信号与系统仿真实验报告
信号与系统软件实验实验报告

信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。
二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。
计算机配置为_____处理器,_____内存,_____硬盘。
三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。
对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。
2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。
输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。
3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。
通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。
4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。
采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。
四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。
2、按照实验内容的要求,依次进行各项实验操作。
在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。
然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。
对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。
通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。
在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。
通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。
信号与系统MATLAB实验报告

实验报告实验课程:信号与系统—Matlab综合实验学生姓名:学号:专业班级:2012年5月20日基本编程与simulink仿真实验1—1编写函数(function)∑=m n k n 1并调用地址求和∑∑∑===++10011-8015012n n n n n n 。
实验程序:Function sum=qiuhe(m,k)Sum=0For i=1:m Sum=sum+i^k End实验结果;qiuhe(50,2)+qiuhe(80,1)+qiuhe(100,-1)ans=4.6170e+004。
1-2试利用两种方式求解微分方程响应(1)用simulink对下列微分方程进行系统仿真并得到输出波形。
(2)编程求解(转移函数tf)利用plot函数画图,比较simulink图和plot图。
)()(4)(6)(5)(d 22t e t e d d t r t r d d t r d tt t +=++在e(t)分别取u(t)、S(t)和sin(20пt)时的情况!试验过程(1)(2)a=[1,5,6]; b=[4,1]; sys=tf(b,a); t=[0:0.1:10]; step(sys)连续时间系统的时域分析3-1、已知某系统的微分方程:)()()()()(d 2t e t e d t r t r d t r tt t +=++分别用两种方法计算其冲激响应和阶跃响应,对比理论结果进行验证。
实验程序:a=[1,1,1];b=[1,1];sys=tf(b,a);t=[0:0.01:10];figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t));x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t);subplot(2,2,3);impulse(sys,t);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4);x_delta=zeros(size(t));x_delta(t==0)=100;[y1,t]=lsim(sys,x_delta,t);y2=y1;plot(t,y2);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');运行结果如下:3-2;请编写一个自定义函数[F,tF}=intl(f,tf,a)实现数值积分,其中f和tf分别用列矢量表示待积函数的抽样值和抽样时间,a表示积分的起始时间,F和tF分别表示积分结果的抽样值和抽样时间。
《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统实验报告——卷积(含程序)

电 子 科 技 大 学实 验 报 告学生姓名:苏晓菁 学 号:2804301026 指导教师:张鹰 一、实验室名称:信号与系统实验室二、实验项目名称:离散系统的冲激响应、卷积和 三、实验原理:线性时不变系统的输入输出关系可通过冲激响应][n h 表示∑∞-∞=-=*=k k n h k x n h n x n y ][][][][][其中*表示卷积运算,MATLAB 提供了求卷积函数conv ,即 y =conv(x,h)filter 命令计算线性常系数差分方程表征的因果LTI 系统在某一给定输入时的输出。
具体地说,考虑一个满足下列差分方程的LTI 系统:∑∑==-=-Mm m Nk k m n x b k n y a 0][][式中x [n ]是系统输入,y [n ]是系统输出。
若x 是包含在区间1-+≤≤xx xNn n n 内x [n ]的一个MATLAB 向量,而向量a 和b 包含系数k a 和k b ,那么y=filter(b,a,x)就会得出满足上面差分方程的因果LTI 系统的输出。
四、实验目的:目的:加深对离散系统冲激响应、卷积和分析方法的理解。
五、实验内容:实验内容(一)、使用实验仿真系统 实验内容(二)、MATLAB 仿真六、实验器材(设备、元器件):计算机、MATLAB 软件。
七、实验步骤:实验内容(一)、使用实验仿真系统1、 在MATLAB 环境下输入命令 >>xhxt启动《信号与系统》MATLAB 实验工具箱。
2、启动工具箱主界面,进入实验二的启动界面 3、设定输入序列][21n a a a x = 和][21m b b b y=,观测离散信号的卷积和的波形。
4、由离散系统的差分方程求输出。
实验内容(二)、MATLAB 仿真1、考虑有限长信号1,05[]0,n x n n≤≤⎧=⎨⎩其余,05[]0,n n h n n≤≤⎧=⎨⎩其余利用conv 计算[][]*[]y n x n h n =的非零样本值,并将这些样本存入向量y 中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6页
共 11 页
信号与系统仿真实验报告
班级 姓名 学号
实验四
一、题目 将信号 x(t ) = sin(240πt ) 做离散序列,比较原序列与经过 FFT 和 IFFT 变换后 的序列,并做出说明。 二、解题分析 二、解题分析 在上题的基础上对序列进行 FFT 和 IFFT 变换,使用实验三中的函数即可。 三、实验程序 三、实验程序 f=120; T=1/f; t=0:1/255:1; subplot(2,1,1); plot(t,xn); title(‘原波形’); subplot(2,1,2); plot(t,ifft(fft(xn))); title(‘恢复的波形’); %画出经 FFT 变换再经 IFFT 变换之后的波形 %画出原信号波形 %确定频率 %确定周期 %确定画图范围和步长,0 到 1,分为 255 个点
xn=2*sin(240*pi*t); %输入原信号
四、实验结果 四、实验结果
第7页
共 11 页
信号与系统仿真实验报告
班级 姓名 学号
五、实验分析与心得 五、实验分析与心得 实验 由于快速傅里叶变换和快速傅里叶反变换互为反变换,所以一个离散序列经 过快速傅里叶反变换再经过快速傅里叶反变换后保持原来的信号不变。 从图像可 以看出,两个波形完全一样,证明了 FFT 和 IFFT 是互为反变换的两个变换。
0.9
1
100 Phase (degrees) 50 0 -50 -100
0
0.1
0.2
0.3 0.4 0.5 0.6 0.7 0.8 Normalized Frequency (×π rad/sample)
0.9
1
五、实验分析与心得 五、实验分析与心得 实验 程序与计算一致,差分方程的解基本反映在答案中。 通过这次实验,我加深了对线性时不变系统中零状态响应的概念的理解, 掌握其求解方法;我掌握了给定连续系统的冲激响应和阶跃响应;并且更加深入 地理解了系统频率响应特性的概念及其物理意义。 我掌握了系统频率响应特性的 计算方法和特性曲线的绘制方法;学习和掌握幅度特性、相位特性的物理意义。 掌握了用 MATLAB 语言进行系统频率响应特性分析的方法。
班级 姓名 学号
实验五
一、题目 一、题目 已 知 带 通 滤 波 器 的 系 统 函 数 为 H (s ) =
2s ,激励信号 (s + 1)2 + 100 2
x(t ) = (1 + cos t ) ∗ cos(100t ) ,求(1)带通滤波器的频率响应;(2)输出稳态响
应并绘制图形。 二、解题分析 二、解题分析 本题给出了带通滤波器的系统函数,和激励信号,要求频率响应。根据理 论课的学习,只需要将两者转换到频域,然后相乘,之后在把结果反变换会频 域即得到系统的频率响应。 三、实验程序 三、实验程序 clear; t=linspace(0,2*pi,1001); w=[99,100,101]; U=[0.5,1,0.5]; b=[2,0]; a=[1,2,10001]; u1=U*cos(w'*t+angle(U')*ones(1,1001)); H=polyval(b,j*w)./polyval(a,j*w); H=freqs(b,a,w); subplot(2,1,1),plot(w,abs(H)),grid; subplot(2,1,2),plot(w,angle(H)),grid; u21=abs(U(1)*H(1))*cos(99*t+angle(U(1)*H(1))); u22=abs(U(2)*H(2))*cos(100*t+angle(U(2)*H(2))); u23=abs(U(3)*H(3))*cos(101*t+angle(U(3)*H(3))); u2=u21+u22+23; figure(2); subplot(2,1,1),plot(t,u1); subplot(2,1,2),plot(t,u2); %绘制三角波信号的频谱 %求稳定响应 %输入信号 %求频率响应 %绘制三角波信号 %构造传输函数,polyval为多项式展开
武汉大学电气工程学院
信号与系统 仿真实验报告 仿真实验报告
姓名:XXX 学号:XXXXXXXXXXXX 班级:XXXX 实验时间:XXXX 实验地点:XXX
信号与系统仿真实验报告
班级 姓名 学号
实验一
一、题目 一、题目 求三阶系统 H ( s ) = 5( s 2 + 5s + 6) 的单位阶跃相应,并绘制响应波形图。 s 3 + 6 s 2 + 10 s + 8
第4页
共 11 页
信号与系统仿真实验报告
班级 姓名 学号
实验三
一、题目 模拟信号 x(t ) = 2 sin(4πt ) + 5 cos(8πt ) ,求 N = 64 的 DFT 的幅值谱和相位谱。 二、解题分析 二、解题分析 本题需要先将给出的模拟信号离散化,求出离散傅里叶变换。通过 matlab 的抽样函数和快速傅里叶变换可以达到目的。 运用 abs 函数和 angle 函数可以分 别画出幅度谱和相位谱。 三、实验程序 三、实验程序 clc;clear; N=64; n=0:63; t=d*n; q=n*2*pi/N; x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); subplot(3,1,1); plot(t,x); title(‘source signal’); subplot(3,1,2); plot(q,abs(y)); title(‘magnitude’); subplot(3,1,3); plot(q,angle(y)); title(‘phase’); %64 点采样 %快速傅里叶变换 %将图分为 3 个,并指定第一个 %画出抽样后图像,也就是原信号图像 %标注图像名称 %将图分为三个,指定第二个 %画出幅度谱 %标注图像名称 %将图分为三个,指定第三个 %画出相位谱 %标注图像名称
在本次实验中,我掌握了连续时间周期信号的傅里叶级数的物理意义和分析 方法;掌握了连续时间傅里叶变换的分析方法及其物理意义;学习掌握利用 MATLAB 语言编写计算 CTFS、 CTFT 和 DTFT 的仿真程序, 并能利用 MATLAB 编程完成相关的傅里叶变换的计算。
第8页
共 11 页
信号与系统仿真实验报告
第 11 页
共 11 页
25
30
35
4
3
2
1 |jW|
0
-1
-2
-3
-4
0
5
10
15 20 Frequency
25
30
35
五、实验分析与心得 五、实验分析与心得 实验 由幅度谱知能量集中在前面几个频率上,频率的分辨率随采样间隔增大而减 小。通过本次实验,我掌握了系统频率响应特性的概念及其物理意义;掌握了系 统频率响应特性的计算方法和特性曲线的绘制方法;掌握了用 MATLAB 语言进 行系统频率响应特性分析的方法。
四、实验结果
第1页共 11 页 Nhomakorabea信号与系统仿真实验报告
班级 姓名 学号
Step response 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0
0
1
2
3
4
5
6
7
8
9
10
五、实验分析与心得 实验分析与心得 由上图可知响应逐步稳定,与计算出来的结果一致。 通过此次实验,我熟悉了常用的用于信号与系统时域仿真分析的 MATLAB 函数;我掌握了以图形的方式再现连续时间信号波形的方法。 在学会信号的产生和运算的同时,我加深了对线性时不变系统中零状态响 应概念的理解,掌握了给定连续系统的阶跃响应求解方法;学习了用 Matlab 程 序求解系统的阶跃响应的方法。 通过此次试验,我复习了 MATLAB 的一些基本使用方法,感觉到了 MATLAB 的方便。同时对系统的阶跃响应有了更深入的了解。
二、解题分析 二、解题分析 本题是已知传递函数求单位阶跃响应,只需将 H(S)与阶跃信号做卷积就可 以得到答案。在 MATLAB 中,运用 STEP 函数确定好步长和所取点数可以很方 便求出系统的单位阶跃响应。用 PLOT 函数可以方便地作图。
三、实验程序 num=[0 5 25 30]; den=[1 6 10 8]; step(num,den,10); title(‘Step response’) %定义分子矩阵 %定义分母矩阵
四、实验结果 四、实验结果
第5页
共 11 页
信号与系统仿真实验报告
班级 姓名 学号
180 160 140 120 100 80 60 40 20 0
|F(k)|
0
5
10
15 20 Frequency
25
30
35
180 160 140 120 100 80 60 40 20 0
|F(k)|
0
5
10
15 20 Frequency
应可以用 dstep 响应求出,通过 freqz 可以求出系统的幅频和相频响应。 三、实验程序 三、实验程序 num=[1,0,-1]; den=[1,0,-0.81]; dimpulse(num,den,20); dstep(num,den50); freqz(num,den); 四、实验结果 冲激响应 h(n ) %输入分子 %输入分母,与上行共同构成传输函数 %求取冲击响应 %求取单位阶跃响应,50 表示求得范围 %求取相频和幅频特性,并绘图
第9页
共 11 页
信号与系统仿真实验报告
班级 姓名 学号
四、实验结果 四、实验结果 幅频响应
相频响应
滤波前后的波形对比
2 1 0 -1 -2