放大电路的频率响应PPT课件

合集下载

三极管放大电路的频率响应

三极管放大电路的频率响应

ωH =
1
τ ωH 1 1 fH = = = 2π 2πτ 2πRC
Au =
ω 1+ j ωH
1
=
1 f 1+ j fH
23
三、RC电路的频率响应
用幅值与相角表示:
Au =
1 f 1+ f H
2
称为幅频特性
f = arctan fH
称为相频特性
24
三、RC电路的频率响应
Au =
15
三、RC电路的频率响应
与耦合电容相反,由于半导体管极间电容的存在, 对信号构成了低通电路,即对于频率足够低的信号相 当于开路,对电路不产生影响;而当信号频率高到一 定程度时,极间电容将分流,从而导致放大倍数的数 值减小且产生相移。 为了便于理解有关频率响应的基本要领,这里将 对无源单极RC电路的频率响应加以分析。
2
一、频率失真及不失真条件
如图所示,某待放大的信号是由基波(ω1)和三次谐波 (3 ω1 )所组成。
3
一、频率失真及不失真条件
由于电抗元件的存在,使放大器对三次谐波的放大倍数小于 对基波的放大倍数,那么放大后的信号各频率分量的大小比例将 不同于输入信号。人们称这种由于放大倍数随频率变化而引起的 失真为振幅频率失真。
1 f 1+ f H
2
f = arctan fH
当f << f H 时, Au ≈ 1, ≈ 00 1 , = 450 2 fH 当f >> f H 时, Au ≈ , 表明f每升高10倍, Au 降低10倍。 f 当f = f H 时, Au = 当f趋于无穷时, Au 趋于0,趋于 900 因此,该电路叫RC低通电路,f H 称为上限截止频率。

三极管放大电路的频率响应

三极管放大电路的频率响应
• 若用分贝表达增益G,则:
• GH=20lgAuH= 20lgAum-3dB • GL=20lgAuL= 20lgAum-3dB
• 故又称H点和L点为-3dB点,BW为-3dB带宽。
12
二、实际旳频率特征及通频带定义
• 中频区增益与通频带是放大器旳二个主要指标,而 且这两者往往又是一对矛盾旳指标,所以引进增益带宽 乘积来表征放大器旳性能:
16
三、RC电路旳频率响应
• 1、高通电路
• RC高通电路如图所示:


Au
UO

Ui
1 R R 1
jC
1 1
jRC
17
三、RC电路旳频率响应
• 式中为输入信号旳角频率,RC为回路旳时间常数,
令:
L
1 RC
1
fL
L 2
1
2
1
2RC
f
j

Au
1
1 L
1
1
f
L
1
fL jf
j
jf
fL
18
三、RC电路旳频率响应
• 上限截止频率ƒH定义为高频区放大倍数下降为中频区旳 1/2时所相应旳频率,即:
AuH
1 2
Aum
0.707 Aum
• 同理,下限截止频率ƒL为:
AuL
1 2
Aum
0.707 Aum
• 通频带为:
BW= ƒH- ƒL ƒH
11
二、实际旳频率特征及通频带定义
• 上、下限截止频率所相应旳H点和L点又称为半功率点 (因为功率与电压平方成正比)。
15
三、RC电路旳频率响应
• 与耦合电容相反,因为半导体管极间电容旳存在, 对信号构成了低通电路,即对于频率足够低旳信号相 当于开路,对电路不产生影响;而当信号频率高到一 定程度时,极间电容将分流,从而造成放大倍数旳数 值减小且产生相移。

放大电路的频率响应共30页文档

放大电路的频率响应共30页文档

四、波特图
波特图—采用对数坐标的频率响应(0.1fL,fL,10fL) 包含幅频特性(20lg|Au|)和相频特性,一般采用折线化近似。
20lg 23dB
5.71
注意三个位置:0.1fL(H), fL(H), 10fL(H) 幅频特性 -20dB或0dB, 0dB, 0dB或-20dB
相频特性
分析单管共射放大电路的频率响应
适用于信号频率从0~∞的 交流等效电路
中频段:耦合电容C和旁路电容
短路,C
' π
开路。
低频段:考虑C
的影响,C
' π
开路。
高频段:考虑
C
' π
的影响,C短路。
1. 中频电压放大倍数
Au sm

Uo Us
Ri

Ui Us

Ub' Ui
e

Байду номын сангаас
Uo Ub' e
+90 °或0 °,±45°, 0 °或-90 °
§5.2 晶体管的高频等效电路
--考虑结电容的影响
一、BJT管的高频混合π模型 二、场效应管的高频等效模型
一、BJT管的高频混合π模型
1. 模型的建立:由结构而建立,形状像Π,参数量纲各不相同。
阻值小
阻值大
gm为跨导,它不随信 号频率的变化而变。
三、放大电路中的频率参数
结电容
高通 电路
低通 电路
下限频率
fbwfHfL 上限频率
在低频段,随着信号频率逐渐降低,耦合电容、旁路电 容等的容抗增大,使动态信号损失,放大能力下降。
在高频段,随着信号频率逐渐升高,晶体管极间电容和 分布电容、寄生电容等杂散电容的容抗减小,使动态信号

第五章 放大电路的频率响应-new

第五章 放大电路的频率响应-new
放大电路中有电容,电感等电抗元件 放大电路中有电容 电感等电抗元件, 电感等电抗元件 阻抗随f 阻抗随 变化而变化
1 ZC = jωC
C1
& Ib I& c
& Ib
V&O
前面分析, 前面分析 隔直电容 处理为:直流开路 交流短路 处理为 直流开路,交流短路 直流开路
f 1Hz 10Hz 100Hz 1kHz 10kHz
60 40
带宽 20 0 2
2. 频率响应的分析任务
20 fL
2× 102
2× 103
2× 104 fH
f/Hz
(1)频率响应表达式 AV = AV (ω )∠ϕ (ω ) )频率响应表达式: & 下限频率f (2)带宽 )带宽BW、上限频率 f H、下限频率 L 、
继续
3. AV随 f 变化的原因
继续
(1)高通电路:频率响应 )高通电路:
fL
& Uo jωRC & = Au = & U i 1 + jωRC
1 & = j f fL 令f L = ,则Au 2 πRC 1 + j f fL
f>>fL时放大 倍数约为1 倍数约为
f fL & Au = 1 + ( f f L )2 ϕ = 90° − arctan( f f L )
由于放大电路中耦合电容、旁路电容、 由于放大电路中耦合电容、旁路电容、半导体器 耦合电容 极间电容的存在 使放大倍数为频率的函数。 的存在, 件极间电容的存在,使放大倍数为频率的函数。
继续
5.1 频率响应概述
频率响应——放大器的电压放大倍数 放大器的电压放大倍数 频率响应 与频率的关系

放大电路的频率响应解读PPT文档共31页

放大电路的频率响应解读PPT文档共31页
Thank you

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
放大电路的频率响应解读

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

第五章 放大电路的频率响应

第五章 放大电路的频率响应

1 fH 2 RC
1 fL 2 RC
当信号频率等于上(下)限频率时,放大电路的 增益下降3dB,且产生±45°相移
近似分析时,可用折线化的波特图表示电路的频 率特性
一个电容对应的渐进线斜率为20dB/十倍频
简单 RC 电路的频率特性
Ui

R C
Uo

Ui

C R
Uo

RC 低通电路
RC 高通电路
Au
• |Au |
1 0.707
1 f 1 j fH
1 0.707
Au
1 fL 1 j f
|Au |
fL
f

O

fH f
f
O
O –45° –90°
90° 45° O
f
研究频率响应的方法 (1) 三个频段的划分 1) 中频区(段) 特点:Aus与f无关
与f无关
5.4 单管放大电路的频率响应
本节以单管共射电路为例,介绍频率响应的一般 分析方法。
5.4.1 单管共射放大电路的频率响应
1、画出全频段的微变等效电路
+VCC RB C1 + . Ui VT RL . Uo RC C2 + + . Ui _ RB rb′e
C1
rbb′ . gmUb'e Cπ′
C2 + RC . RL U o _
R
fL
L 1 1 下限截止频率 2 2 2 RC
Au பைடு நூலகம்
1
L 1 j

1 fL 1 jf

f j fL f 1 j fL
1、RC高通电路的频率响应

放大电路的频率响应

放大电路的频率响应

20 lg A V (dB)
0dB ; 称之为波特图。 ①当 f 0.1 f H 时, 20 lg A V 3dB ; ②当 f f 时, 20 lg A
H V
20 dB ; ③当 f 10 f H 时, 20 lg A V
0.01fH
低通电路的相频特性曲线 fH 称之为上 f arctan 限截止频率 f H (上限频率) ①当f 0.1 f H 时, 0o; ②当f f H 时, 45o; ③当f 10 f L时, 90o
极间电容的存在,
耦合电容的存在,对
对信号构成了低通电
路,即对频率足够低
信号构成了高通电路,
即对频率足够高的信号
的信号相当于开路,
对电路不产生影响。
相当于短路,信号几乎
无损耗地通过。
U i
U o
U i
U o
一. 频率响应的基本概念
1.RC高通电路的频率响应 图中:
V i V o
1 AV ( ) 2 f 1 f H f ( ) arctan f H
幅频特性
相频特性
( ) A V
1 f 1 f H
2
幅频特性
f ( ) arctan f H
gm U be rbe UT 将 rbe 1 代 入 g m, 有 : IE I b

IE gm UT
3.确定混合π 模型的主要参数: 混合π模型
Cbc I Cbc
h参数模型 b
U ce
ib
ic βib

放大电路的频率响应

放大电路的频率响应

1 .中频段 所有的电容均可忽略。 中频电压放大倍数:
共射放大电路
Ausm
VO Ri RL VS RS Ri rbe
2. 低频段
在低频段,三极管的极间电容可视为开路,耦合电 容C1、C2不能忽略。 方便分析,现在只考虑C1,将C2归入第二级。画出低频 等效电路如图所示。 该电路有 一个RC电路高通环节。有下限截止频率:
高通电路及频率响应
fL
可见:当频率较高时,Au ≈1,输出与输入电压之间的相位差=0。随着 频率的降低, Au下降,相位差增大,且输出电压是超前于输入电压的,最 大超前90o。在此频率响应中,下限截止频率fL是一个重要的频率点。
二. 阻容耦合共射放大电路的频率响应
对于如图所示的共射放大电路, 分低、中、高三个频段加以研究。
共射放大电路高频段的波特图
幅频响应 : 相频响应 :
20lg | AusH | 20lg | Ausm | 20lg

1 1 ( f
180 arctg( f

fH
)
fH
)2
4. 完整的共射放大电路的频率响应
Aus Ausm

1 1 f f (1 j L ) (1 j f ) f H
2. RC 高通网络
(1)频率响应表达式:
. . Vo A= .
v
Vi
R 1 1 R 1/ jwC 1 j / wRC 1 jwL / w
RC 高通电路
式中 wL 1 。
RC
下限截止频率、模和相角分别为
1 fL 2RC
1 │v A│ 1 ( fL f )2
arctg( f L f )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019/11/26
f f
6
§ 22..77 .放2 大B电J路T的的频高率频响应小信号模型及频率参数
1. BJT高频小信号模型
+
c
混合π型高频小信号模型是通过三极管的物理模型而建立的。
b'是假想的基区内的一个点。
rbb' ——基区的体电阻
rb‘e——发射结电阻 Cb‘e——发射结电容 rb‘c——集电结电阻
相频响应:
H arctg( f fH )
2
2.7 放大电路的频率响应
幅频响应:
AVH
1 1 ( f fH )2
当 f fH 时,
20 lg AVH / dB
0.1f
0
H
-20
-40
-3dB
fH 10fH 100fH f
-20dB/十倍频程
1
AVH
1 1 ( f / fH )2
f -20dB/十倍频程
fH 10fH 100fH f
45 / 十倍频
这种对数频率特性曲线称为波特图(bode plot),
2其019中/11f/2H6是一个重要的频率点,称为上限截止频率。
4
2.7 放大电路的频率响应
2. RC高通电路频率响应
(1)频率响应表达式:
AVL

Vo Vi

b 'C
得:

gm rb'e
1 j r b'e (Cb'e Cb'c )
. 将c、e短路。
b Ib b'
Cb'c
+
r
+.
b'b
.+
Vbe -
Vb'e -
r b'e Cb'e
+
e
0
f 1 j
f
2019/11/26
.
c Ic
.
gmVb'e
11
2.7 放大电路的频率响应
其中:
f
2.7 放大电路的频率响应
频率响应——放大器的电压放大倍数 与频率的关系


AU ( f ) | AU | ( f ) ( f )

其中: | AU | ( f ) 称为放大器的幅频响应
( f ) 称为放大器的相频响应
下面先分析无源RC网络的频率响应
2019/11/26
1
§ 22..77 .放1 大单电时路的间频常率数响应RC电路的频率响应
r bb' .+
Vb'e -
r b'e C b‘e
C b'c
'.
gm Vb'e e
.
I c
c
+
+.
V ce

+
2019/11/26
8
2.2.B7JT高放频大小电信号路模的型频中元率件响参应数值的获得
. . . 低频时,忽略电容,混合模型与H参数模型等效
b Ib b'
+
r
Ic c
+
b Ib
+
+. .bb' +
.
.
b Ib b'
. . +
+
rb'b +
Vbe
Vb'e
r b'e


Ic c
+
+.
Vce gmVb'e

b Ib
+
+.
Vbe

r be
Ic c + +.
β ib Vce

+
e
+
+
e
+
又因为
V be

Ibrbe
gmVbe 0 Ib
C be

gm 2f T
Cbc
2019/11/26
Cb‘c——集电结电容
.
g U 2019/11/m26 b' e
——受控电流源,代替了
Cb'c
rb'c
b
+
rbb' b'
rce g m u b' e
Cb'e
rb'e
.
Ib
e + 7
2.7 放大电路的频率响应
模型的简化
rb’c很大,可以忽略。
rce很大,也可以忽略。
.
b
+
+.
V be

+
Ib
b'

2
+.
+.
Vbe
Vb'
r b'e


Vce gmVb'e

Vbe -
+
e
+
+
由: rbe rbb rbe
所以
26mV rbe (1 0 ) IE
2019/11/26
.
Ic c
+
+.
r be
β i b Vce

e
+
rbb rbe rbe
9
2.7 放大电路的频率响应
当 f fH 时,
20lg AVH 20lg1 0 dB 0分贝水平线
f 10 fH AVH 0.1
20lg AVH 20dB
f 100 fH AVH 0.01 20lg AVH 40dB
AVH
1 1( f /
fH )2

fH /
f
斜率为 -20dB/十倍频程 的直线
20 lg | AU (| dB )
幅频响应:
AVL
1 1 ( fL f )2
0.01f 0.1fL fL 10fL
0
L
-20 20dB/十倍频
-40
相频响应:
L arctg( fL f )

90° 45°

45 / 十倍频
0.01f 0.1fL fL 10fL L
其中,fL是一个重要的频率点,称为下限截止频率。
f fH
AVH 0.707
20lg AVH 3dB
20 lg AVH 20 lg( fH / f )
最大误差 -3dB
2019/11/26
3
§ 22..77 .放1 大单电时路的间频常率数响应RC电路的频率响应
相频响应
20 lg AVH / dB
H arctg( f fH )
R2
R2

1 jC2
1
1 ( 1 jC2 R2 )
+
.
Vi
C2
+
.
R2 V o
1



1 j( fL f )
fL

1 2R2C2
,

2f
幅频响应:
AVL
1 1 ( fL f )2
相频响应:
L arctg( fL f )
2019/11/26
5
(22.)7 R放C大高电通路电的路频的率波响特应图
当 f fH 时, H 0
0.1f
0
H
-20
-40
当 f fH 时,H 90 H
0.1f
当 f fH 时, H 45

H
当 0.1 fH f 10 fH 时,
-45°
斜率为 45 / 十倍频程的直线 -90°
-3dB fH 10fH 100fH
1. RC低通电路频率响应(frequency response)
(1)频率响应表达式:
AVH

Vo Vi

1 j2fC1
R1
1 j2fC1
1
1 j( f
fH )
+
.
Vi

R1
fH

1 2R1C1
,

2f
+
.
C1 Vo

幅频响应:
2019/11/26
AVH
1 1 ( f fH )2
所以
gm

0 rbe

IE 26mV
Cbc 和 fT 从手册中查出
10
2.7 放大电路的频率响应
3. BJT的频率参数
根据β定义:


Ic Ib
Vce 0
Ic ( gm jCbc )Vbe

V b' e

Ib (rb' e
//
1 jC
// 1 jC
)
b 'e
相关文档
最新文档