位移传感器电路设计与应力分析
差动变速器式位移传感器的结构优化及其数字接口电路设计

差动变速器式位移传感器的结构优化及其数字接口电路设计1 引言在机械系统中,往往需要对各种机械量进行测量,由于许多机械量能够变换成位移,故选用适当的位移传感器就能测量出许多机械量。
差动变压器将机械位移转换成与它成比例的电压或电流信号,是一种非常便利的位移检测器。
差动变压器的结构形式较多,但其工作原理却基本一样,都是将被测量的变化转换成变压器的互感变化,变压器初级线圈输入交流电压,次级线圈则感应出电动势。
通过结构优化,差动变压器可以测量0.01μm~500mm的机械位移,并具有测量精度高、灵敏度高、结构简单、性能可靠等优点。
2 差动变压器的基本结构以螺管形差动变压器为例,介绍差动变压器的基本工作原理。
螺管形差动变压器的结构如图1所示。
它由初级线圈p,两个次级线圈S1、S2和插入线圈中央的圆柱形铁芯b组成,其结构形式又有三段式和两段式之分。
图1 螺管形差动变压器结构原理(a)三段式(b)二段式(c)电量原理图差动变压器的线圈连接如图1c所示。
次级线圈S1和S2反极性连接。
当初级线圈p加上某一频率的正弦交流电压Ui后,次级线圈产生感应电压为U1和U2,它们的大小与铁芯在线圈内的位置有关。
U1和U2反极性连接便得到输出电压U0。
当铁芯位于线圈中心位置时,U1=U2,U0=0;当铁芯向上移动时(见图1c),U1>U2,U0>0,则M1大,M2小(M1、M2为互感系数);当铁芯向下移动时(见图1c),U1<U2,U0<0,则M1小,M2大。
铁芯偏离中心位置时,输出电压U0随着铁心偏离中心位置的大小,U1或U2逐渐增大,移动方向不同,相位相差180°,如图2所示。
因此,测量出输出电压的大小和相位就能知道铁芯移动的距离和方向。
图2 差动变压器输出电压的特性曲线3 传感器的结构优化和工作原理受结构的限制,三段式差动变压器只能用于测量小位移(10~20mm),对两段式差动变压器的结构稍作变动,就可以满足测量较大位移的需求,其结构如图3所示。
霍尔传感器位移测量电路的word精品文档10页

本科课程设计报告题目霍尔传感器位移测量电路的设计课程名称:虚拟仿真技术指导教师:秦新燕班级学生姓名(学号)同组学生姓名同组学生姓名10电本一刘建1050720190完成时间: 2019.5.16物理与电子信息学院电子信息系二〇一三年目录第一章虚拟仪器课程设计的意义及任务 01.1课程设计的意义 01.2 课程设计任务说明 0第二章关于虚拟仪器和Labview (1)2.1 虚拟仪器简介 (1)2.2 Labview概述 (1)2.2.1 Labview的发展历程 (1)2.2.2 什么是VI? (1)2.2.3 Labview的操作面板 (2)第三章霍尔传感器位移测量电路的设计 (2)3.1 设计要求 (2)3.2测量电路原理与设计 (3)3.2.1 模型的建立 (3)3.2.2 放大电路设计 (4)第四章对电路仿真分析 (4)4.1 交流分析 (4)4.2 傅里叶分析 (4)4.3 直流扫描分析 (4)4.4 传递函数分析 (5)4.5 参数扫描分析 (5)第五章LabVIEW显示模块设计 (6)5.1 位移测量子程序的设计 (6)5.2 接口电路的设计与编译 (6)第六章总结 (8)第一章虚拟仪器课程设计的意义及任务1.1课程设计的意义虚拟仪器是随着计算机技术、电子测量技术和通信技术发展起来的一种新型仪器。
在国外,虚拟仪器技术已经比较熟了,由于其很强的灵活性,使得该技术非常适用于现代复杂的测试测量系统中。
近几年,虚拟仪器技术在国内的发展势也越来越受到重视。
成熟的虚拟仪器技术由三大部分组成:高效的软件编程环境、模块化仪器和一个支持模块化I/O集成的开放的硬件构架,该课程设计的目的就是,通过一些功能简单的仪表系统的设计,要在这三个方面上有更深一步的了解。
1.2 课程设计任务说明用霍尔传感器设计一个量程范围为-0.6mm~0.6mm的位移测量仪。
霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。
当霍尔元件作线性测量时,最好选用灵敏度低一点、不等位电位小、稳定性和线性度优良的霍尔元件。
第7章位移传感器

4N A L 10 7 ( H ) l
2
铁芯随被测物体一起移动,导致线圈电感量发 生变化。其检测位移量可从数毫米到数百毫米。缺 点是灵敏度低。
7.1.4差动变压器
如图7-6所示。初级线圈L1加交流励磁电 压Uin,次级线圈上由于电磁感应而产生感应 电压。 由于两个次级线圈相反极性串接,所以两 个次级线圈中的感应电压UOUT1和UOUT2的相 位相反,当铁芯处于中心对称位置时,则 UOUT1=UOUT2,所以UOUT=0。 当铁芯向两端位移时,UOUT1大于或小于 UOUT2,使UOUT不等于零,其值与铁芯的位移 成正比。
7.2
图7-7
光栅结构放大图
如果把两块栅距W相等的光栅面平行安 装,且让它们的刻痕之间有较小的夹角θ时, 这时光栅上会出现若干条明暗相间的条纹, 这种条纹称莫尔条纹。如图7-8所示。 莫尔条纹是光栅非重合部分光线透过而形 成的亮带,它由一系列四棱形图案组成,如 图7-8中d-d线区所示。 图7-8中f-f线区则是由于光栅的遮光效应 形成的。
图7-11 磁栅位移传感器的结构示意图
当磁尺与磁头之间产生相对位移时,磁头 的铁芯使磁尺的磁通有效地通过输出绕组, 在绕组中产生感应电压。 该电压随磁尺磁场强度周期的变化而变化, 从而将位移量转换成电信号输出。 图7-12是磁信号与静态磁头输出信号波形 图。 磁头输出信号经检测电路转换成电脉冲信 号并以数字形式显示出来。
7.5.2
图7-17 直射式光电转速传感器原理
1—开孔盘 2—缝隙板 3—光敏元件 4—光源
图7-18 光电转速传感器结构
1—光源 2—透镜 3—指示盘 4—旋转盘 5—光电元件
图7-19 光电脉冲变换电路原理图
传感器应用实例:电涡流式位移传感器的设计

3.2.6电涡流缓速器
涡流制动通常与传统制动搭配使用,在大多数商用车(大 中型客车和卡车)上担任控制车速的作用,所以通常也称 为电涡流缓速器。
电涡流缓速器安装在汽车驱动桥与变速箱之间,靠电涡
流的作用力来减速。当缓速器的定子线圈通入直流电的时 候,在定子线圈会产生磁场,该磁场在相邻铁心、磁极板、 气隙、转子之间形成一个回路,此时如果转子和定子之间 有相对运动,这种运动就相当于导体在切割磁力线,由电 磁感应原理可知,这时候在导体内部会产生感生电流,由 于转子这个导体很大,在转子上产生的感生电流是以涡电 流的形式存在的,同时感生电流会产生另外一个感生磁场, 该磁场和已经存在的磁场之间会有作用力,而作用力的方 向永远是阻碍导体运动的方向。这就是缓速器制动力矩的
来源。
任务3.2 电涡流式位移传感器的设计
3.2.1电涡流传感器的结构与外形
3.2.2 电涡流传感器工作原理
3.2.3 电涡流传感器的测量电路
由电涡流式传感器的工作原理可知,被测参数变化可以转 换成传感器线圈的等效阻抗的变化。测量和电桥等测量电路。
1.电桥电路
2.调幅式电路
该电路的主要特征是把传感器线圈的等效电感和一个固定 电容组成并联谐振电路,由频率稳定的石英晶体振荡器提 供高频激励信号 。
3.调频式电路
3.2.4电涡流式位移传感器的设计 1.任务分析 图3-30为电涡流式位移传感器原理框图,主要由探头和检测 电路组成。探头是一只扁平线圈及支撑骨架,线圈是整个传 感器系统的敏感元件;检测电路又叫前置器,由振荡器、检 测电路和放大器组成 。
2.电路设计
3.2.5轴向位移检测仪
对于许多旋转机械,包括蒸汽轮机、燃汽轮机、水轮机、 离心式和轴流式压缩机、离心泵等,轴向位移是一个十分 重要的信号,过大的轴向位移将会引起过大的机构损坏。 轴向位移反映的是汽轮机转动部分和静止部分的相对位置, 轴向位移变化,也是静子和转子轴向相对位置发生了变化。 轴向位移的测量,可以指是旋转部件与固定部件之间的轴 向间隙或相对瞬时的位移变化,用以防止机器的破坏。
位移传感器

位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。
在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。
按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。
模拟式又可分为物性型和结构型两种。
位移传感器的主要分类根据运动方式直线位移传感器:直线位移传感器的功能在于把直线机械位移量转换成电信号。
为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。
传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。
将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。
角度位移传感器:角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。
原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。
此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。
一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。
根据材质电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。
普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。
但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。
图1中的电位器式位移传感器的可动电刷与被测物体相连。
物体的位移引起电位器移动端的电阻变化。
阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。
通常在电位器上通以电源电压,以把电阻变化转换为电压输出。
线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。
位移传感器的原理与灵敏度分析

位移传感器的原理与灵敏度分析位移传感器是一种常见的传感器,用于测量物体相对于参考点的位移。
它在许多领域中都有广泛的应用,包括工业自动化、机械设备监测和医疗设备等。
本文将介绍位移传感器的原理和灵敏度分析。
位移传感器的原理主要基于物理变化的测量。
传感器通常使用不同的技术来实现位移的测量,包括电磁感应、电容变化和光电效应等。
其中,电磁感应是一种常见的技术,它利用感应线圈和磁场之间的相互作用来测量位移。
当物体位移时,感应线圈中的磁场发生变化,从而导致感应电压的变化。
该变化可以通过测量感应电压的大小来计算位移。
除了电磁感应,电容变化也是一种常用的位移测量技术。
在电容变化传感器中,被测物体和参考电极之间形成一个电容。
位移导致电容的变化,进而引起电压或电流的变化。
通过测量这些变化,可以计算出位移的大小。
光电效应是另一种常见的位移测量技术。
光电传感器通常由发射器和接收器组成。
发射器发射光束,接收器接收反射或透射的光束。
物体的位移导致光束的位置发生变化,从而引起接收器输出的电信号的变化。
通过测量这些变化,可以计算出位移的大小。
位移传感器的灵敏度是评估传感器性能的重要指标之一。
灵敏度可以理解为传感器输出信号与位移之间的关系。
一般来说,灵敏度越大,传感器对于位移的检测能力就越高。
根据传感器原理的不同,灵敏度可以通过不同的方式来衡量。
在电磁感应传感器中,灵敏度通常以感应电压的变化率来表示。
简单来说,灵敏度就是感应电压的变化与位移变化之间的比例关系。
通常情况下,灵敏度与感应线圈的参数和磁场的变化有关。
感应线圈的参数可以通过设计和优化来调整,以达到更高的灵敏度。
在电容变化传感器中,灵敏度可以通过电容的变化率来衡量。
与电磁感应传感器类似,灵敏度就是电容的变化与位移变化之间的比例关系。
通过调整电容的参数和测量电容的变化,可以提高传感器的灵敏度。
在光电传感器中,灵敏度通常以输出信号的变化率来表示。
与电磁感应和电容变化传感器类似,灵敏度就是输出信号的变化与位移变化之间的比例关系。
位移传感器毕业设计

位移传感器毕业设计【篇一:位移传感器设计报告】综合性实验报告实验课程:传感器与检测技术实验名称:位移检测传感器的应用姓名:学号:班级:指导教师:实验日期: 2013年12月17日位移检测传感器应用一、实验类型位移检测综合性实验二、实验目的和要求1.了解微位移、小位移、大位移的检测方法。
2.运用所学过的相关传感器设计三种位移检测系统。
3.对检测系统进行补偿和标定。
三、实验条件为了满足实验要求,现使用电涡流,光纤,和差动三种传感器设计位移检测系统,电涡流取0.1mm为单位,光纤取0.5mm为单位,差动取0.2mm为单位。
进行试验后,用matlab处理数据,分析结论。
(一):电涡流传感器测位移实验原理:通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
(二):光纤传感器测位移实验原理:反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。
当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。
随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。
反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
(三):差动电感式传感器测位移实验原理:差动动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈的电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。
传感器与检测技术 第 3 章 位 移 传 感 器

3. 1 自 感 式 位 移 传 感 器
• 2. 相 敏 检 波 电 路 • 检 波 是 将 交 变 信 号 转 换 为 直 流 平 均 值 ,它 的 作 用 是 将 电
感 的 变 化 转 换 成 直 流 电 压 或电 流 , 以 便 用 仪 表 指 示 出 来 。 但 若 仅 采 用 电桥 电 路 配 以 普 通 的 检 波 电 路 , 则 只 能 判 别 位移 的 大 小 , 却 无 法 判 别 输 出 电 压 的 相 位 和 位 移 的 方 向 。 如 果 在 输 出 电 压 送 到 指 示 仪 表 之 前 ,经 过 一 个 能 判别相位的检波电路,则不但可以反映幅值(位移的 大 小 ) , 还 可 以 反 映 输 出 电压 的 相 位 ( 位 移 的 方 向 ) , 这种检波电路称为相敏检波电路。 • 图 3 -6 所 示 为 相 敏 检 波 电 路 的 原 理 图 , 四 个 特 性 相 同 的 二 极 管 VD 1 ~ VD 4 串 接 成 一 个回 路 , 四 个 节 点 1 ~ 4分别接到两个变压器A和B的次级线圈上。
上一页 下一页 返回
3. 1 自 感 式 位 移 传 感 器
• ( 2) 变 截 面 式 自 感 传 感 器 • 图 3 -3 ( b) 所 示 为 变 截 面 式 自 感 传 感 器 的 结 构 。 在
式 ( 3 -2) 中 , N 确 定 后 , 若 保 持气 隙 厚 度 δ 为 常 值 , 则 L = f( A) , 即 电 感 L 是 气 隙 有 效 截 面 积 A 的 函 数 , 故 称 这 种 传 感 器 为变 截 面 式 电 感 传 感 器 。 • 它 的 特 性 曲 线 如 图 3 -4 ( b) 所 示 , 电 感 L 与 气 隙 有 效 截 面 积 A 成 正 比 , 输 入 、 输 出 呈线 性 关 系 。 由 图 3 - 4 ( b) 中 的 虚 线 可 以 看 出 , 灵 敏 度 K 1 为 一 常 数 。 但 是 , 由 于 漏 感 等 原因 , 它 的 特 性 曲 线 并 非 是 线 性 的 , 而 且它的线性区较小,灵敏度低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位移传感器电路设计与应力分析
位移传感器是一种广泛应用于工业控制和测量领域的重要设备,通过获取被测
物体的位移信息,将其转换为电信号,实现对位移的准确测量和监控。
位移传感器的电路设计和应力分析是其实现高精度测量的关键环节,在本文中,我将详细介绍位移传感器电路设计的基本原理和方法,并探讨应力分析的重要性和相关技术。
一、位移传感器电路设计
1. 传感器电路设计原理
位移传感器通常采用电感、电容或电阻作为灵敏元件,其原理是通过测量被测
物体与传感器间的位移引起的电容、电感或电阻变化来实现位移的测量。
电路设计的关键在于有效地转换位移的模拟量成为数字信号,并产生稳定的、可靠的输出。
2. 传感器电路设计方法
(1)信号调理电路的设计:传感器输出的信号通常比较微弱、幅度较小,因
此需要设计合理的信号调理电路,包括放大、滤波、去噪等,以保证信号的准确和稳定。
(2)模数转换电路的设计:传感器输出的模拟信号需要经过模数转换电路进
行数字化处理,同时需要选择合适的采样率和分辨率,以满足位移测量的精度要求。
(3)电源供应电路的设计:为保证传感器正常工作,需要设计稳定的电源供
应电路,包括滤波和稳压等,以提供可靠的电源。
3. 电路设计注意事项
(1)选择合适的传感器:根据位移的测量范围、精度要求等因素,选择合适
的传感器型号和工作原理。
(2)热漂移和噪声抑制:要注意在设计中降低热漂移和噪声的影响,以提高测量的准确性和稳定性。
(3)稳定性和可靠性:电路设计应考虑到环境因素对传感器的影响,包括温度变化、湿度等,以保证传感器的长期稳定和可靠性。
二、应力分析的重要性和相关技术
位移传感器的应力分析是其在工程实践中的重要应用之一。
应力分析可以帮助工程师了解物体在受力情况下的变形情况,预测材料的疲劳寿命,并优化设计,提高产品的可靠性和使用寿命。
1. 应力分析方法
(1)有限元分析(FEA):有限元分析是将实际物体离散化为有限个单元,通过建立适当的数学模型和边界条件,计算和分析物体的应力分布、变形等关键参数。
(2)应力测量和传感器应用:通过安装传感器实时监测物体的应力情况,包括位移传感器、应变计等。
(3)应变分析:通过对物体的应变情况进行分析和计算,了解其受力状态,进而推测应力分布。
2. 应力分析的重要性
应力分析可以帮助工程师在设计过程中发现和解决潜在的问题,预测材料的使用寿命,避免工程事故的发生。
它是工程设计中不可缺少的环节,能够提高产品的可靠性和安全性。
3. 应力分析中的数据处理与优化
应力分析得到的数据需要进行处理和优化,以便更好地理解和应用。
数据处理包括对应力数据进行统计分析、绘制应力分布图等,优化则是根据分析结果优化设计,提高产品的性能和寿命。
总结
位移传感器电路设计和应力分析是工程实践中重要的环节。
位移传感器的电路设计需要考虑信号调理、模数转换和电源供应等因素,以确保测量精度和稳定性。
应力分析可以帮助工程师了解物体受力状态,预测材料的使用寿命,提高产品的可靠性和安全性。
应力分析方法包括有限元分析、传感器应用和应变分析等,数据处理和优化可以帮助工程师更好地利用分析结果。
综上所述,位移传感器电路设计和应力分析的研究对于提高工程设计的质量和可靠性具有重要意义。