控制系统仿真实验报告

合集下载

控制系统仿真综合实验报告

控制系统仿真综合实验报告

图 2-1
校正前系统阶跃响应曲线
可以看出原系统的响应速度非常慢, 所以要通过校正来改善系统的动态性能, 可以采用串联超前校正。 原系统为Ⅰ型系统,容易求出系统的速度误差系数为
K lim
s 0
s 400 2 s ( s 30 s 200)
2
根据实验要求速度误差系数为 10 ,那么 KV 10 / 2 5 ,此时系统的开环 传函为: G s
5 400 ,用 MATLAB 计算得相角裕量为 32.6°,由于采 s s 30 s 200

2

用串联超前校正能够增大系统的相角裕量,所以综合考虑,采用串联超前校正。 2. 经过第一步的分析,采用串联校正,可以计算出串联校正装置传递函数为 5 (1 0.12 s ) ,因此校正后的开环传递函数为: 1 0.048s
K Ess Overshoot(%) Ts(s) 5 0.2857 34.6099 4.7766
表1
8 0.20000 43.5125 5.6730
9 0.1818 45.7812 5.5325
12 0.1429 51.6704 5.7655
不同 K 值下系统响应的参数
(四)实验结果与分析 从理论上分析,系统的传递函数为 G s
ulxxlgxx?????????????????????????????????????????????????????????????????4301004300100000000010????uxxxy????????????????????????????????????0001000001???实际系统摆杆转动轴心到杆质心的长度为l025m则系统的状态方程为
(二)实验要求 1. 使用 Matlab 进行仿真; 2. 分析不同 K 值的情况下,系统的单位阶跃响应曲线,并绘图进行比较; 3. 列表对系统响应各性能进行比较,并确定你认为合适的参数值。 (三)实验内容及步骤 1.运行 MATLAB,进行仿真实验。

自控仿真实验报告

自控仿真实验报告

一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。

2. 学习控制系统模型的建立与仿真方法。

3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。

4. 掌握控制系统性能指标的计算方法。

二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。

1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。

第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。

(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。

(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。

2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。

其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。

(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。

三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。

(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。

2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。

二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。

本实验中我们选择了一个简单的比例控制系统模型。

2.设定输入信号我们需要为控制系统提供输入信号进行仿真。

在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。

本实验中,我们选择了一个阶跃信号作为输入信号。

3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。

MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。

4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。

常见的性能指标包括系统的稳态误差、超调量、响应时间等。

四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。

2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。

3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。

4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。

5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。

五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。

通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。

六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。

通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。

七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。

MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。

基于MATLAB控制系统仿真实验报告

基于MATLAB控制系统仿真实验报告

tf 4
y0

0 1
6、求出 G1(s)
2 (s2 2s 1) 与 G2 (s)
1 (2s3

3s2
1)
的单位阶跃响应,并分别
求出状态空间模型。
解:(1) G1(s) 2 (s2 2s 1) 的状态空间模型求解如下:
function shiyan2 b1=[2];
D(z)

0.62(1 0.136z 1)(1 0.183z (1 0.045z 1)(1 0.53z 1)
1 )
分别用仿真算法得到系统在单位阶跃输入作用下的响应,系统在单位速度输
入是的输出响应。
解:(1)首先将 W1(s)转换为 W1(z),采样周期 T=0.2s,程序清单如下: function shiyan42 num=[10];den=[0.005 0.15 1 0]; ts=0.2;[nc,dc]=c2dm(num,den,ts)
INTRO(注意:intro 为一个用 MATLAB 语言编写的幻灯片程序,主要演示
常用的 MATLAB 语句运行结果。)
然后,根据现实出来的幻灯片右面按钮进行操作,可按 START——NEXT—
—NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘:
(1)用 MATLAB 命令完成矩阵的各种运算,例如:
5、利用 ode23 或 ode45 求解线性时不变系统微分方程 y(t) Ay(t) ,并绘制出 y(t)
曲线,式中
A

0.5

1
1 0.5
t t0 t 如下: function xdot=fun21(t,x) A=[-0.5 1;-1 -0.5]; xdot=A*x; function fzsy22 t0=0;tf=4;tol=1e-6; x0=[0;1];trace=1; [t,x]=ode23('fun21',t0,tf,x0,tol,trace); plot(t,x) 得到的实验结果如下图所示:

控制系统仿真实验报告书

控制系统仿真实验报告书

一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。

二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。

首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。

2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。

3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。

4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。

调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。

五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。

控制仿真实验报告

控制仿真实验报告

控制仿真实验报告控制仿真实验报告引言:控制仿真实验是一种通过计算机模拟系统行为,以验证和优化控制算法的方法。

在现代工程领域中,控制仿真实验在设计和开发过程中扮演着重要的角色。

本文将介绍一次控制仿真实验的过程和结果,探讨仿真实验的意义和应用。

1. 实验目标本次控制仿真实验的目标是设计和评估一种PID控制器,用于稳定一个机械臂的运动。

通过仿真实验,我们希望验证该控制器是否能够使机械臂达到预定的位置和速度,并且具有良好的鲁棒性和响应速度。

2. 实验设置在仿真软件中,我们建立了一个包含机械臂、传感器和控制器的模型。

机械臂由多个关节组成,可以在三维空间中进行运动。

传感器用于测量机械臂的位置和速度,并将这些信息反馈给控制器。

控制器根据传感器的反馈信息和预定的目标,计算出控制信号,控制机械臂的运动。

3. 实验步骤首先,我们根据机械臂的物理参数和运动方程,建立了仿真模型。

然后,我们选择了PID控制器作为控制算法,并根据经验设定了合适的参数。

接下来,我们进行了一系列仿真实验,分别测试了机械臂在不同位置和速度下的控制效果。

在每次实验中,我们记录了机械臂的运动轨迹、控制信号和误差。

4. 实验结果通过对实验数据的分析,我们得到了以下结论:- PID控制器能够使机械臂达到预定的位置和速度,并且具有良好的鲁棒性。

在不同位置和速度的情况下,控制器都能够快速且稳定地将机械臂调整到目标状态。

- 在实验过程中,我们发现控制器的参数对控制效果有着重要的影响。

通过调整PID参数,我们可以改变控制器的响应速度和稳定性。

- 在某些情况下,机械臂可能会出现振荡或超调的现象。

这时,我们可以通过调整PID参数或者采用其他控制算法来改善控制效果。

5. 实验讨论控制仿真实验为我们提供了一个安全、经济且高效的方法,用于验证和优化控制算法。

通过仿真实验,我们可以在实际系统投入运行之前,对控制器的性能进行评估和改进。

同时,仿真实验还能够帮助我们理解系统的动态特性,探索不同控制策略的优缺点。

控制系统设计与仿真实验报告

控制系统设计与仿真实验报告

控制系统设计与仿真上机实验报告学院:自动化学院班级:自动化姓名:学号:一、 第一次上机任务1、熟悉matlab 软件的运行环境,包括命令窗体,workspace 等,熟悉绘图命令。

2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激下响应的数值解。

222()2nn nG s s s ωξωω=++ ,0.5,10n ξω== 3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。

222()(2)(1)nn nG s s s Ts ωξωω=+++,0.5,10n ξω==,5T =4、 自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。

程序代码如下:;曲线如下:二、 第二次上机任务1、试用simulink 方法解微分方程,并封装模块,输出为i x 。

得到各状态变量的时间序列,以及相平面上的吸引子。

112322331223x x x x x x x xx x x x αββγ=-+⎧⎪=-+⎨⎪=-+-⎩&&&参数入口为,,αβγ的值以及i x 的初值。

(其中8/3,10,28αβγ===,以及初值分别为1230,0,0.001x x x ===) 提示:1s模块输入是输出量的微分。

Simulink :曲线如下:2、用simulink搭建PI控制器的控制回路,被控对象传递函数:151s+,分别分析(1)、比例系数由小到大以及积分时间由小到大对阶跃响应曲线的影响。

(2)、控制器输出有饱和以及反馈有时滞情况下,阶跃响应曲线的变化。

(3)、主控制回路传递函数为:1201s+,副回路为:151s+,主回路采用PI控制器,副回路采用P控制器,分析控制系统对主回路以及副回路的阶跃扰动的抑制。

注:PI控制器表达式为1()(1)()iU s Kp E sT s=+,串级控制如图所示。

(1)(2)(3)3.编写S函数模块,实现两路正弦信号的叠加,正弦信号相位差为60度。

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告实验报告:MATLAB与控制系统仿真引言在现代控制工程领域中,仿真是一种重要的评估和调试工具。

通过仿真技术,可以更加准确地分析和预测控制系统的行为和性能,从而优化系统设计和改进控制策略。

MATLAB是一种强大的数值计算软件,广泛应用于控制系统仿真。

实验目的本实验旨在掌握MATLAB在控制系统仿真中的应用,通过实践了解控制系统的建模与仿真方法,并分析系统的稳定性和性能指标。

实验内容1.建立系统模型首先,根据控制系统的实际情况,建立系统的数学模型。

通常,控制系统可以利用线性方程或差分方程进行建模。

本次实验以一个二阶控制系统为例,其传递函数为:G(s) = K / [s^2 + 2ζω_ns + ω_n^2],其中,K表示放大比例,ζ表示阻尼比,ω_n表示自然频率。

2.进行系统仿真利用MATLAB软件,通过编写代码实现控制系统的仿真。

可以利用MATLAB提供的函数来定义传递函数,并通过调整参数来模拟不同的系统行为。

例如,可以利用step函数绘制控制系统的阶跃响应图像,或利用impulse函数绘制脉冲响应图像。

3.分析系统的稳定性与性能在仿真过程中,可以通过调整控制系统的参数来分析系统的稳定性和性能。

例如,可以改变放大比例K来观察系统的超调量和调整时间的变化。

通过观察控制系统的响应曲线,可以判断系统的稳定性,并计算出性能指标,如超调量、调整时间和稳态误差等。

实验结果与分析通过MATLAB的仿真,我们得到了控制系统的阶跃响应图像和脉冲响应图像。

通过观察阶跃响应曲线,我们可以得到控制系统的超调量和调整时间。

通过改变放大比例K的值,我们可以观察到超调量的变化趋势。

同时,通过观察脉冲响应曲线,我们还可以得到控制系统的稳态误差,并判断系统的稳定性。

根据实验结果分析,我们可以得出以下结论:1.控制系统的超调量随着放大比例K的增大而增大,但当K超过一定值后,超调量开始减小。

2.控制系统的调整时间随着放大比例K的增大而减小,即系统的响应速度加快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨理工大学实验报告控制系统仿真专业:自动化12-1学号:**********姓名:一.分析系统性能课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3#姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容:1. 熟悉MATLAB软件的操作过程;2. 熟悉闭环系统稳定性的判断方法;3. 熟悉闭环系统阶跃响应性能指标的求取。

二.实验用设备仪器及材料:PC, Matlab 软件平台三、实验步骤1. 编写MATLAB程序代码;2. 在MATLAT中输入程序代码,运行程序;3.分析结果。

四.实验结果分析:1.程序截图得到阶跃响应曲线得到响应指标截图如下2.求取零极点程序截图得到零极点分布图3.分析系统稳定性根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。

有零极点分布图可知系统稳定。

二.单容过程的阶跃响应一、实验目的1. 熟悉MATLAB软件的操作过程2. 了解自衡单容过程的阶跃响应过程3. 得出自衡单容过程的单位阶跃响应曲线二、实验内容已知两个单容过程的模型分别为1()0.5G ss=和51()51sG s es-=+,试在Simulink中建立模型,并求单位阶跃响应曲线。

三、实验步骤1. 在Simulink中建立模型,得出实验原理图。

2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。

四、实验结果1.建立系统Simulink仿真模型图,其仿真模型为2.过程阶跃响应曲线为三.单容过程的阶跃响应一、实验目的1. 了解比例积分调节的作用;2. 了解积分调节强弱对系统性能的影响。

二、实验内容已知控制系统如下图所示,其中01()(1)(21)(51)G s s s s =+++,H(s)为单位反馈,且在第二个和第三个环节(即1(21)s +和1(51)s +)之间有累加的扰动输入(在5秒时幅值为0.2的阶跃扰动)。

对系统采用比例积分控制,比例系数为2p K =,积分时间常数分别取3,6,12i T =,试利用Simulink 求各参数下系统的单位阶跃响应曲线和扰动响应曲线。

三、实验步骤1. 在Simulink中建立仿真模型,其模型为2. 运行模型后,双击Scope,得到的单位阶跃响应曲线为3.置阶跃输入为0,在5秒时,加入幅值为0.2的阶跃扰动,得到扰动响应曲线为四.PID 控制器参数整定一、实验目的1. 通过实验进一步熟悉过程控制系统的结构组成;2. 掌握简单控制系统的投运和参数整定的方法;3. 定性地分析P 、PI 、PID 控制规律对系统性能的影响。

二、实验内容已知控制系统如下图所示,其中01()(1)(5)G s s s s =++,试采用临界比例度法计算系统P 、PI 、PID 控制器的参数,并绘制整定后系统的单位阶跃响应曲线。

Gc(s)G 0(s)R(s)C(s)-三、实验步骤1. 在Simulink 中建立仿真模型2. 在Simulink 中把反馈连线、微分器的输出连线、积分器的输出连线都断开,Kp 的值从大到小进行试验,直到输出等幅振荡曲线为止,记下此时的Kp 和Tk 。

通过试验得到Kp 为30时输出等幅震荡曲线3.根据临界振荡经验公式计算P控制时的比例放大系数Kp,并将模型中Kp置为该值,仿真运行。

运行完毕后双击Scope,得到P控制时系统的单位阶跃响应曲线。

4. 根据临界振荡经验公式计算PI控制时的比例放大系数Kp和积分时间常数Ti,并将模型中比例和积分器参数置为计算所得值,将积分器的输出连线连上,仿真运行,运行完毕后双击Scope,得到PI控制时系统的单位阶跃响应曲线。

表4-1 临界比例度法整定经验公式5. 根据临界振荡经验公式计算PID控制时的比例放大系数Kp,积分时间常数Ti,微分时间常数Td,并将模型中比例系数,积分器及微分器参数置为相应计算所得值,将微分器的输出连线连上,仿真运行,运行完毕后双击Scope,得到PID控制时系统的单位阶跃响应曲线。

四、实验结果1.参数整定结果为表4-2 各控制规律下参数整定结果Kp Ti Td P 15PI 13.64 2.3885PID 17.65 1.405 0.36532.系统阶跃响应曲线为五.串级控制系统一、实验目的1. 通过实验进一步熟悉串级控制系统的结构组成;2. 了解串级控制系统的作用效果。

二、实验内容串级与单回路控制对比仿真,分别获取系统的阶跃响应输出,一次扰动作用下的系统输出响应,二次扰动作用下的系统输出响应。

系统输入及一次扰动和二次扰动均取阶跃信号。

对比仿真结果分析系统串级控制的作用效果。

三、实验步骤1. 在Simulink 中建立单回路控制时系统的模型:q1为一次扰动,q2为二次扰动,012190331G s s =++为主对象,023211021171G s s s =+++为副对象,r 为系统输入,q1、q2、r 均为单位阶跃函数,在示波器上观测输出。

(1) PID 参数设置中,取输入比例系数为3.7,积分系数为38,微分系数为0时运行系统,得到系统阶跃响应输出。

在Simulink 中建立仿真模型,如下运行结果,得到的图形如下(2)采用同样的PID参数时,使二次扰动q2作用,运行系统,得到二次扰动作用下的系统输出响应。

(3)采用同样的PID参数时,使一次扰动q1作用,运行系统,得到一次扰动作用下的系统输出响应。

2. 在Simulink中建立串级控制时系统的模型:PID C1为主控制器,采用PI控制;PID C2为副控制器,采用P控制;其余同单回路控制系统。

在Simulink中建立仿真模型,如下(1)主控制器PID C1输入参数取比例系数为8.4,积分系数为12.8,微分系数为0;副控制器PID C2取比例系数10,积分系数0,微分系数0,运行系统,得到系统阶跃响应输出。

(2)采用同样的PID参数时,在二次扰动q2作用下,运行系统,得到系统的输出响应。

(3)采用同样的PID参数时,在二次扰动q1作用下,运行系统,得到系统的输出响应。

四、实验结果控制品质指标单回路控制串级控制衰减比3:1 4:1 4:1 4:1 4:1 4:1 调节时间(s)280 280 280 70 80 70 余差0 0 二次扰动最大偏差0.7 0.6一次扰动最大偏差0.6 0.7六.串级控制的参数整定一、实验目的1. 通过实验进一步熟悉串级控制系统的结构组成;2. 掌握串级控制系统参数整定的方法;二、实验内容已知某隧道窑系统,烧成带温度为主变量、燃烧室温度为副变量构成的串级控制系统中,主副对象的传递函数分别为:011()(301)(31)G s s s =++,0221()(101)(1)G s s s =++试整定PID 控制器的参数,并绘制整定后系统的单位阶跃响应曲线。

三、实验步骤1.在Simulink 中建立仿真模型。

其仿真模型运行程序得到2. 使用任意一种串级控制系统参数整定方法整定主副控制器参数。

选取PI整定仿真模型3.绘制系统单位阶跃响应曲线。

四、实验结果1.主副调节器参数整定结果。

表6-1 主副调节器整定参数Kp Ti TdP 主副10PI 主9 10副8PID 主副七.控制系统数学模型一、实验目的1. 掌握传递函数模型与状态空间模型的转换;2. 掌握模型连接的MATLAB 实现方法;二、实验内容已知某单位负反馈系统开环传递函数为21()52s G s s s +=++,试利用Simulink 建立系统在单位阶跃输入作用下的模型,利用MATLAB 建立传递函数模型并得出状态空间模型,获取系统的单位阶跃响应曲线。

三、实验步骤1.在Simulink 中建立仿真模型。

其运行结果2. 用[numc,denc]=cloop(num,den,-1)命令获取传递函数模型结果如下3.用[A,B,C,D]=tf2ss(num,den)命令将传递函数模型转换为状态空间。

其仿真模型运行结果八.系统可控性可观性分析一、实验目的1. 熟悉系统可控性、可观性的分析;2. 掌握MATLAB 在可控可观标准型中的应用;二、实验内容给定系统的状态方程:'11'22'33123010002101011[100]x x x x u x x x y x x ⎧⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥⎢⎥⎢⎥⎢⎥=-+⎪⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥--⎪⎣⎦⎣⎦⎣⎦⎣⎦⎨⎪⎡⎤⎪⎢⎥=⎪⎢⎥⎪⎢⎥⎣⎦⎩利用MATLAB 进行以下分析:(1)建立控制系统的数学模型; (2)分析系统的可控性、可观性; (3)绘制系统的阶跃响应曲线。

三、实验步骤1.打开MATLAB 工作窗口用ss()命令建立系统的状态空间模型2. 检验系统的可控性、可观性3.绘制系统单位阶跃响应曲线。

运行结果4.判断系统的稳定性。

程序运行结果结论:系统是稳定的。

相关文档
最新文档