3.1.3 空间向量的数量积运算

合集下载

3.1.3空间向量的数量积运算课件人教新课标5

3.1.3空间向量的数量积运算课件人教新课标5
又|1 |= 2,| |= 2,
1 ·
所以 cos<1 , >=
|1 |||
=
1
2× 2
1
2
= .
因为<1 , >∈[0°,180°],
所以<1 , >=60°,所以向量1 与 的夹角为 60°.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
且|cos<a,b>|≤1,所以 D 正确.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
2.如图,在长方体 ABCD-A1B1C1D1 中,AB=AA1=2,AD=4,E 为侧面
AB1 的中心,F 为 A1D1 的中点.
2.有关数量积的运算应注意的问题:
(1)与数乘运算区分开,数乘运算的结果仍是向量,数量积的结果为
数量;
(2)书写规范:不能写成 a×b,也不能写成 ab.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
=|c|2-|a|2=0.
3.1.3
问题导学
空间向量的数量积运算
当堂检测
(3) ·1 =
1
1
(-) +
2
2
1
+
2
1
2
1
1
=- |a|2+ |b|2=2.
2

3.1.3空间向量的数量积运算 课件

3.1.3空间向量的数量积运算 课件

=12+1×1×cos 60° -2×1×1×cos 60° +1×1×cos 60° +12-2×1×1×cos 60° =1. → → → (3)|OA+OB+OC|= → → → OA+OB+OC2
= 12+12+12+2×1×1×cos 60° ×3= 6.
研一研· 问题探究、课堂更高效
研一研· 问题探究、课堂更高效
3.1.3 例 1 已知长方体 ABCD—A1B1C1D1 中,AB=AA1= 2,AD
= 4, E 为侧面 AB1 的中心, F 为 A1D1 的中点.试计算: → → → → → → (1)BC· ED1;(2)BF· AB1; (3)EF· FC1. → → → 解 如图,设AB=a,AD=b,AA1=c,
跟踪训练 2
如图所示,已知平行六面体
ABCD— A1B1C1D1 的底面 ABCD 是菱形, 且∠ C1CB=∠ C1CD=∠ BCD= 60° .求证: CC1⊥ BD. → → → 证明 设CB=a,CD=b,CC1=c,则|a|=|b|.
→ → → → → ∵BD=CD-CB=b-a, ∴BD· CC1=(b-a)· c=b· c-a· c =|b||c|cos 60° -|a||c|cos 60° =0, → → ∴C1C⊥BD,即 C1C⊥BD.
研一研· 问题探究、课堂更高效
小结
3.1.3 求向量的模,可以转化为求向量的数量积,求两点
间的距离或某条线段的长度,可以转化为求对应向量的模, 其中的关键是将线段长度用向量的模表示出来.
跟踪训练 3 如图所示,已知线段 AB 在平面 α 内,线段 AC⊥α,线段 BD⊥AB,线段 DD′⊥α 于 D′, 如果∠ DBD′=30° ,AB = a, AC= BD=b,求 CD 的长. → → 解 易知 AC⊥AB.,<CA,BD>=60° , → → → → → → ∵|CD|2=CD· CD=(CA+AB+BD)2 →2 →2 → 2 → → → → → → =|CA| +|AB| +|BD| +2(CA· AB+CA· BD+AB· BD)=

空间向量数量积运算第一课时练习题含详细答案

空间向量数量积运算第一课时练习题含详细答案

3.1.3空间向量的数量积运算一、选择题1.若A 、B 、C 、D 为空间四个不同的点,则下列各式为零向量的是 ( ) ①22AB BC CD DC +++ ②2233AB BC CD DA AC ++++ ③AB CA BD ++④AB CB CD AD -+-A .①②B .②③C .②④D .①④2、在空间四边形ABCD 中,若AB a =,BD b =,AC c =,则CD 等于 ( ) A .()a b c -- B .()c b a -- C .a b c -- D .()b c a --3、已知向量 a 和向量 b 的数量积为- 3,且| a |=1,| b |=2,则向量 a 和向量 b 的夹角( ) A .30° B .60° C . 120° D .150°4、已知空间向量 a , b 满足条件:( a +3 b )⊥(7 a -5 b ),且(a -4 b )⊥(7 a -2 b ),则空间向量 a , b 的夹角<a , b >( )A .等于30°B .等于45°C .等于60°D .不确定5、若a ,b 为非零向量,则a·b =|a |·|b |是a 与b 平行的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5、解析:因为a ,b 为非零向量,又a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |, 所以cos 〈a ,b 〉=1.所以〈a ,b 〉=0,即a 与b 平行; 反之,若a 与b 平行,当〈a,b 〉=π时, a ·b =-|a |·|b |≠|a |·|b |,由此知应选A. 6、若a 与b 是垂直的,则a ·b 的值一定是( )A.大于0B.等于零C.小于0D.不能确定 7、在下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OC OB OA OM --=2 B.OC OB OA OM 213151++=C.0=++MC MB MAD. 0=+++OC OB OA OM 8、 a 、b 是非零向量,则〈a ,b 〉的范围是 ( )A.(0,2π)B.[0,2π]C.(0,π)D.[0,π]9、已知|a |=22,|b|=22,a . b =-2,则a 、b 所夹的角为( )A. 0B. 4πC. 2πD. 34π10.设A 、B 、C 、D 是空间不共面的四点,且满足000=•=•=•AD AB ,AD AC ,AC AB ,则∆BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定二、填空题1、在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→.其中能够化简为向量BD 1→的是________. 2.已知平行六面体ABCD -A ′B ′CD ′,则下列四式中: ①AB →-CB →=AC →;②AC ′→=AB →+B ′C ′→+CC ′→;③AA ′→=CC ′→; ④AB →+BB ′→+BC →+C ′C →=AC ′→. 正确式子的序号是________.3.已知空间向量a 、b 、c 满足a +b +c =0,|a |=3,|b |=1,|c |=4,则a ·b +b ·c +c ·a 的值为________.4.若AB →·BE →=AB →·BC →,则AB →与CE →的位置关系为5.在空间四边形ABCD 中,A B →·C D →+B C →·A D →+C A →·B D →=________.6.已知|a |=32,|b |=4,a 与b 的夹角为135°,m =a +b ,n =a +λb ,则m ⊥n ,则λ=________.小组: 组号: 姓名:__________一、选择题(本题共10小题,每题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(共6小题,每题5分,共30分)请把正确答案填写在相应的位置上.1、__________2、___________3、_____________4、_____________5、_____________6、_____________ 三、解答题1、正方体ABCD —A 1B 1C 1D 1中,求证:BD 1⊥平面ACB 1.2、如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值.在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A ,B 两点,圆内的动点P 满足PA ,PO ,PB 成等比数列,求PA →·PB→的取值范围.答案:一、选择:1---5 CDDCA 6-----10 BCBDB10.B ;解析:过点A 的棱两两垂直,通过设棱长应用余弦定理可得三角形为锐角三角形二、填空:1、解析:①中(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→;②中(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1→=BD 1→;③中(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④中(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→=B 1D 1→≠BD 1→,所以①②正确.答案:①②2、解析:AB →-CB →=AB →+BC →=AC →,①正确;AB →+B ′C ′→+CC ′→=AB →+BC →+CC ′→=AC ′→,②正确;③正确;(AB →+BB ′→)+BC →+C ′C →=AB ′→+B ′C ′→+C ′C →=AC ′→+C ′C →=AC →,故④错误.答案:①②③ 3、解析:∵a +b +c =0,∴(a +b +c )2=0,∴a 2+b 2+c 2+2(a·b +b·c +c·a )=0,∴a·b +b·c +c·a =-32+12+422=-13.答案:-134、解析:AB →·BE →=AB →·BC →,则AB →·(BE →-BC →)=AB →·CE →=0.∴AB →⊥CE →.5、解析: 设A B →=b ,A C →=c ,A D →=d ,则C D →=d -c ,B D →=d -b ,BC →=c -b .原式=0. 6、解析: m ·n =(a +b )·(a +λb )=|a |2+λa ·b +a ·b +λ|b |2=18+λ×32×4×cos 135°+32×4×cos 135°+λ×16=6-12λ+16λ=6+4λ,∵m ⊥n ,∴6+4λ=0,∴λ=-32三、解答题:1、.证明:先证明BD 1⊥AC∵1BD = BC + CD +1DD ,AC = AB +BC ∴1BD ·AC =(BC + CD +1DD )·(AB +BC )=BC ·BC + CD ·AB =BC ·BC -AB ·AB =|BC |2-|AB |2=0∴BD 1⊥AC ,同理可证BD 1⊥AB 1,于是BD 1⊥平面ACB 1 2、解:∵BC AC AB =-,∴OA BC OA AC OA AB ⋅=⋅-⋅||||cos ,||||cos ,OA AC OA AC OA AB OA AB =⋅⋅<>-⋅⋅<>84cos13586cos12024162=⨯⨯-⨯⨯=-∴24162322cos ,855||||OA BC OA BC OA BC ⋅--<>===⨯⋅, 所以,OA 与BC 的夹角的余弦值为3225-. 附加解析 (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2.得圆O 的方程为x 2+y 2=4.(2)不妨设A (x 1,0),B (x 2,0),x 1<x 2.由x 2=4即得A (-2,0),B (2,0). 设P (x ,y ),由|PA |、|PO |、|PB |成等比数列,得(x +2)2+y 2·(x -2)2+y 2=x 2+y 2, 即x 2-y 2=2. PA →·PB →=(-2-x ,-y )·(2-x ,-y ) =x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故⎩⎨⎧x 2+y 2<4x 2-y 2=2.由此得y 2<1.所以PA →·PB→的取值范围为[-2,0).DCBA备选:2、棱长为a 的正四面体ABCD 中,AB BC •+AC BD •的值等于( B ) A .0B.232aC. 22aD.23a7.已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →|=12 , 则△ABC 为( C )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形8.如右图,在四边形ABCD 中,4||||||=++DC BD AB ,4||||||||=⋅+⋅DC BD BD AB ,0=⋅=⋅DC BD BD AB , 则AC DC AB ⋅+)(的值为( C ) A 、2 B 、22 C 、4D 、241.如图1,a 、b 是两个空间向量,则AC →与A ′C ′→是________向量,AB →与B ′A ′→是________向量.1、答案:相等 相反1、A 是△BCD 所在平面外一点,M 、N 分别是△ABC 和△ACD 的重心.若BD =4,试求MN 的长.解析:1、连结AM 并延长与BC 相交于E ,又连结AN 并延长与CD 相交于E ,则E 、F 分别为BC 及CD 之中点. 现在MN =AE AF AM AN 3232-=- =EF AE AF 32)(32=- =)(32CE CF - =CB CD CB CD -=-(31)2121(32) =BD 31∴MN =|MN |=31|BD |=31BD =34。

高中数学A版3.1.3空间向量的数量积运算优秀课件

高中数学A版3.1.3空间向量的数量积运算优秀课件
(1)证明两直线垂直; (2)求两点之间的距离或线段长度; (3)证明线面垂直; (4)求两直线所成角的余弦值等等.
高考链接
1.(2006年四川卷)如图,已知正六边
形P1P2P3P4P5P6 ,下列向量的数量积中最
大的是___A___. A. P1P2 ·P1P3
B. P1P2·P1P4
C. P1P2·P1P5 D. P1P2·P1P6
方法三:数形结合法,发现形的特殊性.
(2)已知 a 2 2 , b 2 , a b 2
2
则a,b所成的夹角为__1_3_5___.
分析:根据两向量夹角公式
a·b = a b cosa ,b (0 a,b π)
可得到所求结果.
2.选择
设a,b,c是任意的非零空间向量,且
a b = a b cosθ
向量的夹角: 0 θO a
A
B
2.平面向量的数量积的主要性质
设a,b是两个非零向量
(1)a⊥b a×b=0数量积为零是判
定两非零向量垂直的充要条件;
(2)当a与b同向时, a·b=|a|·|b|;当a与b 反向时, a·b=-|a|·|b|;特别地,a a = a 2 或 a = a a 用于计算向量的模;
2
2
AB' = AB + AA' = 2FG
FG / /AB'
由①知 EG∥AC
∴平面EFG//平面AB’C.
习题答案
1. B
2. 解:因为 AC = AB + AD + AA,
所以 | AC |2= ( AB + AD + AA )2
=| AB |2 + | AD |2 + | AA |2 + 2( AB·AD + AB·AA+ AD·AA )

课件9:3.1.3 空间向量的数量积运算

课件9:3.1.3  空间向量的数量积运算
已知空间四边形 的每条边和对角线的长都等于 , 点 分别是 的中点,求下列向量的 数量积:
课堂小结
1.正确分清楚空间向量的夹角。
2.两个向量的数量积的概念、性质和计算方法。
而m,n不平行,由共面向量定理知,存在唯一的有序实数对(x,y)使得 g=xm+yn
要证l·g=0,只需l· g= xl·m+yl·n=0
而l·m=0 ,l·n=0
故 l·g=0
三、典型例题 例1:已知m,n是平面内的两条相交直线,直线l与的交点为B,且l⊥m,l⊥n,求证:l⊥
对于非零向量 ,有:
5)空间向量的数量积满足的运算律
注意:
数量积不满足结合律
二、 课堂练习
全错
A
D
F
C
B
E
三、典型例题 例1:已知m,n是平面内的两条相交直线,直线l与的交点为B,且l⊥m,l⊥n,求证:l⊥
分析:由定义可知,只需证l与平面内任意直线g垂直。
n
m
g
g
m
n
l
l
要证l与g垂直,只需证l·g=0
3.1.3 空间向量的数量积运算
教学过程
一、几个概念
1) 两个向量的夹角的定义
O
A
B
同起点是关键
2)两个向量的数量积
注意: ①两个向量的数量积是数量,而不是向量. ②零向量与任意向量的数量积等于零。
A1
B1
B
A
E
4)空间向量的数量积性质
注意: ①性质2)是证明两向量垂直的依据; ②性质3)是求向量的长度(模)的依据;
解:由 ,可知 . 由 知 .
例4 已知在平行六面体 中, , , 求对角线 的长。

学案6:3.1.3 空间向量的数量积运算

学案6:3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算学习目标1.掌握空间向量的夹角与长度的概念.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.能用向量的数量积解决立体几何问题.(难点) 基础·初探教材整理1 空间向量的夹角 阅读教材,完成下列问题. 1.夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉. 2.夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=________时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量________,记作________. 预习自测判断(正确的打“√”,错误的打“×”)(1)〈a ,b 〉与(a ,b )都表示直角坐标系下的点.( ) (2)在△ABC 中,〈AB →,BC →〉=∠B .( )(3)在正方体ABCD ­A ′B ′C ′D ′中,AB →与A ′C ′→的夹角为45°.( ) 教材整理2 空间向量的数量积及其性质 阅读教材,完成下列问题.1.已知两个非零向量a ,b ,则________叫做a ,b 的数量积,记作________.规定:零向量与任何向量的数量积为________,即0·a =________.2.空间向量数量积满足下列运算律: (1)(λa )·b =λ(a·b ); (2)交换律:a·b =b·a ;(3)分配律:a ·(b +c )=________. 3.空间向量数量积的性质:两个向量数量积的性质若a ,b 是非零向量,则a ⊥b ⇔若a 与b 同向,则a·b =|a |·|b |; 若反向,则a·b = . 特别地:a·a =|a |2或|a |=a·a .若θ为a ,b 的夹角,则cos θ= |a·b |≤|a |·|b |预习自测下列式子中正确的是( ) A.|a |a =a 2 B.(a ·b )2=a 2b 2 C.a (a ·b )=b ·a 2 D.|a ·b |≤|a ||b |合作探究类型1 空间向量数量积的运算例1 如图所示,在棱长为1的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求值:(1)EF →·BA →; (2)EF →·BD →; (3)AB →·CD →. 名师指导在几何体中求空间向量的数量积的步骤1.首先将各向量分解成已知模和夹角的向量的组合形式.2.利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3.根据向量的方向,正确求出向量的夹角及向量的模.4.代入公式a·b =|a ||b |cos 〈a ,b 〉求解. 跟踪训练1.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →=________.类型2 利用数量积证明空间的垂直关系例2 已知空间四边形OABC 中,∠AOB =∠BOC =∠AOC ,且OA =OB =OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC . 名师指导用向量法证明垂直关系的步骤 1.把几何问题转化为向量问题. 2.用已知向量表示所证向量.,3.结合数量积公式和运算律证明数量积为0.4.将向量问题回归到几何问题. 跟踪训练2.如图,已知正方体ABCD ­A ′B ′C ′D ′,CD ′与DC ′相交于点O ,连接AO ,求证:(1)AO ⊥CD ′; (2)AC ′⊥平面B ′CD ′.类型3 利用数量积求夹角例3 如图,在正方体ABCD ­A 1B 1C 1D 1中,求BC →1与AC →夹角的大小.名师指导1.由于向量的夹角的取值范围为[0,π],而异面直线所成的角的取值范围为⎝⎛⎦⎤0,π2,因此利用向量数量积求异面直线所成的角时,要注意角度之间的关系.当〈a ,b 〉∈ ⎝⎛⎦⎤0,π2时,它们相等;而当〈a ,b 〉∈ ⎝⎛⎦⎤π2,π时,它们互补. 2.利用数量积求异面直线所成角θ的余弦值的步骤: (1)取向量;(2)求向量夹角余弦cos 〈a ,b 〉; (3)定结果cos θ=|cos 〈a ,b 〉|. 跟踪训练3.如图,已知直三棱柱ABC ­A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.探究共研型探究点 利用数量积求距离探究1 已知A (1,2,1),B (2,0,2),求|AB →|的值.探究2求两点间距离或线的长度的方法.例4平行四边形ABCD中,AB=2AC=2且∠ACD=90°,将它沿对角线AC折起,使AB 与CD成60°角,求点B,D间的距离.名师指导1.利用空间向量的数量积与空间向量模的关系,常把空间两点距离问题转化为空间向量模的大小问题加以计算.2.用数量积求两点间距离的步骤:(1)用向量表示此距离;(2)用其他向量表示此向量;(3)用公式a·a=|a|2,求|a|;(4)|a|即为所求距离.跟踪训练4.如图所示,在空间四边形OABC中,OA,OB,OC两两成60°角,且OA=OB=OC=2,E为OA的中点,F为BC的中点,试求E,F间的距离.课堂检测1.已知e1,e2为单位向量,且e1⊥e2,若a=2e1+3e2,b=k e1-4e2,a⊥b,则实数k的值为()A.-6B.6C.3D.-32.在空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( )A.12B.22C.-12D.0 3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________.4.如图,三棱柱ABC ­A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N .设AB →=a ,AC →=b ,AA 1→=c .(1)试用a ,b ,c 表示向量MN →;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长.参考答案基础·初探教材整理1 空间向量的夹角 2.【答案】 π 垂直 a ⊥b 预习自测【答案】 (1)× (2)× (3)√教材整理2 空间向量的数量积及其性质 阅读教材,完成下列问题.1.【答案】 |a||b|cos 〈a ,b 〉 a·b 0 02. (3)【答案】 a ·b +a ·c3. a·b =0 -|a |·|b | a·b|a ||b |预习自测 【答案】 D【解析】 根据数量积的定义知,A ,B ,C 均不正确.故选D. 合作探究类型1 空间向量数量积的运算 例1 解:(1)EF →·BA →=12BD →·BA →=12|BD →||BA →|cos 〈BD →,BA →〉 =12cos 60°=14. (2)EF →·BD →=12BD →·BD →=12|BD →|2=12.(3)AB →·CD →=AB →·(AD →-AC →) =AB →·AD →-AB →·AC →=|AB →||AD →|cos 〈AB →,AD →〉-|AB →||AC →|cos 〈AB →,AC →〉=cos 60°-cos 60°=0. 跟踪训练 1.【答案】 14a 2【解析】 AE →·AF →=⎝⎛⎭⎫AB →+12BC →·12AD → =12AB →·AD →+14BC →·AD →=12a 2cos 60°=14a 2. 类型2 利用数量积证明空间的垂直关系例2 解:连接ON ,设∠AOB =∠BOC =∠AOC =θ,又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →)=12⎣⎡⎦⎤12OA →+12(OB →+OC →) =14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b )=14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0. ∴OG →⊥BC →,即OG ⊥BC . 跟踪训练2.证明:(1)因为AO →=AD →+DO →=AD →+12(DD ′→+DC →),因为CD ′→=DD ′→-DC →,所以AO →·CD ′→=12(DD ′→+DC →+2AD →)·(DD ′→-DC →)=12(DD ′→·DD ′→-DD ′→·DC →+DC →·DD ′→-DC →·DC →+2AD →·DD ′→-2AD →·DC →)=12(|DD ′→|2-|DC →|2)=0,所以AO →⊥CD ′→,故AO ⊥CD ′.(2)因为AC ′→·B ′C →=(AB →+BC →+CC ′→)·(B ′B →+BC →)=AB →·B ′B →+AB →·BC →+BC →·B ′B →+BC →·BC →+CC ′→·B ′B →+CC ′→·BC →, 可知AB →·B ′B →=0,AB →·BC →=0, BC →·B ′B →=0,BC →·BC →=|BC →|2, CC ′→·B ′B →=-|CC ′→|2,CC ′→·BC →=0, 所以AC ′→·B ′C →=|BC →|2-|CC ′→|2=0, 所以AC ′→⊥B ′C →,所以AC ′⊥B ′C . 同理可证,AC ′⊥B ′D ′.又B ′C ,B ′D ′⊂平面B ′CD ′,B ′C ∩B ′D ′=B ′,所以AC ′⊥平面B ′CD ′. 类型3 利用数量积求夹角例3 解:不妨设正方体的棱长为1, BC →1·AC →=(BC →+CC →1)·(AB →+BC →)=(AD →+AA →1)·(AB →+AD →)=AD →·AB →+AD →2+AA →1·AB →+AA →1·AD → =0+AD →2+0+0=AD →2=1, 又∵|BC →1|=2,|AC →|=2,∴cos 〈BC 1→,AC →〉=BC →1·AC →|BC →1||AC →|=12×2=12.∵0°≤〈BC →1,AC →〉≤180°, ∴〈BC →1,AC →〉=60°. ∴BC →1与AC →夹角的大小为60 °. 跟踪训练3.(1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意,|a |=|b |=|c |且a ·b =b ·c =c ·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解:∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |,∵AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010. 探究共研型探究点 利用数量积求距离探究1 【提示】 AB →=(1,-2,1), ∴|AB →|=12+(-2)2+12= 6.探究2 【提示】 利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是先选择以两点为端点的向量,将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |2=a ·a 求解即可. 例4 解:由已知得AC ⊥CD ,AC ⊥AB ,折叠后AB 与CD 所成角为60°,于是,AC →·CD →=0,BA →·AC →=0, 且〈BA →,CD →〉=60°或120°.|BD →|2=(BA →+AC →+CD →)2=BA →2+AC →2+CD →2+2BA →·AC →+2AC →·CD →+2BA →·CD →=22+12+22+2×2×2cos 〈BA →,CD →〉,故|BD →|2=13或5, 解得|BD →|=13或5, 即B ,D 间的距离为13或 5. 跟踪训练4. 解:EF →=EA →+AF →=12OA →+12(AB →+AC →)=12OA →+12[(OB →-OA →)+(OC →-OA →)] =-12OA →+12OB →+12OC →,所以EF 2→=14OA →2+14OB →2+14OC →2+2×⎝⎛⎭⎫-12×12OA →·OB →+2×⎝⎛⎭⎫-12×12OA →·OC →+2×12×12OB →·OC →=2. ∴|EF →|=2,即E ,F 间的距离为 2. 课堂检测 1.【答案】 B【解析】 由题意可得a ·b =0,e 1·e 2=0, |e 1|=|e 2|=1,∴(2e 1+3e 2)·(k e 1-4e 2)=0, ∴2k -12=0,∴k =6. 2.【答案】 D【解析】 OA →·BC →=OA →·(OC →-OB →)=OA →·OC →-OA →·OB →=|OA →||OC →|cos ∠AOC -|OA →||OB →|cos ∠AOB =12|OA →||OC →|-12|OA →||O B →|=0,∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0. 3.【答案】 0【解析】 原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →)=AB →·(CD →-CA →)+AD →·(BC →+CA →)=AB →·AD →+AD →·BA →=0.4.解:(1)MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→=13(c -a )+a +13(b -a ) =13a +13b +13c . (2)∵(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c=1+1+1+0+2×1×1×12+2×1×1×12=5, ∴|a +b +c |=5,∴|MN →|=13|a +b +c |=53, 即MN =53.。

3.1.3空间向量的数量积运算课件人教新课标2


法一:发现 | a b |2 | a b |2 2(| a |2 | b |2)代入求得.
法二:由 | a b |2 | a |2 2ab | b |2 代入求得 ab =-2. ∴| a b |2| a |2 2ab | b |2 得| a b | 1.
法三:数形结合法,发现形的特殊性.
g xm yn , l g xl m yl n , l
l m 0, l m 0 , l g 0,即l g.
gl
m
m n ng
l g,即l垂直于平面内任一直线.l .
通过学习,体会到我们可以利用向量数量积解 决立体几何中的以下问题:
1.证明两直线垂直; 2.求两点之间的距离或线段长度; 3.证明线面垂直; 4.求两直线所成角的余弦值等等.
a = c .( 或 b = c ) 对 于 向 量
b
a
a , b ,若 a•b k 能否写成
a k (或 b k )?也就是说
b
a
向量有除法吗?
不能,向量没有除法.
对于三个均不为 0 的
数,a,b,c,若(ab)c=a(bc),.对



a , b , c , a•bc ab•c 成立
吗?也就是说,向量的数量
另外,空间向量的运用还经常用来判定空间垂直关系,证两直 线垂直线常可转化为证明以这两条线段对应的向量的数量积为零.
例 2 在平面内的一条直线,如果和这个平面的一条 斜线的射影垂直,那么它也和这条斜线垂直.
已知:如图, PO 、PA分别是平面 的垂线、斜线,
AO 是 PA在平面 内的射影, l ,且 l OA ,
对于三个均不为 0 的 数,a,b,c,若 ab=ac,则 b=c. 对于向量 a , b , c ,由 a•ba•c 能得到 bc 吗? 如果不能,请举出反例.

《3.1.3 空间向量的数量积运算》教学案4

《3.1.3 空间向量的数量积运算》教学案4 【学情分析】:本小节首先把平面向量数量积运算推广到空间向量数量积运算学生已有了空间的线、面平行和面、面平行概念,这种推广对学生学习已无困难但仍要一步步地进行,学生要时刻牢记,现在研究的范围已由平面扩大到空间一个向量已是空间的一个平移,要让学生在空间上一步步地验证向量的数量积运算这样做,一方面复习了平面向量、学习了空间向量,另一方面可加深学生的空间观念【教学目标】:(1)知识与技能:掌握掌握空间向量的夹角的概念,空间向量数量积的定义和运算律(2)过程与方法:类比学习,注重类比、推广等思想方法的学习和使用,掌握立体几何中的三垂线定理及其逆定理的证明(3)情感态度与价值观:进一步学习向量法在证明立体几何中的应用,培养学生的开拓创新能力和举一反三的能力。

【教学重点】:空间向量的数量积运算【教学难点】:空间向量的数量积运算在解决立体几何中的应用【课前准备】:课件【教学过程设计】:教学环节教学活动设计意图一.温故知新1、平面向量的数量积(1)设ba,是空间两个非零向量,我们把数量><baba,cos||||叫作向量ba,的数量积,记作ba⋅,即ba⋅=><baba,cos||||(2)夹角:||||,cosbababa⋅>=<.(3)运算律abba⋅=⋅;)()(abba⋅=⋅λλ;cabacba⋅+⋅=+⋅)(复习旧知识,为新知识做铺垫,让学生可以非常容易的接收空间向量的数量积概念。

二.新课讲授1、夹角定义:ba,是空间两个非零向量,过空间任意一点O,作bOBaOA==,,则AOB∠叫做向量a与向量b的夹角,记作><ba,规定:π>≤≤<ba,特别地,如果0,>=<ba,那么a与b同向;如果π>=<ba,,那么a与b反向;如果090,>=<ba,那么a与b垂直,记作ba⊥。

【优化方案】2012高中数学 第3章3.1.3空间向量的数量积运算课件 新人教A版选修2-1


3.1.3 空 间 向 量 的 数 积 运 算
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基
1.已知平面 α 内有两个非零向量 a,b,在平面 α 内 . , , → → 任取一点 O,作OA=a,OB=b,则∠AOB 叫做两个 , , , 夹角 ,记作________. 〈 , 〉 向量 a,b 的______,记作 a,b〉 . , 2.已知两个非零向量 a 与 b,我们把数量 |a||b|cos 〈a,b〉 , 〉 数量积 或内积 ________________叫做 a 与 b 的_________(或内积 , 或内积), 叫做 ,它满足的运算律 记作 a·b,即 a·b=|a||b|·cos〈a,b〉 它满足的运算律 , = 〈 , 〉 , + = 交换律: 分配律: 有:(1)交换律:_________;(2)分配律:_________ 交换律 a·b=b·a ; 分配律 a·(b+c) λ(a·b) =______. =a·b+a·c ; + ___________;(3)(λa)·b=______=a·(λb) . =
长都等于 a,如图所示,点 E,F 分别是 AB,AD ,如图所示, , , 的中点, 的中点,求: → → (1)AB·AC; → → (2)EF·BC. (2)EF·BC.
【思路点拨】 思路点拨】
→ → → → → → 【解】 (1)AB·AC=|AB||AC|cos〈AB,AC〉 〈 1 a2 =a×a× = . × × 2 2 (2)∵E,F 分别为 AB,AD 的中点, 的中点, ∵ , , → 1→ ∴EF= BD. 2 → → 1→ → ∴EF·BC= BD·BC 2 1 1 = ×a×a× × × 2 2 a2 = . 4

§3.1.3空间向量的数量积运算教学设计

§3.1.3 空间向量的数量积运算一.教学目标1.知识与技能(幻灯片2)(1)通过类比平面向量数量积的运算,掌握空间向量数量积的概念、性质和运算律; (2)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体 几何问题转化为向量问题;(3)通过向量的运算,研究空间中点、线、面之间的位置关系以及它们之间的距离和夹角等问题。

2.过程与方法引导学生注重知识间的联系,不断地与平面向量和立体几何知识进行类比,做到温故而知新,并且经历向量及其运算由平面到空间的推广过程,使学生的思维过程螺旋上升。

3.情感态度与价值观通过本节课的学习,使学生对于以往的知识有一个全新的认识,培养学生积极探索数学的本质,提高学生的数学素养。

二.教学重点空间向量数量积的概念以及实际应用。

三.教学难点建立空间向量与空间图形的内在联系; 四.教学过程 教学环节教学过程设计意图新 课 引入同学们,你们还记得平面向量数量积的定义吗?你能类比平面向量所成夹角说一说什么是空间中两条向量夹角及范围吗?注重了与旧知识的联系,使学生对知识的理解更为透彻。

学生容易对向量夹角和两直线夹角产生混淆,这里要对范围进行明确。

(幻灯片4) 讲 授 新 课零向量与任何向量的数量积为0。

性质1:这个性质是证明两向量垂直的依据;性质2: 这个性质是求向量模的依据。

思考:类比平面向量,你能说出空间向量数量积的几何意义吗?(幻灯片9)空间向量数量积和平面向量数量积相似,在教学中可采用类比的方法,并且还要向学生再次强调数量积的结果为常数,而不是向量。

空间向量数量积的几何意义同平面向量数量积是一样的。

只要让同学们理解空间中任意两个向量都是共面向量,此时就可以把空间向量的数量积转化为平面向量上来了。

(幻灯片5--8)(幻灯片10)=空间向量数量积的概念:已知两个非零向量a,,则a cos a,叫做a,的数量积.记作,即a cos a,.b b b b a b a b b b 22cos ,a a a a a a a a === cos 的几何意义:数量积等于的长度与在方向上的投影的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

rr
rr
rr
故 ( a) b [| a || b | cos(π a, b )]
rr
rr
rr
= (| a || b | cos a, b ) = (a b) .
r r rr
综上,得 ( a) b (a b) .
r r r rr rr
⑶ a (b c) a b a c .(分配律)
证明:当 rr

=0 时,等式显然成立.当
rr
rr

≠0
时,因
为 ( a) b | a || b | cos a, b
r) ,
rr
rr
所以,若 >0,则| | = , a, b = a, b ,
不能,例如向量
r a
与向量
r b

r c

垂直时,有
r a

r b

r a

r c
,而未必有
r b

r c
.
对于三个均不为 0 的
数 ,a,b,c, 若 ab=c, 则
a = c .( 或 b = c ) 对 于 向 量
r a
,
br b
,若
r a
r •b
a
k
能否
写成
r a

kr
(或
r b

kr
r a

线的向量,而向量
r c

r a
连是否共线
都是一个未知数.
r
r
1.已知 a 2 2 , b
2
rr ,ab


2,

r a
r 与b
2
的夹角大小为_1_3__5 _o.
2.判断真假:
rr
r rr r
1)若
r
ar
b
r
0,r则
arr0,
b

0
2)(ab)c a(bc)
uuur uuur
又设 OB , BC 确定平面 ,又设 OB , OA 确定
平面 .
B
c 2 C
b
1 a OD A E l
分别过 uuur
Bu,uurC
u作uurBD⊥OA

D,OE⊥OA

E,

uurOE
= r
OrD
+
DuurE
, r
OEuur=
Or D
+
DE
,

a0

(b

c)

ar0

b

r
a0

r
c
, r
r
r
r
r
上式两边同乘| a | 得 a • (b c) a • b a • c .
对于三个均不为 0 的
数,a,b,c,若 ab=ac,则 b=c.
对于向量
r a
,
r b
,
r c
,由
rr a•b

rr a•c
能得到
r b

r c
吗?
如果不能,请举出反例.
B
c 2 C
b
1 a OD A E l
分析:分配律等价于各个向量和的投影等于各个
向量投影的和.下面证之.
uuur r uuur r uuur r r
如图,设 r
OA
=
a

OrB
=
b

BCuu=urc
, r
a
的单位 r
向量为 a0 ,作轴 l 与 a 共线,则 OC = b c .
uuur uuur
rr
rr
a, b =π 时, a 与 b 反向.
r b
O
r
B
b
rr rr
⑵ a, b=b, a ,两个向量的夹角是惟一确定的!
rr ⑶如果 a, b


r ,则称 a
r 与b
r 垂直,记为 a

r b
2
2)两个向量的数量积
rr
已 知 空 间 两 个 非 零 向 量 a 、b , 则
rr
如图,已知两个非零向量 a 、b ,在空间任取
uuur r uuur r
一点 O ,作 OA a , OB b ,则角 AOB 叫做向
rr
rr
量 a 与 b 的夹角,记作: a, b .
rr
⑴范围: 0 ≤ a, b ≤ .
r a
rr
rr
rA a
a, b =0 时, a 与 b 同向;
① a e a cos a, e ;

r a

r b

r a

r b

0
;
r2 r r
r
③ a a a 也就是说 a
r2 a
.
注:
性质② 是证明两向量垂直的依据;
性质③是求向量的长度(模)的依据.
(4)空间向量的数量积满足的运算律
r r rr
⑴(a) b (a b)
)?也就是说
b
a
向量有除法吗?
不能,向量没有除法.
对于三个均不为 0 的
数,a,b,c,若(ab)c=a(bc),.对



r
a
,
r b
,
r c
,
r rr rr r a•b c a b•c
成立
吗?也就是说,向量的数量
积满足结合律吗?
不成立,左边是一个与向量
r c

线的向量,右边是一个与向量
如 图 A1B1 是 b 在 a 方 向上的射影向量.
rr
a b 的几何意义
A
a A1
B1
b
B
rr r
rrr
数量积a • b 等于 a
的长度
r
|
a
|与 b
在a
的方向上的投影 | b| cos的乘积.
3)空间两个向量的数量积性质
rr r 显然,对于非零向量 a 、b , e 是单位向
量有下列性质: r r r rr
rr rr
rr
rr
a b cosa, b 叫做 a 、b 的数量积,记作 a b .
r r rr rr 即 a b a b cosa, b .
注:①两个向量的数量积是数量,而不是向量;
②规定:零向量与任意向量的数量积等于零.
A
a A1
B1
b
B
类比平面向量,你能说 rr
出 a b 的几何意义吗? uuuur r r
这些运算律
rr rr ⑵ a b b a (交换律)
r r r rr rr
成立,说明数量积 不仅有用,而且运
⑶ a (b c) a b a c (分配律) 算 起 来 还 极 为 方
便.
⑵是显然成立的,你能证 明(1)和(3)吗?
(1 )(a r)b r(a rb r).
rr
rr
rr
故 ( a) b | | (| a || b | cos a, b )
r r . rr
rr
= (| a || b | cos a, b ) = (a b) .
rr
rr
若 <0,则| | =- , a, b = π a, b ,
第三章 空间向量与立体几何 3.1.3 空间向量的数量积运算
回顾
ur F

ur
S
W= |F| |s| cos
根据功的计算,我们定义了平面两向量的 数量积运算.一旦定义出来,我们发现这种运 算非常有用,它能解决有关长度和角度问题.
知 新 类似地,可以定义空间向量的
1)两个向量的夹角的定义:
数量积
相关文档
最新文档