遥感图像处理光学处理和校正

合集下载

遥感图像几何校正较易 ppt课件

遥感图像几何校正较易 ppt课件

地球自转的影响
2020/10/24
遥感图像几何校正较易
左图显示了地球 静止的图像(oncba) 与地球自转的图像 (oncba)在地面上 投影的情况。由图 可见,由于地球自 转的影响,产生了 图像底边中点的坐 标位移x和y,以 及平均航偏角。
19
第二部分 遥感图像的几何校正
一、几何校正的分类 二、几何校正的一般过程 三、几何校正的方案 四、几何校正的算法
图像、地图或数据中的相同地物元素精确地彼此匹配、叠加在 一起的过程。
2020/10/24
遥感图像几何校正较易
22
几何精校正
几何精校正是以基础数据集作为参照,选取控制点进行几何校 正。此校正不考虑引起畸变的原因。
3、利用遥感图像进行地形图测图或更新时,要求图像具有较高 的地理坐标精
21
一、几何校正的分类
几何校正一般在遥感信息提取之前进行。 几何校正就是校正成像过程中造成的各种几何畸变,分为2类: 1、 几何粗校正:针对引起遥感系统畸变的原因而进行的校正. 2、 几何精校正(几何配准):把不同传感器具有几何精度的
斜距投影的变形误差为:
dyypy'pf(co1stg)
2020/10/24
遥感图像几何校正较易
斜距变形
12
无变形
全景变形
斜距变形
2、传感器外方位元素变化的影响
传感器成像时的位置和姿态角
航高
航速
俯仰
翻滚
航偏
3、地形起伏的影响
地形起伏对中心投影造成的像 点位移是远离原点向外变动, 在雷达影像上是向内变动的。
R
4、地球表面曲率的影响
R
5、大气折射的影响
大气对辐射的传播产生折射。由于大气的密度分布从下到上 越来越小,折射率不断变化,折射后的辐射传播不再是直线而是 一条曲线,从而导致传感器接收的像点发射位移。

Envi遥感图像几何校正

Envi遥感图像几何校正

遥感数字图像处理——几何精校正1.实验原理、目的和内容1.1.实验原理遥感图像纠正是通过计算机对图像每个像素逐个地解析纠正处理完成的,所以能够较清晰地改正线性和非线性变形误差。

几何精纠正的基本原理是回避成像的空间几何过程,直接利用地面的控制点数据对遥感图像的几何畸变本身进行数学模拟,并且认为遥感图像的总体畸变可以看做是挤压、扭曲、缩放、偏移以及更高次的基本变形的综合作用的结果。

因此,校正前后的图像相应点的坐标关系可以用一个适当的数学模型来表示。

1.2.实验目的采用图像-地图纠正法,对TM遥感图像进行几何精纠正,即把不同传感器具有几何精度的图像和地图中的相同地物元素精确地彼此匹配、叠加在一起,以满足集成的需要。

1.3.实验内容对南京市TM图像AA进行几何精纠正。

2.实验过程2.1.地图投影信息的获取进行精校正之前,应该获取标准图像的投影信息,利用ArcGIS或MapInfo软件即可查看投影类型为:GK Zone 20(Pulkovo 1942)2.2.显示需要校正的图像利用Envi导入图像,RGB合成,选择4,3,2波段即可2.3.选择控制点本实验中采用图像-地图纠正,在图像窗口中选择地面控制点(GCP),然后在地图窗口中找到同名地物点,记录点位的坐标信息(见图1)。

首先,进行图像-地图纠正,Map——Registration——Select GCPs:Image to Map。

再在Image to Map Registration窗口中,根据参照的矢量地图选择Gk Zone 20(Pulkova 1942),确定后,弹出Ground Control Points Selection窗口。

在添加地面控制点:在图像窗口中移动光标,确定GCP的位置,然后在矢量地图窗口中确定同名地物点,并将其坐标拷贝到本窗口中的地图坐标文本框中。

确认合适后,单击Add Point产生一个同名地物点。

(见图2)依次进行下去,直到数量复合要求,一般需要6个以上,并且分布均衡(图3)选取控制点完毕后进行纠正,由于选取控制点数量较少,因此使用一阶多项式的方法,重采样方法为最临近采样。

遥感图像处理软件的使用教程与技巧分享

遥感图像处理软件的使用教程与技巧分享

遥感图像处理软件的使用教程与技巧分享导语:遥感图像处理软件是现代遥感技术的重要工具,能够从卫星或航空平台获取的遥感图像中提取出各种地物和环境信息。

本文将介绍遥感图像处理软件的使用教程与技巧,帮助读者更好地理解和应用这一工具。

一、遥感图像处理软件的基本功能1. 遥感图像查看:通过软件可以打开各类遥感图像文件,如Landsat、Sentinel 等,实现对图像的快速浏览和查看。

2. 遥感图像预处理:对图像进行预处理是使用遥感图像处理软件的第一步,包括图像校正、辐射校正、大气校正等,以保证后续处理的准确性和可靠性。

3. 遥感图像分类:遥感图像分类是遥感图像处理软件的核心功能之一,它可以对图像进行自动或半自动的分类、聚类等分析,在地表覆盖类型提取、资源管理等方面具有广泛应用。

4. 遥感图像变化检测:通过比较不同时刻的遥感图像,可以发现地表特征的变化情况,这对于环境监测、城市规划等具有重要价值。

5. 遥感图像融合:将多个不同波段或不同分辨率的遥感图像融合在一起,可以获得更丰富的信息和更高的图像分辨率。

二、遥感图像处理软件的实际应用1. 农业资源调查与管理:遥感图像处理软件可以通过对农田遥感图像的分类、变化检测等分析,实现对农作物种植面积、生长情况等的遥感监测和评估,为农业资源调查与管理提供科学依据。

2. 自然资源与环境保护:遥感图像处理软件可以对林地、湿地、水体等自然资源进行分类与监测,对环境保护和可持续发展具有重要意义。

比如,通过遥感图像变化检测可以及时发现并监测到森林砍伐、湿地退化等问题。

3. 城市规划与土地利用:遥感图像处理软件可以对城市及周边地区的遥感图像进行分类和分析,提供土地利用类型、建设用地变化等信息,为城市规划和土地管理决策提供依据。

4. 灾害监测与防控:遥感图像处理软件可以通过对地震、洪水、火灾等灾害事件的遥感图像分析,实现灾害监测、评估和预警,为防控工作提供技术支持。

三、遥感图像处理软件的使用技巧1. 选择合适的图像预处理方法:不同的遥感图像具有不同的特点和应用要求,因此在进行图像预处理时,要根据具体情况选择合适的方法,如大气校正模型、辐射校正方法等。

第四章3遥感图像处理图像增强

第四章3遥感图像处理图像增强

5.遥感图像多光谱变换(Ⅰ)——主成分分析(K—L变换)
② 就变换后的新波段主分量而言,K—L变换后的 新波段主分量包括的信息量不同,呈逐渐减少趋 势。其中,第一主分量集中了最大的信息量,常 常占80%以上,第二、第三主分量的信息量依次 快速递减,到第n分量信息几乎为0。由于K—L变 换对不相关的噪声没有影响,所以信息减少时, 便突出了噪声,最后的分量几乎全是噪声。所以 这种变换又可分离出噪声。
基于上述特点,在遥感数据处理时,常常用K— L变换作数据分析前的预处理(数据压缩和图像增
强)。举例P125
6.遥感图像多光谱变换(Ⅱ)——缨帽变换(K—T变换)
(1)K—T变换是Kauth—Thomas变换的简称,这种变换也是 一种线性组合变换,其变换公式为:Y=BX 这里X为变换前的多光谱空间的像元矢量,y为变换后的 新坐标空间的像元矢量,B为变换矩阵。这也是一种坐标 空间发生旋转的线性变换,但旋转后的坐标轴不是指向主 成分方向,而是指向了与地面景物有密切关系的方向。 1984年,Crist和Cicone提出TM数据在K—T变换时的B值: P126 在此,矩阵为6X6,主要针对TM的1至5和第7波段,低分 辨率的热红外(第6波段)波段不予考虑。
1.遥感图像增强(工)——对比度变化1
非线性变换
直方图均衡化(histogram equalization):把原图像的直方 图变换为灰度值频率固定的直方图,使变换后的亮度级 分布均匀,图像中等亮度区的对比度得到扩展,相应原 图像中两端亮度区的对比度相对压缩。
1.遥感图像增强(工)——对比度变化1
MN
r(i, j) (m, n)t(m, n) m1 n1
将计算结果放在窗口中心的像元位置,成为新像元的灰度 值。然后活动窗口向右移动一个像元,再做同样的运算。 P117说明

三、高光谱遥感图像辐射与几何校正

三、高光谱遥感图像辐射与几何校正
L j (λi ) = a( j,i) × DN ( j,i) + b( j,i)
式中, L j (λi )是第i波段第j组辐射亮度输入值; DNij 是第i波段第j组图像灰度输出值; a( j,i),b( j,i) 是第i波段第j组辐射定标系数。
3.1 成像光谱仪定标
机上和星上定标
必要性:系统集成、运行环境变化、器件老化
(2) 6S模型 (the Second Simulation of the Satellite Signal in the Solar Spectrum )
适用于太阳反射波段(0.25~4μm)的大气辐射传输模式。 这种模式是在假定无云大气的情况下考虑了水汽、CO2、O3和O2的吸收、分 子和气溶胶的散射以及非均一地面和双向反射率的问题。 对5S模型的改进:考虑了目标高程、表面的非朗伯体特性、新的吸收分子 种类的影响(CO、N2O等),采用了好的近似算法来计算大气和气溶胶的散 射与吸收的影响,其中气体的吸收以10cm-1的光谱间隔来计算的,且光谱 积分的步长达到了2.5nm,适用于可见光—近红外(0.25~4μm)的多角度 数据。 可以模拟机载观测、设置地表的高度、解释BRDF作用和临近效应。它还采 用SOS (successive order of scattering) 方法计算散射作用以提高精 度。
机上或星上实时定标用于波段的漂移和系统辐射响应率的变化检 测。 (3)野外场地定标(On-site Calibration)
选择定标辐射场地,通过地面同步测量对遥感器定标。
3.1 成像光谱仪定标
实验室辐射定标
绝对辐射定标采用积分球作为光源照射传感器的整个视场,根据成像光 谱仪的动态范围,改变标准辐射源的辐射亮度输出级别,逐波段建立辐 射亮度输入值与遥感器输出DN值的关系。

遥感卫星影像辐射校正、几何校正、正射校正的方法

遥感卫星影像辐射校正、几何校正、正射校正的方法

北京揽宇方圆信息技术有限公司遥感卫星影像辐射校正、几何校正、正射校正的方法a)辐射校正:进入传感器的辐射强度反映在图像上就是亮度值(灰度值)。

辐射强度越大,亮度值(灰度值)越大。

该值主要受两个物理量影像:一是太阳辐射照射到地面的辐射强度,二是地物的光谱反射率。

当太阳辐射相同时,图像上像元亮度值差异直接反映了地物目标光谱反射率的差异。

但实际测量时,辐射强度值还受到其他因素的影响而发生改变。

这一改变就是需要校正的部分,故称为辐射畸变。

引起辐射畸变有两个原因:一是传感器本身的误差;二是大气对辐射的影响。

仪器引起的误差是由于多个检测器之间存在的差异,以及仪器系统工作产生的误差,这导致了接收的图像不均匀,产生条纹和“噪声”。

一般来说,这种畸变在数据生产过程中已经由生产单位根据传感器参数进行了校正,不需要用户自行校正。

b)几何校正:当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变时,即说明遥感影像发生了几何畸变。

遥感影像的总体变形(相对与地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。

产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进行处理。

而用户拿到这种产品后,由于使用目的的不同或者投影及比例尺的不同,仍然需要作进一步的几何校正。

几何校正一般包括精校正和正射校正。

精校正:利用地面控制点对由于各种因素引起的遥感图像的几何畸变进行校正。

简单理解:和地形图的校正,校正后有准确的经纬度信息。

精校正适合于在地面平坦,不需要考虑高程信息,或地面起伏较大而无高程信息的情况。

有时根据遥感平台的各种参数已做过一次校正,但仍不能满足要求,就可以用该方法作遥感影像相对于地面坐标的配准校正,遥感影像相对于地图投影坐标系统的配准校正,以及不同类型或不同时相的遥感数据之间的几何配准和复合分析,以得到比较精确的结果。

第5章遥感图像的辐射校正

第5章遥感图像的辐射校正

b. 线性灰度变换
在两张影像的重叠部分各取出相对应的n个点,建立线性回归方程; 然后运用最小二乘法求线性方程系数。以其中一幅影像为标准,对另 一幅影像进行变换,从而达到灰度一致化。 特点:简单易行,n足够大时有一定的精度。存在位置配准误差。
三、因大气影响引起的辐射误差校正
消除因为大气散射引起的辐射误差的处理称为大 气校正。
3. 波段对比法
依据:大气散射的选择性,即对短波影响大,对长波影响小
a. 回归分析法 原理:在遥感图像上大山的阴影区或深大水体区域, 各个波段的反射为零。同时,大气散射主要影响短 波部分,波长较长的波段几乎不受影响,因此可用其 校正其它波段数据。
方法:在不受大气影响的波段和待校正的某一波段图 像中,选择最黑区域(通常为高山阴影区)中的一系 列目标,将每个目标的两个待比较的波段灰度值提取 出来进行回归分析,建立线性回归方程,也称为暗像 元法。
1.大气透射 透射是指电磁辐射与介质作用后,产生的次级辐射和
部分原入射辐射穿过该介质,到达另一种介质的现象和过 程。
一般用透射率表示透射能力。
根据透射率的定义,有:
E ex
E0
2.大气窗口 是指大气对电磁辐射吸收和散射都很小、而透
射率很高波段,即在传输过程中损耗小、能透过大 气的电磁波段。
遥感中使用的大气窗口:
设太阳辐射照度为E0,经过大气的路程为x,则穿过该大 气路程后的辐射照度为:
E E0ex
σ称为衰减系数或消光系数
散射系数 吸收系数
大气对电磁波 的影响主要是 散射和吸收。
二、大气吸收
大气中吸收太阳辐射的主要是水蒸汽、二氧化碳 和臭氧。
吸收能力随电磁波的波长而变化,是选择性的。
三、大气透射与大气窗口

遥感与图像处理基础__5.遥感图像处理基础

遥感与图像处理基础__5.遥感图像处理基础

多波段数字图像的数据格式
• BIP方式(band interleaved by pixel) 在一行中,每个像元按光谱波段次序进行排 列,然后对该行的全部像元进行这种波段次 序排列,最后对各行进行重复。
BIP(Band Interleaved by Pixel)格式是按 照像元顺序记录图像数据,即在一行中按每个像 元的波段顺序排列,各波段数据间交叉记录。
• 方差
所有像元亮度值和均值之差的平方的均值。
• 协方差
图像中两波段的像元 亮度值和其各波段均值 之差的乘积的平均值。
• 相关系数
由于协方差的大小常会受所用的测量单 位影响,为了既检查各波段间 相关性的大小, 又不受测量单位影响,常将两波段之间的协方 差除以各波段的标准差,等到相关系数。
图像校正
R 是地物反射率; 是球面度(半球反射)
大气影响的定量分析
• 传感器接收信号时,
受仪器的影响还有一个系统增益因子 进入传感器的亮度值为:
S ,这是
大气影响的定量分析

由于大气的存在,
辐射经过大气吸收和散射,透过率小于 1 ,从而减 弱了原信号的强度。同时大气的散射光也有一部分 直接或经过地物反射进入到传感器,这两部分辐射 又增强了信号,但却不是有用的。在入射方向有与 入射天顶角 θ 和波长λ 有关的透过率 Tθλ;反射后, 在反射方向上有与反射天顶角 Φ和波长λ又有关的 透过率TΦλ。因此进入传感器的亮度值为
数字图像的性质与特点
像素有正像素和混合像素之分。 正像素 :像素内只包含一种地物。如水体,它 的亮度值代表了水体的光谱特征。 混合像素 :像素内包括两种或两种以上地物。 如出苗不久的麦田,它的一个像素亮度位内 包含麦苗和土壤的光谱特征。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档