对环境有害的成分出现。
含卤阻燃剂并不是一无是处,它对世界的发展也做了很大贡献,是目前塑料橡胶材料中阻燃应用较多的阻燃剂,主要是因为它是有机阻燃剂,化学性质呈惰性,与塑料尤其是尼龙的相容性不错,阻燃效果好,成本低。
尽管在一些发达国家已经禁止它的使用,但在我国很多含卤阻燃剂并没有完全禁用,其实含卤阻燃剂点燃对环境造成的危害远比真正发生火灾危害小得多,毕竟大火吞噬,连大楼都会烧垮,其他材料燃烧的污染物完全释放,环境危害定然不小,不过此时大家关注的更多是人身财产安全,如果有一种材料在大火种多给大家一些逃生的时间或者更大限度降低损失的时间,那么就是一种好材料。
我国的阻燃性能等级和国家标准与西欧的新标准有很多共同点:以强调火灾发展速率、释热速率、生烟性及燃烧产物的腐蚀性和毒性等为评定阻燃性能的标准。
耐低温型无卤阻燃橡胶软管的研制

应用技术张洪生1 杨 玲21.沈阳新飞宇橡胶制品有限公司 2.中国航发沈阳黎明航空发动机有限责任公司耐低温型无卤阻燃橡胶软管的研制我国高速列车技术从开始的从德、日、法高速动车组的引进消化吸收到目前的自主创新,经过了20余年的发展,现已跻身世界高速列车技术先进行列。
从列车制造到试验系统,从相关材料到辅助技术,我国高铁企业的知识产权能力迅速提升。
用于我国CRH3C、CRH380等高速列车上,作为传感器信号线保护管的耐低温型无卤阻燃橡胶软管就是在此背景下进行研制的。
一、低温型无卤阻燃胶管技术要求低温型无卤阻燃胶管主要用于高铁机车,根据客户的技术要求及正常使用条件分析,确定了产品的技术参数,具体如下:1.无卤阻燃卤系阻燃剂主要是溴锑级阻燃剂,具有优良的阻燃性能,但是火灾发生时,含卤阻燃剂的材料受热会产生大量烟雾和有毒腐蚀性的卤化氢气体,造成二次危害,因此,本项目要求无卤阻燃。
根据用户的最终要求,本项目胶管需要按照DIN 5510-2的相关条款进行测试,易燃等级满足S3、冒烟等级应满足SR2、液态等级满足ST2、烟气毒性的FED≤1。
2.耐低温我国幅员辽阔,特别是在寒冷的冬季,南北、昼夜温差都比较大,本项目研制的胶管要具有足够的耐低温能力,为验证这一性能,专门设计了模拟试验,制作了检测设备,设备见图1。
图1 胶管耐低温试验装置(1)试验方法①截取350mm±5mm长胶管,固定到图1所示的试验装置上;②降低试验箱温度至-50℃,并恒定2小时;③开动转动轮,两个转动轮做反复运动,胶管在转动轮上不停弯曲、伸直,频率为20次/min,持续72小时。
(2)技术要求试验结束后,胶管不得出现起泡、离层、断裂、外层破损等异常现象。
3.禁用/限用物质要求(1)禁用物质4-硝基联苯、2-萘胺、对二氨基联苯、4-氨基转动轮20次/min固定夹具胶管固定夹具弯曲半径R-50℃恒温箱往复运动42中国橡胶43中国橡胶联苯、石棉、CFC-氯氟碳、单甲基二溴二苯甲烷、单甲基二氯二苯甲烷、单甲基四氯二苯甲烷、全溴氟烃、联苯醚、氯化石蜡、卤素。
无卤标准

PDF 文件使用 "pdfFactory Pro" 试用版本创建
卤素的危害
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Ø其他与卤素相关的法规指令——JAPAN
1. 《资源有效利用促进法》
• 实施时间:2006-1-1 • 限制物质:PBBs /PBDEs (主要作为塑胶
阻燃剂) • 限制要求:PBBs﹤0.1%, PBDEs ﹤0.1%
• 氯乙烯,致癌物质,可能损害成长中胎儿的生长; • 大量广泛使用铅或镉系列的稳定剂; • 邻苯二甲酸酯,最一般的增塑剂,邻苯二甲酸酯DEHP,是一种可疑
的致癌物质,在塑料地板中的增塑剂会挥发到室内,会使用对儿童 生长发育有影响
PDF 文件使用 "pdfFactory Pro" 试用版本创建
氯系耐燃剂与聚氯乙烯使用于电线/电缆之插孔。
溴Br 和氯Cl
电子零件
溴系/氯系耐燃剂使用于模具,塑胶包材,表面处 理,焊锡表面,热界面材料,基材,垫片。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Ø 热门卤素化合物——六溴环十二烷(HBCCD)
PDF 文件使用 "pdfFactory Pro" 试用版本创建
各大企业对卤素的相关要求
l氯限量:900PPM l溴限量:900PPM l总体限量:1500PPM
PCB板 其他零件
Cl﹤900ppm Br﹤900ppm Cl+Br﹤1500ppm 溴的阻燃剂﹤900ppm 氯的阻燃剂﹤900ppm PVC﹤900ppm
无卤阻燃聚碳酸酯新进展

无卤阻燃聚碳酸酯新进展来源:中国化工信息网2009年3月30日传统的阻燃聚碳酸酯(PC)材料常采用溴系阻燃剂(BFR)阻燃,如加入质量分数6%-9%的含溴环氧低聚物(一般不添加Sb2O3,以免引起PC降解和恶化PC的透明性)即可使PC的阻燃等级达到UL94 V-0级,且对其热变形温度(HDT)影响甚小,甚至可增加PC的冲击强度。
在此类阻燃PC材料中加入一定量的热致液晶聚酯,可改善其流动性,因而可用于注塑薄壁型制品。
又如加入质量分数约10%的含溴碳酸酯低聚物也可使PC 达到UL94 V-0级,且阻燃PC的物理性能较佳。
另外,溴代三甲基苯基氢化茚也是很适于PC的溴系阻燃剂,但为了使PC达到UL94V-0级,添加的质量分数需15%以上。
含溴磷酸酯[三(二溴苯基)磷酸酯]具有分子内磷-溴协同效应,质量分数为8%-10%时即可赋予PCUL94V-0级。
但随着对阻燃高分子材料环保方面的要求越来越高,BFR的应用受到越来越多的限制,因此无卤阻燃剂开始在阻燃PC中得到越来越广泛的应用。
可用于PC的无卤阻燃剂有新型固态磷酸酯阻燃剂,反应型磷系阻燃剂,磺酸盐、磺酰胺盐、有机硅系阻燃剂及红磷等,与BFR相比,它们均有利于保护生态环境及人类健康。
1 阻燃PC用无卤阻燃剂的结构及性能(1)三苯基磷酸酯(TPP),淡黄色固体,熔点不高于50℃,质量损失5%时的热失重温度(T5%)为260℃。
(2)间亚苯基四(二甲苯基)双磷酸酯(XDP),白色固体,熔点95-100℃,T5%为350℃。
(3)2,2,-二亚苯基丙烷四苯基双磷酸酯(BDP),五色或淡黄色液体,熔点69-74℃,T5%为370℃,为低聚物,聚合度n=1-5。
(4)间亚苯基四苯基双磷酸酯(RDP),五色或淡黄色液,体,沸点大于300℃,T5%为305℃,为低聚物,聚合度n=1-5。
(5)对亚联苯基四苯基双磷酸酯(DHBDP),白色固体,熔点76-82℃,T5%为350℃,为低聚物,聚合度n=1-5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无卤阻燃剂成分
无卤阻燃剂是一种可以有效阻止材料燃烧的化学物质。
它们被广泛应用于电子电气、建筑材料、汽车和航空航天等领域,以提高材料的安全性能。
本文将介绍几种常见的无卤阻燃剂成分及其特点。
一、磷系无卤阻燃剂
磷系无卤阻燃剂是一类常用的无卤阻燃剂,它们通过释放磷化合物来抑制燃烧过程。
常见的磷系无卤阻燃剂有磷酸盐、磷酸酯和聚磷酸盐等。
磷酸盐无卤阻燃剂具有良好的热稳定性和抗氧化性能,适用于高温环境下的阻燃要求。
磷酸酯无卤阻燃剂在燃烧时会生成炭化层来隔离氧气,有效阻止火焰的蔓延。
聚磷酸盐无卤阻燃剂具有较高的热解温度和阻燃效果,适用于高性能材料。
二、氮系无卤阻燃剂
氮系无卤阻燃剂是一类具有良好阻燃性能的化合物,它们通过释放氮气来稀释燃烧产物,降低燃烧反应的速率。
常见的氮系无卤阻燃剂有氮磷系化合物、氨基甲酸盐和三聚氰胺等。
氮磷系化合物通过释放氮磷酸酯来抑制燃烧反应,具有良好的阻燃效果和热稳定性。
氨基甲酸盐无卤阻燃剂在燃烧时会产生氮气和CO2等非燃烧气体,有效阻止火焰的蔓延。
三聚氰胺无卤阻燃剂具有良好的耐热性和阻燃性能,适用于高温条件下的阻燃要求。
三、硅系无卤阻燃剂
硅系无卤阻燃剂是一类基于硅化合物的阻燃剂,具有良好的耐高温性能和阻燃效果。
常见的硅系无卤阻燃剂有硅酸盐和硅氧烷等。
硅酸盐无卤阻燃剂通过释放二氧化硅来抑制燃烧过程,能够形成炭化层来隔离氧气和热量。
硅氧烷无卤阻燃剂在燃烧时会产生硅氧化物膜,具有良好的阻燃效果和耐高温性能。
四、氢氧化铝
氢氧化铝是一种常用的无卤阻燃剂,它具有良好的阻燃性能和热稳定性。
氢氧化铝可以吸收燃烧过程中释放的热量,形成氧化铝膜来隔离氧气。
氢氧化铝还可以与燃烧产物中的酸性物质反应,中和酸性物质,从而抑制火焰的蔓延。
总结起来,无卤阻燃剂是一类可以有效阻止材料燃烧的化学物质。
常见的无卤阻燃剂成分包括磷系、氮系、硅系无卤阻燃剂,以及氢氧化铝等。
它们通过不同的机制来抑制燃烧过程,具有良好的阻燃效果和热稳定性。
在选择无卤阻燃剂时,需根据材料的使用环境和阻燃要求来选择适合的阻燃剂成分,以提高材料的安全性能。