建模仿真-实验报告
计算机仿真与建模实验报告

中南大学计算机仿真与建模实验报告题目:理发店的服务过程仿真姓名:XXXX班级:计科XXXX班学号:0909XXXX日期:2013XXXX理发店的服务过程仿真1 实验案例 (2)1.1 案例:理发店系统研究 (2)1.1.1 问题分析 (3)1.1.2 模型假设 (3)1.1.3 变量说明 (3)1.1.4 模型建立 (3)1.1.5 系统模拟 (4)1.1.6 计算机模拟算法设计 (5)1.1.7 计算机模拟程序 (6)1实验案例1.1 案例:理发店模拟一个理发店有两位服务员A和B顾客随机地到达该理发店,每分钟有一个顾客到达和没有顾客到达的概率均是1/2 , 其中60%的顾客理发仅用5分钟,另外40%的顾客用8分钟. 试对前10分钟的情况进行仿真。
(“排队论”,“系统模拟”,“离散系统模拟”,“事件调度法”)1.1.1 问题分析理发店系统包含诸多随机因素,为了对其进行评判就是要研究其运行效率,从理发店自身利益来说,要看服务员工作负荷是否合理,是否需要增加员工等考虑。
从顾客角度讲,还要看顾客的等待时间,顾客的等待队长,如等待时间过长或者等待的人过多,则顾客会离开。
理发店系统是一个典型的排队系统,可以用排队论有关知识来研究。
1.1.2 模型假设1.60%的顾客只需剪发,40%的顾客既要剪发,又要洗发; 2.每个服务员剪发需要的时间均为5分钟,既剪发又洗发则花8分钟; 3.顾客的到达间隔时间服从指数分布; 4. 服务中服务员不休息。
1.1.3 变量说明u :剪发时间(单位:分钟),u=5m ;v: 既剪发又理发花的时间(单位:分钟),v=8m ;T : 顾客到达的间隔时间,是随机变量,服从参数为λ的指数分布,(单位:分钟)T 0:顾客到达的平均间隔时间(单位:秒),T 0=λ1;1.1.4 模型建立由于该系统包含诸多随机因素,很难给出解析的结果,因此可以借助计算机模拟对该系统进行模拟。
考虑一般理发店的工作模式,一般是上午9:00开始营业,晚上10:00左右结束,且一般是连续工作的,因此一般营业时间为13小时左右。
生产系统建模与及仿真实验报告

生产系统建模与及仿真实验报告实验一Witness仿真软件认识一、实验目的1、学习、掌握Witness仿真软件的主要功能与使用方法;2、学习生产系统的建模与仿真方法。
二、实验内容学习、掌握Witness仿真软件的主要功能与使用方法三、实验报告要求1、写出实验目的:2、写出简要实验步骤;四、主要仪器、设备1、计算机(满足Witness仿真软件的配置要求)2、Witness工业物流仿真软件。
五、实验计划与安排计划学时4学时六、实验方法及步骤实验目的:1、对Witness的简单操作进行了解、熟悉,能够做到基本的操作,并能够进行简单的基础建模。
2、进一步了解Witness的建模与仿真过程。
实验步骤:Witness仿真软件是由英国lanner公司推出的功能强大的仿真软件系统。
它可以用于离散事件系统的仿真,同时又可以用于连续流体(如液压、化工、水力)系统的仿真。
目前已成功运用于国际数千家知名企业的解决方案项目,有机场设施布局优化、机场物流规划、电气公司的流程改善、化学公司的供应链物流系统规划、工厂布局优化和分销物流系统规划等。
◆Witness的安装与启动:➢安装环境:推荐P4 1.5G以上、内存512MB及以上、独立显卡64M以上显存,Windows98、Windows2000、Windows NT以及Windows XP的操作系统支持。
➢安装步骤:⑴将Witness2004系统光盘放入CD-ROM中,启动安装程序;⑵选择语言(English);⑶选择Manufacturing或Service;⑷选择授权方式(如加密狗方式)。
➢启动:按一般程序启动方式就可启动Witness2004,启动过程中需要输入许可证号。
◆Witness2004的用户界面:➢系统主界面:正常启动Witness系统后,进入的主界面如下图所示:主界面中的标题栏、菜单栏、工具栏状态栏等的基本操作与一般可视化界面操作大体上一致。
这里重点提示元素选择窗口、用户元素窗口以及系统布局区。
控制工程实训课程学习总结基于MATLAB的系统建模与仿真实验报告

控制工程实训课程学习总结基于MATLAB 的系统建模与仿真实验报告摘要:本报告以控制工程实训课程学习为背景,基于MATLAB软件进行系统建模与仿真实验。
通过对实验过程的总结,详细阐述了系统建模与仿真的步骤及关键技巧,并结合实际案例进行了实验验证。
本次实训课程的学习使我深入理解了控制工程的基础理论,并掌握了利用MATLAB进行系统建模与仿真的方法。
1. 引言控制工程是一门应用广泛的学科,具有重要的理论和实践意义。
在控制工程实训课程中,学生通过实验来加深对控制系统的理解,并运用所学知识进行系统建模与仿真。
本次实训课程主要基于MATLAB软件进行,本文将对实验过程进行总结与报告。
2. 系统建模与仿真步骤2.1 确定系统模型在进行系统建模与仿真实验之前,首先需要确定系统的数学模型。
根据实际问题,可以选择线性或非线性模型,并利用控制理论进行建模。
在这个步骤中,需要深入理解系统的特性与工作原理,并将其用数学方程表示出来。
2.2 参数识别与估计参数识别与估计是系统建模的关键,它的准确性直接影响到后续仿真结果的可靠性。
通过实际实验数据,利用系统辨识方法对系统的未知参数进行估计。
在MATLAB中,可以使用系统辨识工具包来进行参数辨识。
2.3 选择仿真方法系统建模与仿真中,需要选择合适的仿真方法。
在部分情况下,可以使用传统的数值积分方法进行仿真;而在其他复杂的系统中,可以采用基于物理原理的仿真方法,如基于有限元法或多体动力学仿真等。
2.4 仿真结果分析仿真结果的分析能够直观地反映系统的动态响应特性。
在仿真过程中,需对系统的稳态误差、动态响应、鲁棒性等进行综合分析与评价。
通过与理论期望值的比较,可以对系统的性能进行评估,并进行进一步的优化设计。
3. 实验案例及仿真验证以PID控制器为例,说明系统建模与仿真的步骤。
首先,根据PID控制器的原理以及被控对象的特性,建立数学模型。
然后,通过实际实验数据对PID参数进行辨识和估计。
产品仿真实验报告(3篇)

第1篇一、实验目的本次实验旨在通过仿真软件对某新型产品进行仿真分析,验证产品设计的合理性和可行性,优化产品性能,为产品研发提供理论依据。
二、实验背景随着科技的不断发展,市场竞争日益激烈,企业对产品研发的要求越来越高。
为了提高产品竞争力,缩短研发周期,降低成本,我们采用仿真软件对新型产品进行仿真实验。
三、实验内容1. 仿真软件选择本次实验选用仿真软件为XXX,该软件具有强大的仿真功能,能够模拟产品在实际运行过程中的各种工况,为产品研发提供有力支持。
2. 产品模型建立根据产品设计图纸,利用仿真软件建立产品三维模型。
模型应包含产品的主要部件和连接关系,确保仿真结果的准确性。
3. 材料属性设置根据产品材料要求,设置材料属性,包括密度、弹性模量、泊松比等。
确保仿真过程中材料属性的准确性。
4. 边界条件设置根据产品实际运行工况,设置边界条件,如载荷、温度、压力等。
确保仿真过程中边界条件的准确性。
5. 仿真分析(1)结构分析:对产品进行静态和动态分析,验证产品在载荷作用下的强度、刚度和稳定性。
(2)热分析:分析产品在温度变化下的热传导、热辐射和热对流,验证产品在高温或低温环境下的性能。
(3)流体分析:分析产品在流体流动作用下的压力、速度和流量,验证产品在流体作用下的性能。
6. 结果分析根据仿真结果,分析产品在各个工况下的性能表现,找出产品存在的问题,并提出改进措施。
四、实验结果与分析1. 结构分析仿真结果显示,产品在载荷作用下的强度、刚度和稳定性均满足设计要求。
但在某些部位存在应力集中现象,需要进一步优化设计。
2. 热分析仿真结果显示,产品在高温环境下的热传导、热辐射和热对流性能良好,但在低温环境下存在热传导不畅现象,需要优化热设计。
3. 流体分析仿真结果显示,产品在流体流动作用下的压力、速度和流量均满足设计要求。
但在某些部位存在流体阻力较大现象,需要优化流体设计。
五、结论通过本次仿真实验,验证了新型产品的设计合理性和可行性。
ATRU建模与仿真分析 实验报告模板仿真操作说明 (1)

实验一、ATRU正常工况供电特性仿真实验一、实验目的1.测量ATRU空载时的变压器输出及直流输出电压,观测电压波形,分析验证移相原理。
2.带载状态下,测量ATRU负载时的供电特性曲线,分析滤波前后波形THD大小及区别,并分析原因。
二、预习要点1.ATRU工作原理是什么?在空载实验时应该如何测量电压移相波形?2.做负载供电特性实验时,THD及直流畸变系数的定义是什么?如何测量?三、实验项目1.空载实验自耦变压器移相原理分析。
2.负载供电特性。
3.变压变频输入实验。
四、实验内容及步骤1.空载实验和变压器移相原理仿真分析1)参考仿真操作说明书建立仿真模型,将输入电压幅值设定为115V,频率为400Hz,将幅值和频率固定,电源设置完成,设置仿真时间1s,启动开始仿真。
2)测试并记录变压器输出线电压、整流器输出电压、负载端电压,记录其波形并进行分析。
3)记录整流器并联输出端和输出滤波后的电压波形,改变输出滤波电感和电容值,分析滤波效果。
5)根据自耦变压器变压器输出线电压向量图,选择两个线电压,记录两个线电压波形的时间差,计算出两波形的相位差,验证变压器的移相原理。
图1变压器输出线电压向量图2.负载特性测试1)将输出接上负载,由空载到负载状态,ATRU进入正常工作状态,仿真时间1S;2)选择输出负载,加入5kW、10kW、3kW负载,观察不同负载情况下,输出电压和电流的变化。
记录于表1.表1ATRU负载实验序号1234负载(kW)空载负载电压(V)负载电流(I)3.变压变频实验1)分别将输人电压幅值调整为108V和118V,频率为额定频率400Hz,观察改变输入电压幅值对ATRU输出性能的影响。
2)调节变频电源的幅值固定为额定115V,将输入电压频率调整为350Hz至450HZ观察改变输入电压频率对ATRU输出性能的影响。
五、实验报告1.分析ATRU空载仿真实验电压及电流波形数据,给出自耦变压器输出电压移相波形及电流波形分析。
仿真入门实验报告模板(3篇)

第1篇一、实验目的1. 了解仿真软件的基本操作和功能。
2. 掌握仿真建模的基本方法。
3. 通过仿真实验,加深对理论知识的理解。
4. 培养实验设计、数据分析及问题解决的能力。
二、实验背景(简要介绍仿真技术的基本概念、应用领域及实验所使用的仿真软件)三、实验设备与软件1. 实验设备:计算机、网络连接等。
2. 仿真软件:[软件名称],版本号:[版本号]。
四、实验内容1. 仿真软件的基本操作- 界面介绍:熟悉仿真软件的界面布局,包括菜单栏、工具栏、视图窗口等。
- 基本命令:学习并掌握仿真软件的基本命令,如新建项目、打开项目、保存项目等。
2. 仿真建模- 模型建立:根据实验要求,建立仿真模型,包括实体模型、参数设置等。
- 模型验证:对建立的模型进行验证,确保模型的准确性和可靠性。
3. 仿真实验- 设置仿真参数:根据实验要求,设置仿真参数,如仿真时间、步长等。
- 运行仿真:启动仿真实验,观察仿真结果。
- 结果分析:对仿真结果进行分析,与理论预期进行比较。
五、实验步骤1. 准备工作- 安装仿真软件,并进行环境配置。
- 熟悉实验要求和仿真软件的基本操作。
2. 建立仿真模型- 根据实验要求,确定仿真模型的类型和结构。
- 使用仿真软件进行模型搭建,包括添加元件、连接线路等。
3. 设置仿真参数- 根据实验要求,设置仿真参数,如仿真时间、步长等。
- 确保参数设置合理,符合实验要求。
4. 运行仿真实验- 启动仿真实验,观察仿真结果。
- 记录实验数据和关键信息。
5. 结果分析- 对仿真结果进行分析,与理论预期进行比较。
- 解释仿真结果,并探讨实验过程中的问题。
六、实验结果与分析1. 实验数据记录- [实验数据表格,包括时间、参数、结果等]2. 仿真结果分析- [对仿真结果的详细分析,包括图表、曲线等]3. 与理论预期比较- [仿真结果与理论预期的比较,分析误差原因]七、实验讨论1. 实验中遇到的问题及解决方法- [记录实验过程中遇到的问题及解决方法]2. 实验结果的启示- [总结实验结果对理论知识的启示和实际应用的意义]八、实验总结1. 实验收获- [总结实验过程中的收获,包括理论知识、操作技能等]2. 实验不足与改进建议- [分析实验过程中的不足,并提出改进建议]九、附录1. 仿真软件截图- [展示仿真软件界面、模型搭建、仿真结果等截图]2. 参考文献- [列出实验过程中参考的书籍、文章等]十、实验报告撰写说明1. 实验报告应结构完整,逻辑清晰。
虚拟仿真实验的实验报告(3篇)
第1篇实验名称:虚拟仿真实验——制造业设施设备规划仿真实验目的:1. 通过虚拟仿真技术,学习制造业设施设备规划的基本原理和方法。
2. 培养对生产流程、物料流动、设备布局等关键因素的分析和优化能力。
3. 提高解决实际生产中设施布局问题的实践能力。
实验时间:2023年10月25日实验地点:虚拟仿真实验室实验器材:虚拟仿真软件(如FlexSim、AnyLogic等)实验人员:张三、李四、王五一、实验原理虚拟仿真实验是通过计算机模拟真实生产环境,对生产流程、物料流动、设备布局等因素进行仿真分析,从而优化生产布局,提高生产效率。
实验中,我们主要利用虚拟仿真软件进行以下操作:1. 创建生产模型:根据实际生产需求,创建生产模型,包括设备、物料、人员等。
2. 设置仿真参数:根据实际情况,设置仿真参数,如设备运行速度、物料需求量、人员数量等。
3. 运行仿真:运行仿真,观察生产流程、物料流动、设备布局等,分析存在的问题。
4. 优化方案:根据仿真结果,对生产布局进行优化,提高生产效率。
二、实验步骤1. 创建生产模型:根据实验要求,创建生产模型,包括设备、物料、人员等。
我们将生产分为两个阶段:原材料加工和成品组装。
2. 设置仿真参数:根据实际情况,设置仿真参数,如设备运行速度、物料需求量、人员数量等。
例如,设备运行速度设为每分钟10个单位,物料需求量为每小时100个单位,人员数量为10人。
3. 运行仿真:运行仿真,观察生产流程、物料流动、设备布局等。
在仿真过程中,我们发现以下问题:- 设备利用率较低,部分设备闲置。
- 物料流动不畅,导致生产效率降低。
- 人员配置不合理,部分人员工作负荷较大。
4. 优化方案:针对上述问题,我们对生产布局进行优化:- 调整设备布局,提高设备利用率。
- 优化物料流动路径,减少物料流动时间。
- 调整人员配置,平衡工作负荷。
5. 再次运行仿真:根据优化方案,再次运行仿真,观察生产流程、物料流动、设备布局等。
物流系统建模与仿真实验报告
缓存区的下一级必须是对应组别的每一台机器,以便于存在缓存区的产品在本组处理器有空闲时能继续加工。
四、实验中存在的问题、解决方法及进一步的想法等
存在问题:在本次建模中,我遇到的最大的问题就是发生器的实体属性触发器中没有设置颜色,造成产品通过处理器的时候都是一样的,不能区别每个产品。
相关数据如下:
发生器到达速率:normal(20,2)秒;
暂存区最大容量:25个临时实体;
检验时间:exponential(0,30)秒;
传送带速度:1米/秒;
2.创建实体。
先将各部分原件实体找出并拖拽到工作区并放在恰当的位置上,构成基本框架。
3.端口连接。
将各部分原件实体重新编号,按住键盘上的“A”键并同时根据题目要求,用鼠标点击左键,按方向依次将实体连接起来。
由于缓存区默认值为先进先出处理器1处理器2处理器规则的队列排序所以此项不需修改缓存区的最大容量为25在实际运行中绝对不能满足大多用户需缓存区的下一级必须是对应组别的每一台机器以便于存在缓存区的产品在本组精品欢迎下载10处理器有空闲时能继续加工
实验报告
课程名称:物流系统建模与仿真
系部名称:xxxxxxxxxxxxxx学院
4.设置各个固定资源类实体的属性。
(1)、发生器
(2)、暂存区
(3)、处理器1,2,3
(4)、传送带1,2 3
5.运行模型。
6.找出模型瓶颈之处,提出解决方案。
一种原料达到车间时,发现该组机器全部处于工作状态,该原料就在该组机器处服从先进先出处理器1、处理器2、处理器3规则的队列排序,大大降低了处理器工作效率。
纵联保护的建模与仿真实验报告
纵联保护的建模与仿真实验报告摘要纵联保护在电力系统保护中占有重要地位,对于保护系统的性能和可靠性起到至关重要的作用。
本文针对纵联保护系统进行建模和仿真实验,并分析了系统的性能和可靠性。
首先对纵联保护的原理和应用进行了介绍,然后对纵联保护系统进行了建模,并采用Matlab/Simulink进行仿真实验。
仿真结果表明,纵联保护系统对电力系统中的故障可以快速反应,并实现了故障保护的功能。
本文的研究可以为电力系统的保护和控制提供参考。
关键词:纵联保护;建模;仿真实验;Matlab/Simulink1. 引言电力系统作为现代工业和社会的基础设施之一,在保障经济社会发展和生活安全等方面发挥着重要作用。
电力系统中存在着各种故障,如电缆短路、高压线路断路等等,这些故障如果得不到及时的处理,将会对电力系统造成重大的影响,甚至可能导致系统崩溃。
在电力系统中引入保护措施,对于保障系统的正常运行和稳定性起到了至关重要的作用。
纵联保护是电力系统中比较常用的一种保护措施,它通常应用于高压输电线路和变电站中。
纵联保护的原理是通过检测线路上的故障信号,快速切断受故障影响的部分,以保证系统其他部分的正常运行。
纵联保护在电力系统的保护中占有很重要的地位,对于系统的性能和可靠性起到了至关重要的作用。
本文将对纵联保护进行建模和仿真实验,并分析系统的性能和可靠性。
首先对纵联保护的原理和应用进行了介绍,然后对纵联保护系统进行了建模,并采用Matlab/Simulink 进行仿真实验。
最后分析了仿真结果并对纵联保护系统的性能和可靠性进行了评估。
2. 纵联保护的原理与应用2.1 纵联保护的原理纵联保护通常用于高压输电和变电站中。
其基本原理是通过检测线路上的故障信号,并快速地采取措施,以限制受故障影响的部分,以保证系统的正常运行。
纵联保护可以根据需要采取不同的保护措施,以适应各种故障情况,如切断受故障影响的部分、调节负荷等等。
2.2 纵联保护的应用纵联保护通常应用于高压输电系统和变电站中,以保证系统的稳定性和可靠性。
系统仿真软件实验报告(3篇)
第1篇一、实验目的1. 掌握系统仿真软件的基本操作和功能;2. 学会使用系统仿真软件进行系统建模和仿真实验;3. 培养分析和解决实际问题的能力。
二、实验环境1. 操作系统:Windows 102. 系统仿真软件:MATLAB/Simulink三、实验内容1. 系统建模2. 仿真实验3. 结果分析四、实验步骤1. 系统建模(1)打开MATLAB/Simulink软件,创建一个新的模型;(2)根据实验要求,选择合适的模块进行搭建;(3)设置模块参数,完成系统建模。
2. 仿真实验(1)设置仿真参数,如仿真时间、步长等;(2)启动仿真,观察仿真结果;(3)对仿真结果进行分析。
3. 结果分析(1)根据仿真结果,分析系统的性能指标;(2)对实验结果进行讨论,提出改进措施。
五、实验结果与分析1. 系统建模本次实验中,我们搭建了一个简单的控制系统模型。
该模型由以下模块组成:输入信号源、控制器、执行器和被控对象。
输入信号源:产生一个正弦信号作为控制系统的输入;控制器:采用PID控制器进行控制;执行器:将控制信号转换为物理动作;被控对象:表示实际被控系统的动态特性。
2. 仿真实验在完成系统建模后,我们设置了仿真参数,如仿真时间为10秒,步长为0.01秒。
启动仿真后,观察到控制系统输出信号与期望信号基本一致,说明系统具有良好的控制性能。
3. 结果分析根据仿真结果,我们可以分析以下性能指标:(1)系统稳定性:通过观察系统输出信号,我们可以判断系统是否稳定。
在本实验中,系统输出信号在仿真过程中没有出现发散现象,说明系统是稳定的。
(2)系统响应速度:通过观察系统输出信号的上升时间和超调量,我们可以判断系统的响应速度。
在本实验中,系统输出信号的上升时间为0.5秒,超调量为10%,说明系统响应速度较快。
(3)系统控制精度:通过观察系统输出信号与期望信号的误差,我们可以判断系统的控制精度。
在本实验中,系统输出信号与期望信号的误差在0.1%以内,说明系统控制精度较高。