系统建模与仿真实验报告

合集下载

生产系统建模与仿真实验报告

生产系统建模与仿真实验报告

一、实验名称Witness仿真软件认识(一)——排队系统二、实验目的1、认识熟悉软件;2、掌握排队系统仿真,了解排队系统的设计;3、熟悉系统元素Part、Machine、Buffer、Variable、Timeseries的用法;4、深入研究系统Part的用法;5、研究不同的顾客服务时间和顾客的到达特性对仿真结果的影响。

三、实验设备仪器及材料计算机、Witness仿真软件四、实验内容单服务台排队系统仿真(M/M/1)五、实验原理1、排队系统是离散事件系统中典型的问题。

排队系统的要素是顾客和服务台。

“顾客”一词可以是人、机器、飞机、零件和信息等任何一个到达系统并需要服务的实体。

“服务台”指售货员、出纳柜台、机器、生产线、防空系统和通讯设备等提供顾客所需服务的一切实体。

影响排队系统的主要因素有:到达模式、服务模式、服务台数、系统容量和排队规则。

2、排队系统指标:服务台利用率:ρ=λ/μ平均对长:L=ρ*ρ/(1-ρ)系统中平均顾客数:L=ρ/(1-ρ) 顾客停留时间:W=L/λ=1/(μ-λ) 平均等待时间:WQ=λ/[μ*(μ-λ)]六、实验过程及步骤1、元素定义(Define)本排队系统共有6个元素,具体定义如下表:仿真模型图2、元素可视化(Display)设置(1)、Part元素可视化设置:在元素选择窗口guke元素,鼠标右键点击Display,跳出Display对话框,设置其Text为“顾客”,Icon选择图片。

(2)、Buffer元素可视化设置:在元素选择窗口paidui元素,鼠标右键点击Display,跳出Display对话框,设置其Text为“排队队列”,Icon选择图片,Rectangle 和PartQueue。

(3)、Machine 元素可视化设置:在元素选择窗口fuwuyuan元素,鼠标右键点击Display,跳出Display对话框,设置其Text为“服务员”,Icon选择图片,PartQueue。

生产系统建模与及仿真实验报告

生产系统建模与及仿真实验报告

生产系统建模与及仿真实验报告实验一Witness仿真软件认识一、实验目的1、学习、掌握Witness仿真软件的主要功能与使用方法;2、学习生产系统的建模与仿真方法。

二、实验内容学习、掌握Witness仿真软件的主要功能与使用方法三、实验报告要求1、写出实验目的:2、写出简要实验步骤;四、主要仪器、设备1、计算机(满足Witness仿真软件的配置要求)2、Witness工业物流仿真软件。

五、实验计划与安排计划学时4学时六、实验方法及步骤实验目的:1、对Witness的简单操作进行了解、熟悉,能够做到基本的操作,并能够进行简单的基础建模。

2、进一步了解Witness的建模与仿真过程。

实验步骤:Witness仿真软件是由英国lanner公司推出的功能强大的仿真软件系统。

它可以用于离散事件系统的仿真,同时又可以用于连续流体(如液压、化工、水力)系统的仿真。

目前已成功运用于国际数千家知名企业的解决方案项目,有机场设施布局优化、机场物流规划、电气公司的流程改善、化学公司的供应链物流系统规划、工厂布局优化和分销物流系统规划等。

◆Witness的安装与启动:➢安装环境:推荐P4 1.5G以上、内存512MB及以上、独立显卡64M以上显存,Windows98、Windows2000、Windows NT以及Windows XP的操作系统支持。

➢安装步骤:⑴将Witness2004系统光盘放入CD-ROM中,启动安装程序;⑵选择语言(English);⑶选择Manufacturing或Service;⑷选择授权方式(如加密狗方式)。

➢启动:按一般程序启动方式就可启动Witness2004,启动过程中需要输入许可证号。

◆Witness2004的用户界面:➢系统主界面:正常启动Witness系统后,进入的主界面如下图所示:主界面中的标题栏、菜单栏、工具栏状态栏等的基本操作与一般可视化界面操作大体上一致。

这里重点提示元素选择窗口、用户元素窗口以及系统布局区。

系统建模与仿真实验报告

系统建模与仿真实验报告

实验1 Witness仿真软件认识一、实验目的熟悉Witness 的启动;熟悉Witness2006用户界面;熟悉Witness 建模元素;熟悉Witness 建模与仿真过程。

二、实验内容1、运行witness软件,了解软件界面及组成;2、以一个简单流水线实例进行操作。

小部件(widget)要经过称重、冲洗、加工和检测等操作。

执行完每一步操作后小部件通过充当运输工具和缓存器的传送带(conveyer)传送至下一个操作单元。

小部件在经过最后一道工序“检测”以后,脱离本模型系统。

三、实验步骤仿真实例操作:模型元素说明:widget 为加工的小部件名称;weigh、wash、produce、inspect 为四种加工机器,每种机器只有一台;C1、C2、C3 为三条输送链;ship 是系统提供的特殊区域,表示本仿真系统之外的某个地方;操作步骤:1:将所需元素布置在界面:2:更改各元素名称:如;3:编辑各个元素的输入输出规则:4: 运行一周(5 天*8 小时*60 分钟=2400 分钟),得到统计结果。

5:仿真结果及分析:Widget:各机器工作状态统计表:分析:第一台机器效率最高位100%,第二台机器效率次之为79%,第三台和第四台机器效率低下,且空闲时间较多,可考虑加快传送带C2、C3的传送速度以及提高第二台机器的工作效率,以此来提高第三台和第四台机器的工作效率。

6:实验小结:通过本次实验,我对Witness的操作界面及基本操作有了一个初步的掌握,同学会了对于一个简单的流水线生产线进行建模仿真,总体而言,实验非常成功。

实验2 单品种流水线生产计划设计一、实验目的1.理解系统元素route的用法。

2.了解优化器optimization的用法。

3.了解单品种流水线生产计划的设计。

4.找出高生产效率、低临时库存的方案。

二、实验内容某一个车间有5台不同机器,加工一种产品。

该种产品都要求完成7道工序,而每道工序必须在指定的机器上按照事先规定好的工艺顺序进行。

经典的连续系统仿真建模方法(实验报告)

经典的连续系统仿真建模方法(实验报告)

实验一经典 的连续系统仿真建模方法一 实验目的:1 了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。

2 掌握机理分析建模方法。

3 深入理解阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写 数值积分法仿真程序。

4 掌握和理解四阶Runge -Kutta 法,加深理解仿真步长与算法稳定性的关系。

二 实验原理:1非线性模型仿真()()⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-=-+=221122112111H H A dt dH H Q u k A dt dH d u ααα⎥⎦⎤⎢⎣⎡∆∆⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=∆d u Q u A A k H H AR AR AR H 00111012121212三 实验内容:1. 编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。

(1) 将阀位u 增大10%和减小10%,观察响应曲线的形状;(2) 研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(3) 利用 MATLAB 中的ode45()函数进行求解,比较与(1)中的仿真结果有何区别。

2. 编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真(1) 将阀位增大10%和减小10%,观察响应曲线的形状;(2) 研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(4) 阀位增大10%和减小10%,利用MATLAB 中的ode45()函数进行求解阶跃响 应,比较与(1)中的仿真结果有何区别。

四 程序代码:龙格库塔:%RK4文件clccloseH=[1.2,1.4]';u=0.55; h=1;TT=[];XX=[];for i=1:h:200k1=f(H,u);k2=f(H+h*k1/2,u);k3=f(H+h*k2/2,u);k4=f(H+h*k3,u);H=H+h*(k1+2*k2+2*k3+k4)/6;TT=[TT i];XX=[XX H];end;hold onplot(TT,XX(1,:),'--',TT,XX(2,:));xlabel('time')ylabel('H')gtext('H1')gtext('H2')hold on水箱模型:function dH=f(H,u)k=0.2;u=0.5;Qd=0.15;A=2;a1=0.20412;a2=0.21129;dH=zeros(2,1);dH(1)=1/A*(k*u+Qd-a1*sqrt(H(1)));dH(2)=1/A*(a1*sqrt(H(1))-a2*sqrt(H(2)));三实验结果:2编写四阶Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真:1 阀值u对仿真结果的影响U=0.45;h=1; U=0.5;h=1;U=0.55;h=1;2 步长h对仿真结果的影响:U=0.5;h=5; U=0.5;h=20;U=0.5;h=39 U=0.5;h=50由以上结果知,仿真步长越大,仿真结果越不稳定。

系统建模与仿真实验二

系统建模与仿真实验二

实验二 动态系统的Simulink 仿真一、实验目的:1、掌握Simulink 使用的基本方法;2、熟悉连续系统仿真设计的基本方法;二、实验内容:1、编写M 脚本文件编写一个M 脚本文件,绘制函数⎪⎩⎪⎨⎧>+-≤<≤=3,630,0,sin )(x x x x x x x y在区间[-5,5]中的图形。

x=-5:0.1:5; % 设定系统输入范围与仿真步长leng=length(x); % 计算系统输入序列长度for i=1:leng % 计算系统输出序列if x(i)<=0 % 逻辑判断y(i)=sin(x(i));else if (x(i)>0&&x(i)<=3)y(i)=x(i);elsey(i)=-x(i)+6;endendendplot(x,y);grid;2、编写和调用M 函数编写一个M 函数,表示出如下函数关系t=0:0.1:3;leng=length(t);for i=1:lengif t(i)<=1;y(i)=t(i).^2;elsey(i)=t(i).^(1/2);endendplot(t,y);grid;⎪⎩⎪⎨⎧>∈=1,]1 ,0[,212t u t uy并用M脚本文件调用该函数,绘制其在[0,3]区间内的图像。

3.一个生长在罐中的细菌的简单模型。

要求给各模块和信号线改名称、改颜色或增加阴影。

假定细菌的出生率和当前细菌的总数成正比,死亡率和当前的总数的平方成正比。

若以x 代表当前细菌的总数,则细菌的出生率可表示为:_birth=ratebx细菌的死亡率可表示为:2death=rate_px细菌总数的总变化率可表示为出生率与死亡率之差。

因此系统可表示为如下的微分方程形式:2px=x-bx假定h;/5==,当前细菌的总数为1000,建立其simulink模型,.0phb/05并绘制细菌总数变化图。

4.根据种群增长曲线的数学方程进行simulink仿真,并正确设置参数,绘制出种群增长的“J”型曲线和“S”型曲线。

系统建模与仿真实验报告extendsim

系统建模与仿真实验报告extendsim

系统建模与仿真实验报告院系:管理科学与工程学院专业:质量与可靠性工程班级:1005104学号:100510432姓名:谢纪伟实验目录一.问题描述.二.系统数据.三. 建立过程的简单流程图.四.模型实体设计.五. 建立模型.六.运行模型.七.实验改进.八.结果分析.实验报告一.问题描述.电路板生产商要引入一个新产品,需要适当扩大现有生产线的产能,因此对现有生产线进行研究,经提前分析,发现生产过程存在瓶颈,现在对此生产线进行建模,并通过用extendsim建立的模型所得到的数据对现有生产线进行分析,并通过分析得到解决问题的办法。

二.系统数据.1.根据确定的时间表,5种型号电路板按照固定批量送入生产线中,时间表每隔120min重复一次,如下表所示:电路板种类在...min进入批量电路板种类在...min进入批量1 0 20 5 80 252 20 30 1 120 203 40 25 2 140 304 60 30 ………………进料时间表2.第一步操作是通过一台清洁工作站,每一个电路板需要至少36s,至多54s 的时间,一般情况需要48s。

3.清洁后的电路板装入自动插件机中,这台机器最多能同是处理6个电路板,每个板耗时5min。

4.当完成大部分标准插件的工作,电路板被置于一个10m的传送带上,通过波峰焊接机。

传送带上能放下30个电路板,每分钟移动1米。

5.此外,有三个工作站,用来插件机无法完成的非标准元件。

这个操作的耗时量根据板的种类而不同,如下表:电路板种类处理时间(min)电路板种类处理时间(min)1 2.5 4 3.02 2.0 5 2.03 2.5非标准元件的处理时间6.最后一步是高温加速老化试验,在这个过程中,电路板被组合成24个一组,放入烤箱中,循环通电20min。

三.建立过程的简单流程图电路板清洁自动插件波峰焊非标准插件非标准插件非标准插件高温老化离开四.模型实体设计.模拟电路板到达模拟缓冲器模拟插件机模拟convey item模拟非标准插件机三个物体汇合在一个通道将24个电路板组成一个批量对成批的电路板进行高温老化将成批的电路板还原成单独的电路板将加工后的电路板输出五.建立模型.1.定义全局单位时间.搭建模型从选择合适的全局时间单位开始。

《工程系统建模》实验报告

《工程系统建模》实验报告

《工程系统建模与仿真》实验报告姓名XXXXXXX学号XXXXXXX班级XXXXXXX专业XXXXXXX报告提交日期XXXXXXX实验一 扭摆法测定物体的转动惯量一、 实验名称扭摆法测定物体的转动惯量二、 同组成员学号 姓名 XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX三、 实验器材1) 转动惯量测试仪 2) 数字式电子台秤 3) 游标卡尺4) 扭摆及几种有规则的待测转动惯量的物体:金属载物圆盘、塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆,杆上有两块可以自由移动的金属滑块。

四、 实验原理转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。

本实验使物体作扭转摆动,由于摆动周期及其它参数的测定计算出物体的转动惯量。

扭摆的构造如图 1-1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装上各种待测物体。

垂直轴与支座间装有轴承,以降低摩擦力矩。

3为水平仪,用来调整系统平衡。

将物体在水平面内转过一定角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作周期往返扭转运动。

根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即:M=-Kθ (1) 上式中,K 为弹簧的扭转常数。

由转动定律M =Iβ得:β=M /I (2) 令ω2=K /I ,忽略轴承的摩擦阻力矩,由式(1)、(2)得:222d Kdt Iθβθωθ==-=-图 1-1上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

此方程的解为:θ=Acos (ωt +ϕ)。

式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为:22T π== (3) 由式(3)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。

建模与仿真实验报告

建模与仿真实验报告

建模与仿真实验报告建模与仿真实验报告引言建模与仿真是一种常用的方法,用于研究和分析复杂系统的行为。

通过建立数学模型并进行仿真实验,我们可以更好地理解系统的运行机制,预测其未来的发展趋势,并为决策提供依据。

本实验报告将介绍我所进行的建模与仿真实验,以及所得到的结果和结论。

1. 实验目标本次实验的目标是研究一个电动汽车的充电过程,并通过建模与仿真来模拟和分析其充电时间和电池寿命。

2. 实验步骤2.1 建立数学模型首先,我们需要建立一个数学模型来描述电动汽车充电过程。

根据电动汽车的充电特性和电池的充电曲线,我们选择了一个二阶指数函数来表示充电速度和电池容量之间的关系。

通过对历史充电数据的分析,我们确定了模型的参数,并进行了合理的调整和验证。

2.2 仿真实验基于建立的数学模型,我们使用MATLAB软件进行了仿真实验。

通过输入不同的充电时间和初始电池容量,我们可以获得充电过程中电池容量的变化情况,并进一步分析充电时间与电池寿命之间的关系。

3. 实验结果通过多次仿真实验,我们得到了一系列充电时间和电池寿命的数据。

根据这些数据,我们可以绘制出充电时间与电池寿命的关系曲线。

实验结果表明,充电时间与电池寿命呈现出一种非线性的关系,即充电时间的增加并不总是能够延长电池的使用寿命。

4. 结果分析通过对实验结果的分析,我们可以得出以下结论:4.1 充电时间的增加并不总是能够延长电池的使用寿命。

虽然在一定范围内增加充电时间可以提高电池的容量,但过长的充电时间会导致电池内部产生过多的热量,从而缩短电池的寿命。

4.2 充电速度对电池寿命的影响较大。

较快的充电速度会增加电池的热量产生,从而缩短电池的寿命;而较慢的充电速度则可以减少电池的热量产生,延长电池的寿命。

4.3 充电时间和电池寿命之间的关系受到电池类型和充电方式等因素的影响。

不同类型的电池在充电过程中表现出不同的特性,因此在实际应用中需要根据具体情况进行充电策略的选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 Witness仿真软件认识一、实验目的熟悉Witness 的启动;熟悉Witness2006用户界面;熟悉Witness 建模元素;熟悉Witness 建模与仿真过程。

二、实验内容1、运行witness软件,了解软件界面及组成;2、以一个简单流水线实例进行操作。

小部件(widget)要经过称重、冲洗、加工和检测等操作。

执行完每一步操作后小部件通过充当运输工具和缓存器的传送带(conveyer)传送至下一个操作单元。

小部件在经过最后一道工序“检测”以后,脱离本模型系统。

三、实验步骤仿真实例操作:模型元素说明:widget 为加工的小部件名称;weigh、wash、produce、inspect 为四种加工机器,每种机器只有一台;C1、C2、C3 为三条输送链;ship 是系统提供的特殊区域,表示本仿真系统之外的某个地方;操作步骤:1:将所需元素布置在界面:2:更改各元素名称:如;3:编辑各个元素的输入输出规则:4:运行一周(5 天*8 小时*60 分钟=2400 分钟),得到统计结果。

5:仿真结果及分析:Widget:各机器工作状态统计表:分析:第一台机器效率最高位100%,第二台机器效率次之为79%,第三台和第四台机器效率低下,且空闲时间较多,可考虑加快传送带C2、C3的传送速度以及提高第二台机器的工作效率,以此来提高第三台和第四台机器的工作效率。

6:实验小结:通过本次实验,我对Witness的操作界面及基本操作有了一个初步的掌握,同学会了对于一个简单的流水线生产线进行建模仿真,总体而言,实验非常成功。

实验2 单品种流水线生产计划设计一、实验目的1.理解系统元素route的用法。

2.了解优化器optimization的用法。

3.了解单品种流水线生产计划的设计。

4.找出高生产效率、低临时库存的方案。

二、实验内容某一个车间有5台不同机器,加工一种产品。

该种产品都要求完成7道工序,而每道工序必须在指定的机器上按照事先规定好的工艺顺序进行。

假定在保持车间逐日连续工作的条件下,仿真在多对象平准化种生产采用不同投资计划的工作情况。

在不同投资计划组合中选出生产高效、低临时库存方案,来减少占用资金。

产品工艺路线如图所示。

产品的计划投产方案批量:10,20,30。

产品计划投产间隔(min):10,20,30,40,50,60。

如果一项作业在特定时间到达车间,发现该机器组全都忙着,该作业就在该组机器处排入一个FIFO规则的队列,如果有前一天没有完成的任务,第二天继续加工。

三、实验步骤1.2.元素可视化设置:3.元素细节设计(1)对Part元素P细节设计:Type:activeInter arrvial:10Lot size:10To…:Push to RouteAction on creat:icon=94St=1Pen=1Route设计:(2)对Buffer元素buf细节设计Capacity:1000Output.option:any(3)对Machine元素Waterclean细节设计Type:generalInput.quantity:5Input.from:match/attribute St buf(1) #5Duration.Cycle time: ERLANG(R_cycle,1,st) Duration.actions on finish:PEN=PEN+1St=St+1If st=8Output=output+1EndifOutput.Quantity:5Output.to:push to route(4)对Machine元素DSDcoat细节设计Type:generalInput.quantity:5Input.from:match/attribute St buf(2) #5Duration.Cycle time: ERLANG(R_cycle,1,st) Duration.actions on finish:PEN=PEN+1St=St+1Output.Quantity:5Output.to:push to route(5)对Machine元素Greenfire细节设计Type:generalInput.quantity:5Input.from:match/attribute St buf(3) #5Duration.Cycle time: ERLANG(R_cycle,1,st) Duration.actions on finish:PEN=PEN+1St=St+1Output.Quantity:5Output.to:push to route(6)对Machine元素TCPprintfire细节设计Type:generalInput.quantity:10Input.from:match/attribute St buf(4) #10Duration.Cycle time: ERLANG(R_cycle,1,st)Duration.actions on finish:PEN=PEN+1St=St+1Output.Quantity:10Output.to:push to route(7)对Machine元素Laping细节设计Type:generalInput.quantity:10Input.from:match/attribute St buf(5) #10Duration.Cycle time: ERLANG(R_cycle,1,st)Duration.actions on finish:PEN=PEN+1St=St+1Output.Quantity:10Output.to:push to route(8)对Conveyor元素C2、C3、C4、C5细节设计Typeing:QueuingLength:10Index time:0.1Output.to:push to buf(2)Output.to:push to buf(3)Output.to:push to buf(4)Output.to:push to buf(5)(9)对Conveyor元素C6、C7细节设计Typeing:QueuingLength:30Index time:0.1Output.to:push to buf(2)Output.to:push to buf(1)(10)目标函数abc的设置(11)仿真运行2400分钟,得出结果并分析:零件统计:机器统计:缓存区统计:传送带统计:分析:机器TCPprintfire和Lamping繁忙率较低,Greenfire繁忙率过低,才32.13%,而其余几台机器繁忙率过高,均在90%以上;缓存区1和缓存区2的库存量过高,必须进行优化,传送带C3、C4、C5过忙,均在90%左右,其余几条繁忙率比较理想,均在80%上下。

(12)利用优化器optimization进行优化优化器optimization设置:优化结果:优化方案汇总:Evaluation abc P .Inter Arrival Time P .Lot Size0 80 10 101 40 10 202 10 10 303 165 20 104 80 20 205 40 20 306 190 30 107 120 30 208 80 30 309 170 40 1010 155 40 2011 110 40 3012 165 50 1013 150 50 2014 130 50 3015 145 60 1016 190 60 2017 155 60 30由表可知,方案6和方案16的优化效果最好,均为190,即到达时间30,批量为10,或到达时间为60,批量为20时,生产效率低、临时库存低,资金占有量最少。

四、实验小结:通过本次实验,我在前几次实验的基础上,学会了在对某一生产系统进行建模,仿真运行,数据分析之外,学会了利用优化器optimization对生产方案进行优化,选择最优方案,感觉实验较前几次复杂了一些,但实验效果非常成功!实验3 排队系统的仿真实验一、实验目的1、掌握Witness 仿真软件的基本功能;2、熟悉排队系统运行的特点;二、实验内容单服务台排队系统三、实验步骤1、打开计算机,进入Witness 仿真系统;2、建立一个单服务台M/M/1 模型的排队系统,并运行;四、实验报告实验步骤:1:元素及界面设置:Customer设计:Barber设计:state_graph设计:2:仿真运行5000分钟,查看数据统计:分析:共流失顾客(639-629)+1900=2000人,实际服务顾客数:639人分析:等待区平均人数9.76人,平均等待时间76.05分钟。

分析:理发师繁忙率100%,可考虑增加人手。

3:实验小结:通过本次实验我对单队列排队系统的建模及仿真方法有了初步掌握,也学会了如何分析单队列排队系统,这也为我后面学习多队列排队系统的建模与仿真打下良好的基础,总体而言,实验比较成功。

实验4 供应链系统的仿真设计与改善一、实验目的1.了解供应链仿真系统的设计与优化2.熟悉Timeseries的用法二、实验内容当钢材服务中心的库存小于15批时钢铁公司开始组织生产,每生产一批原钢卷材需要的时间服从1~3小时的均与分布。

当部件生产商的库存小于6批时,钢材服务中心开始配货,每配一批货需要的时间服从0.5~1小时的均匀分布。

当三个汽车厂商中库存量最小的小于3时,4个部件生产商开始组织生产,每生产一批部件需要的时间服从2~6小时的均匀分布。

汽车生产商每耗用一批部件需要4小时。

供应商每两个环节之间的路程需要5小时。

三、实验步骤1.元素定义:元素名称类型数量说明P part 1 产品M1 machine 1 机器组1M2 machine 1 机器组2M3 machine 4 机器组3M4 machine 3 机器组4B1-B3 buffer 3 库存P1-P3 Path 3 路径Timeseries001 reports 1 显示库存变化的元素2.元素可视化设置:3.元素细节设计:(1)对Part元素P细节设计:Type:passive机器项目M1 M2 M3 M4加工时间UNIFORM (1,3,2) UNIFORM (0.5,1,2) UNIFORM(2,6,2)4.0输入规则IF NPARTS (B1) < 15PULL from PART out of WORLDELSEWaitENDIFIF NPARTS (B2) < 6PULL from B1ELSEWaitENDIFIF NPARTS (B3) < 3PULL from B2ELSEWaitENDIFPULL fromB3输出规则PUSH to B1 Using Path PUSH to B2 Using Path PUSH to B3 UsingPathPUSH toSHIP(3)对缓存区的设计:容量(capacity):1000(4)对路径的设计:项目名称P1 P2 P3 路径更新时间间隔 5.0 5.0 5.0 来源元素M1 M2 M3 目的地元素B1 B2 B3(6)仿真运行2400分钟,并对结果进行分析:零件统计:机器统计:路径统计:缓冲区统计:时间序列统计:结果分析:机器M1繁忙率达到100%,过于繁忙,机器M3、M4、M5的繁忙率分别为49.61%、66.45%和37.52%,空闲率较高,有待改进;路径P1和P2繁忙率超过96%,过于繁忙,而P3繁忙率为81.35%,离80%的理想值较小,比较合理;三个缓冲区的出入库总量均在1200左右;而由时间序列统计表可知,B1的缓存量最大值为1,非常理想,接近于“零库存”,而B2和B3的最大库存均超过350,数值较大,方案有待改进。

相关文档
最新文档