能耗管理系统方案
能耗管理系统解决方案

能耗管理系统解决方案能耗管理系统是指通过对能源使用情况进行数据采集、分析和管理,以实现能源的高效利用和减少能源浪费的一种系统。
能耗管理系统主要用于监测和控制建筑物、工业厂房、交通运输等领域的能源消耗情况,通过对能源数据进行实时监测和分析,帮助用户制定合理的能源管理策略,实现能耗的精确控制和优化。
1.数据采集和监测:能耗管理系统通过安装传感器和仪表,对能源的使用情况进行实时监测和数据采集。
传感器可以采集建筑物、设备和机器等的能耗数据,包括用电量、用水量、用气量等,同时还可以采集环境参数数据,如温度、湿度等,以便对能耗进行更加准确的分析和评估。
2.数据分析和预测:能耗管理系统通过对采集到的能耗数据进行分析和挖掘,可以了解能源的使用情况和变化趋势,为用户提供清晰的能源消耗报告。
同时,还可以通过建立能耗模型和算法,对未来的能耗进行预测和规划,帮助用户制定合理的能源管理策略。
3.能源监控和调控:能耗管理系统可以根据实时数据和用户设定的能源目标,对能源进行实时监控和调控。
一方面,通过对能源耗用情况的实时监测,可以及时发现能源浪费和异常情况,并及时采取措施进行调整;另一方面,通过与设备和系统的联动,可以实现能源的智能调控,比如自动关闭不需要使用的设备和系统,调整设备的运行参数等。
4.能源优化和节能改造:能耗管理系统可以帮助用户找到能源消耗的瓶颈和问题所在,提供相应的优化和改造建议。
通过对能耗数据和运行参数进行分析,可以找出能源浪费的原因,并提供相应的节能方案。
比如,对于建筑物来说,可以通过改善隔热性能、优化供暖和制冷系统等方式进行节能改造;对于工业厂房来说,可以通过优化生产工艺、改善设备效率等方式达到节能的目的。
5.能源管理平台:能耗管理系统通常会提供一个能源管理平台,用于展示能耗数据、分析报告和节能方案等,方便用户进行能源的监管和管理。
能源管理平台可以实现数据的可视化和实时监控,同时还可以与其他管理系统进行集成,比如与建筑自控系统、能源计费系统等进行数据互通,提高能源管理的效率和精确度。
能耗管理系统方案

能耗管理系统方案摘要能耗管理在现代社会变得越来越重要。
一个高效的能耗管理系统可以帮助企业减少能源浪费,提高能源利用率。
本文将介绍一个能耗管理系统的方案,包括系统的架构、功能和实施步骤。
1. 引言随着能源资源的日益稀缺和能源消耗的不断增长,能耗管理成为了一个重要的问题。
通过有效地监控和管理能耗,企业可以降低能源成本、提高能源利用率、减少对环境的影响。
为了实现这些目标,一个高效的能耗管理系统是必不可少的。
2. 系统架构能耗管理系统的架构主要由以下几个部分组成:•数据采集模块:负责收集各种能耗数据,包括电力、水、煤气等。
可以通过传感器、智能电表等设备进行数据采集,并将数据传输给后台系统。
•数据存储模块:负责存储和管理采集到的能耗数据。
可以采用关系型数据库或者分布式存储系统进行数据存储。
•数据分析模块:负责对存储的能耗数据进行分析,提供各种能耗指标和报表。
可以采用数据挖掘和机器学习算法等技术来进行数据分析。
•用户界面模块:提供用户管理能耗数据的界面,包括能耗监测、报表查看等功能。
可以采用Web界面或者移动端应用来实现用户界面。
3. 系统功能能耗管理系统具有以下几个主要功能:•能耗监测:实时监测各个能耗数据,包括电力、水、煤气等。
•能耗分析:分析能耗数据,提供各种能耗指标和报表,帮助企业了解能耗情况。
•能耗预测:根据历史能耗数据和其他相关因素,预测未来的能耗情况,帮助企业做出合理的能源计划。
•能耗优化:通过分析能耗数据,找到能源浪费和低效能耗的原因,并提出优化建议。
•能耗报警:当能耗超过预设阈值时,系统可以发送报警消息,提醒管理人员采取相应措施。
4. 实施步骤实施能耗管理系统的步骤如下:1.确定需求:与企业管理人员沟通,了解能耗管理的需求和目标。
2.设计方案:根据需求,设计能耗管理系统的架构和功能。
3.采购设备:根据设计方案,采购所需的数据采集设备、存储设备和服务器等。
4.安装设备:安装和配置数据采集设备,并将数据传输至后台系统。
能耗监测管理系统方案

能耗监测管理系统方案1. 简介能耗监测管理系统(Energy Monitoring and Management System,简称EMMS)是一种用于实时监测和管理能源消耗的系统。
它通过采集各种能源消耗数据,并进行分析和报告,帮助用户有效控制能源消耗,提高能源利用效率,降低能耗成本。
2. 系统组成EMMS主要由以下几个组成部分构成:- 数据采集设备:负责采集各种能耗数据,如电力、水、燃气等。
- 数据储存与处理平台:用于接收、存储和处理采集到的数据,并生成相应报表和分析结果。
- 监测与控制终端:提供用户接口,用于实时监测能耗数据、查询历史数据、设定能耗目标等操作。
- 报警与通知系统:根据设定的阈值进行实时监测,并通过短信、邮件等方式向用户发送报警信息。
3. 系统功能EMMS具备以下核心功能:- 实时监测与数据采集:能够实时采集各种能耗数据,并自动上传到数据储存与处理平台。
- 数据分析与报告:对采集到的数据进行统计、分析,并生成相应的报表、图表和趋势分析等。
- 预警与优化控制:根据设定的能耗目标以及预先设定的能耗阈值,进行实时监测和预警,帮助用户及时调整能源消耗行为,提高能源利用效率。
- 数据可视化:通过直观的界面和图表展示能耗数据,方便用户查看和理解。
- 能耗管理与优化方案:根据数据分析结果,提供能耗管理建议和优化方案,帮助用户制定合理的能源消耗策略。
4. 应用领域EMMS可广泛应用于各个领域,包括但不限于以下几个方面:- 工业生产:监测与控制生产设备的能耗,提高生产过程中能源利用效率。
- 商业建筑:监测与管理大楼内的能耗,优化空调、照明等系统的能源消耗。
- 住宅小区:实时监测小区内的水电燃气等能耗情况,帮助业主节约能源。
- 公共机构:如学校、医院等,通过监测能耗数据,发现并改进能源使用不当的地方。
- 新能源管理:对于新能源设施如太阳能、风能等,EMMS可以对其发电效率进行监测和优化。
5. 优势与收益EMMS具有以下几个优势和收益:- 节约能源:通过实时监测和预警,及时发现能源浪费现象,有效控制能源消耗,实现节能减排。
能耗管理系统施工方案

系统调试
系统功能测试
对系统的各项功能进行测试,如数据采集、 数据传输、数据存储、数据分析等。
系统性能测试
对系统的性能进行测试,如数据传输速率、 数据存储容量、系统响应时间等。
系统安全测试
对系统的安全性进行测试,如数据加密、用 户权限管理等。
系统调试与优化
根据测试结果,对系统进行调试和优化,提 高系统的稳定性和可靠性。
改进措施。
04
项目成果推广
将项目成果进行推广和应用,发 挥项目的示范效应,推动节能减
排事业的发展。
THANKS
感谢观看
安全保障
制定安全管理制度,配备必要的安全设施和 防护用品。
作业指导
制定详细的作业指导书,规范施工过程。
质量保证
建立质量管理体系,确保施工质量符合相关 标准和规范。
施工进度计划
工期安排
进度控制
根据工程规模和复杂程度,合理安排施工 工期。
采用项目管理软件等工具,实时监控施工 进度,确保按时完成。
资源调配
施工监测与控制
施工进度监测
对施工过程进行实时监测,确保施工进度符 合计划要求。
施工成本控制
对施工成本进行控制,确保施工成本符合预
算要求。
施工质量监测
对施工质量进行监测,确保施工质量符合设 计要求和相关标准。
施工风险控制
对施工过程中的风险进行评估和控制,确保 施工安全顺利进行。
05
质量保证和安全措施
06
施工效果评估和总结
施工效果评估
评估指标
根据项目要求,制定合理的评估指标,如能耗降低率、系统稳定性、 操作便捷性等,以便对施工效果进行全面评估。
数据采集
建立数据采集机制,对能耗管理系统运行过程中的各项数据进行实时 监测和记录,确保数据的准确性和完整性。
能耗管理系统施工方案

能耗管理系统施工方案能耗管理系统施工方案一、项目介绍能耗管理系统是指通过对建筑物或设备的能源消耗进行监测、分析和控制,从而实现能耗的优化管理的一种系统。
该项目的目标是帮助企业实现能源的节约与效益的提升,减少能耗,降低环境污染,促进可持续发展。
二、施工方案1. 方案制定根据客户需求和现有建筑或设备的能耗情况,制定能耗管理系统的施工方案。
包括系统的设计、安装、调试和维护等环节。
2. 设备选型根据项目需求,选用适合的仪器设备,例如数据采集器、传感器等,保证系统的稳定性和精确性。
3. 数据采集通过合适的仪器设备,对建筑物或设备的能耗进行数据采集,包括电能、水能、气能等各种能源的消耗情况。
4. 数据传输将采集到的能耗数据通过无线传输或有线传输的方式上传到能耗管理系统的服务器,以方便后续的数据分析和监测。
5. 数据分析对上传到服务器的能耗数据进行分析,包括能耗的趋势分析、能耗的占比分析等,在系统中生成能耗分析报表,帮助企业了解能耗情况。
6. 报警机制在能耗管理系统中设置报警机制,当能耗超过预设的警戒值时,系统将自动发出警报,以提醒企业及时采取措施降低能耗。
7. 能耗控制根据能耗分析结果,制定相应的能耗控制方案,并实施相应的措施,例如优化设备运行方式、改进能源利用效率等,以降低能耗和提高能源利用效率。
8. 维护与优化定期对能耗管理系统进行巡检和维护,保证系统的正常运行,并跟踪能耗控制的效果,不断优化系统的性能。
三、施工流程1. 筹备期:了解项目需求、选择合适的仪器设备、制定施工方案。
2. 设计期:进行系统设计和网络规划。
3. 采购期:购买所需的仪器设备,确保设备的质量和性能。
4. 安装期:根据设计方案,进行设备的安装,包括传感器的布置和数据采集器的安装等。
5. 调试期:对安装完毕的设备进行调试和测试,保证系统的正常运行。
6. 上线期:将系统正式启用并投入使用。
7. 维护期:定期巡检和维护系统,保持系统的稳定和性能的持续优化。
能耗管理系统设计施工方案

应急预案与故障恢复
应急预案
制定针对可能发生的紧急情况的应急预案,包括数据备份、设备故 障、网络中断等,确保在紧急情况下能够迅速响应。
故障恢复
建立完善的故障恢复机制,通过数据备份、设备替换等方式,尽快 恢复系统的正常运行,降低因故障造成的损失。
VS
数据监测
对采集到的数据进行实时监测,确保能耗 数据的准确性和可靠性,及时发现异常情 况。
数据分析与处理
数据分析
对采集到的能耗数据进行深入分析,包括日 、月、年的能耗统计,能耗峰值分析等。
数据处理
对异常数据或错误数据进行处理,确保数据 分析的准确性,为能源管理策略提供可靠依 据。
能源管理策略与优化
系统目标
通过实时监测、数据分析、智能控制 等手段,实现能源的有效利用,降低 能源消耗,提高能源效率,达到节能 减排、降低成本的目的。
系统的重要性
01
节能减排
随着全球能源危机和环境问题的日益严重,节能减排已成为社会发展的
必然趋势。能耗管理系统能够有效地降低能源消耗,减少碳排放,为可
持续发展做出贡献。
定期演练
定期进行应急演练,提高应对紧急情况的能力和效率。
合规性与监管要求
合规性审查
在系统设计之初进行合规性审查,确保系统符合相关法律 法规和监管要求。
01
监管对接
与相关监管部门建立良好的沟通机制, 及时了解监管动态,确保系统能够满足 监管要求。
02
03
文档记录
建立完善的文档记录制度,对系统的 合规性、监管对接等情况进行详细记 录,以便于后续的审计和查验。
社会责任与环保形象
能耗管理系统(一)2024
能耗管理系统(一)引言概述:能耗管理系统是一种用于监测和管理能耗的软件系统。
它通过收集和分析各种能源数据,帮助机构和企业了解能源使用情况,优化能源消耗,并减少能源浪费。
本文将对能耗管理系统的五个主要方面进行详细介绍。
正文内容:一、数据收集和监测1. 安装传感器设备:能耗管理系统需要安装传感器设备来收集能源数据,如电力、水、气体等。
2. 数据读取与传输:系统通过读取传感器设备的数据,并将其传输到中央服务器进行存储和分析。
3. 实时监测能耗:系统提供实时能耗监测功能,能够及时显示各种能源的使用情况,并对异常情况进行报警。
二、能源分析和优化1. 能耗分析报告:根据收集到的数据,系统生成能耗分析报告,用于分析各种能源的使用情况和变化趋势。
2. 能源优化建议:系统基于能耗分析结果,提供能源优化建议,以帮助机构和企业降低能耗,并提高能源使用效率。
3. 功能优化和升级:系统不断优化和升级功能,使能源分析更准确,建议更科学,以适应不断变化的能源消耗需求。
三、能源节约措施与监控1. 能耗预测模型:系统根据历史数据和预测算法,建立能耗预测模型,用于预测未来能源使用情况。
2. 节能措施监控:系统监控并评估已实施的节能措施,提供相应的反馈和改进建议。
3. 能源监控报告:系统通过能源监控报告,展示节能效果和节能成本,帮助机构和企业评估节能措施的效果。
四、能源管理与调度1. 能源计划制定:系统支持制定能源计划,包括能源采购、能源使用时间和能源消耗预算等。
2. 能源调度管理:系统监控能源使用情况,根据能源计划进行能源调度管理,优化供需平衡。
3. 异常报警和故障排查:系统及时检测能源使用的异常情况,并提供相应的报警和故障排查功能。
五、能耗管理系统的效益与总结1. 能源成本降低:能耗管理系统帮助机构和企业通过对能源数据的分析和优化,降低能源使用成本。
2. 能源效率提高:系统提供能源优化建议和实时监测功能,帮助机构和企业提高能源使用效率。
能耗管控方案
能耗管控方案一、引言随着经济的发展和人民生活水平的提高,能源消耗量逐年上升,而能源的供给却日益紧张。
因此,实施有效的能耗管控方案成为当前社会的重要任务。
本方案旨在通过科学的方法和手段,全面、系统地管理和控制能源消耗,提高能源利用效率,减少能源浪费,实现节能减排和可持续发展的目标。
二、能耗管控目标本方案的能耗管控目标是在保证生产和生活正常进行的前提下,通过优化能源结构和提高能源利用效率,实现能源消耗的总量和强度双控目标。
具体目标包括:1. 降低单位国内生产总值能耗;2. 减少碳排放量;3. 提高可再生能源比重;4. 优化能源结构,提高能源利用效率。
三、能耗管控措施为实现上述目标,本方案提出了以下能耗管控措施:1. 制定能源消耗定额标准根据各行业、各领域的实际情况,制定科学、合理的能源消耗定额标准,对超过定额标准的单位或个人进行惩罚,同时对低于定额标准的单位或个人进行奖励,以激励全社会共同参与节能减排。
2. 推广节能技术和产品加大对节能技术和产品的研发、推广力度,鼓励企业采用先进的节能技术和设备,提高能源利用效率。
同时,政府应加大对节能产品的采购力度,引导消费者购买节能型家电、汽车等产品。
3. 实施能源审计制度建立和完善能源审计制度,对高耗能行业和企业进行全面的能源审计,找出能源利用的薄弱环节和潜力所在,为企业制定节能改造方案提供科学依据。
4. 强化公共场所能源管理加强对公共场所的能源管理,如商场、学校、医院等公共建筑应严格执行国家节能标准,采用先进的节能设备和材料,提高建筑能效。
同时,加强对公共场所的用能监管,防止浪费现象的发生。
5. 推动绿色交通发展加大对新能源汽车的推广力度,鼓励市民购买低碳环保的电动汽车和混合动力汽车,减少城市交通对石油的依赖。
同时,优化城市交通布局,建设绿色交通体系,提高公共交通出行比例。
6. 促进可再生能源发展加大对可再生能源的支持力度,鼓励企业投资开发太阳能、风能、水能等可再生能源项目,提高可再生能源在能源结构中的比重。
能耗管理系统方案
(2)数据传输层:通过有线或无线网络,将采集到的数据传输至数据处理层。
(3)数据处理层:对数据进行清洗、存储、分析和处理,为应用层提供数据支持。
(4)应用层:提供能耗监测、能耗分析、节能管理等功能,满足用户需求。
2.系统功能
(1)能耗监测:实时显示企业各类能源消耗设备的运行状态、能耗数据等信息。
2.通过数据分析,揭示能源使用中的不合理环节,促进节能减排。
3.构建能源消耗预警机制,提升能源管理的前瞻性和主动性。
4.遵守国家能源管理相关法律法规,确保系统建设和运行的合法性。
三、系统设计
1.系统架构
-数据采集层:负责收集各种能源计量设备的数据。
-数据传输层.系统集成:将软件和硬件设备集成为完整的能耗管理系统。
6.系统部署:在企业的网络环境中部署系统,并进行调试。
7.用户培训:组织系统操作和能源管理培训,提升用户操作能力。
8.系统运行:启动系统,进入日常运行阶段,持续优化性能。
五、合规性保障
1.符合国家能源管理相关法律法规,如《中华人民共和国节约能源法》等。
-节能优化:制定并实施节能措施,跟踪节能效果,持续优化能源使用。
-报表管理:生成定制化的能耗报表,支持多种格式输出,满足管理及合规需求。
-系统管理:实现对用户、权限、设备等的管理,保障系统的正常运行。
3.技术特点
-高效性:系统设计注重数据处理效率,确保快速响应。
-可靠性:采用冗余设计,保障系统稳定运行。
能耗管理系统方案
第1篇
能耗管理系统方案
一、项目背景
随着我国经济的持续快速发展,能源消耗问题日益凸显。加强能源管理,提高能源利用效率,降低能源消耗已成为社会各界关注的焦点。为响应国家节能减排政策,推动企业绿色发展,本项目旨在建立一套科学、先进、实用的能耗管理系统,实现对企业能源消耗的实时监测、分析及优化,助力企业提高能源管理水平,降低能源成本。
医院智慧能耗系统设计方案 (2)
医院智慧能耗系统设计方案尊敬的领导:为了提高医院的能耗管理效率,降低运营成本,减少对环境的影响,我们设计了一套医院智慧能耗系统方案。
以下是我们的设计方案。
一、方案概述医院智慧能耗系统是基于物联网技术,以电力、燃气和水的能源数据为基础,通过传感器、网络通信、数据分析和控制等技术手段,实现对医院能耗的实时监测、分析和控制,从而实现能源的高效利用和低耗操作。
二、系统设计1. 传感器部分:在医院的电力、燃气和水的供应和消耗点位安装智能传感器,实时采集相关数据,包括能源的用量、温度、湿度等信息。
2. 数据通信部分:传感器通过无线通信方式将采集的数据发送给中央服务器,确保数据的及时、准确和安全传输。
3. 数据分析和控制部分:中央服务器对传感器采集的数据进行实时分析和处理,生成能耗报表、统计分析和预测模型,并通过控制指令将控制信号发送给相应的设备,使其在能源利用效率和运行负荷的适当范围内运行。
4. 用户界面部分:系统支持通过网页、手机APP等方式,为医院管理人员提供访问和监控智慧能耗系统的界面,可以查看实时的能源数据、运行状态和报警信息等。
5. 报警与管理部分:系统设定相应的能耗报警阈值,当能耗超过设定的阈值时,系统会自动发送报警信息给相关人员,并记录在能耗管理平台,方便后续的管理和改进。
三、功能特点1. 实时监测:系统能够实时采集医院各能源的用量和运行状态,提供实时的能源数据展示和监控。
2. 数据分析:系统能够对数据进行分析和处理,生成能耗报表、统计分析和预测模型,为医院管理人员提供决策支持。
3. 能耗控制:系统能够根据用户需求和能耗情况,自动调控设备的运行模式和负荷,实现能源的高效利用和低耗操作。
4. 报警管理:系统设定相应的能耗报警阈值,并能及时发送报警信息给相关人员,提供精准的能耗监控和管理。
5. 用户友好:系统提供简洁、直观的用户界面,支持多种访问方式,方便医院管理人员随时随地地进行能耗监控和管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同景地产两江工业园项目能效管理系统目录1概述1.1.1项目概况 (1)1.2系统概述 (1)1.3需求分析 (2)1.3.1设计依据 (3)1.3.2设计原则 (4)2设计方案5..2.1总体设计 (5)2.2系统组成 (5)2.3数据采集系统设计 (6)2.3.1采集设计 (6)2.3.2计量表的安装 (7)2.3.3数据采集器 (9)2.4 数据传输系统设计 (11)2.4.1系统架构 (11)2.4.2计量装置和数据采集器的连接 (11)2.4.3采集网络设计 (11)2.5 软件系统设计 (12)2.5.1设计思路 (12)2.5.2建筑能耗分项模型设计 (13)2.5.3软件功能介绍 (16)3能效管理系统软硬件清单2..9.1概述1.1项目概况本工程为同景地产两江工业园建设项目,总用地面积约71778.9 平米。
同景地产两江工业园遗址博物馆由一号建筑(同景地产两江工业园琉璃塔遗址保护建筑),二号建筑(含画廊等遗址保护),三号建筑(碑亭重建/御碑保护建筑),寺院内大殿遗址和观音殿遗址的保护和展示,寺院西侧香水河遗址保护和展示,及相关配套服务管理设施等共同构成有机的整体。
本次设计主要包含一号建筑和二号建筑。
一号建筑(同景地产两江工业园琉璃塔遗址保护建筑)为高层建筑。
总建筑面积3182 平方米,地上九层。
总高91.357 米,其中塔身(不含顶部塔刹)高78.77 米。
二号建筑(含画廊等遗址保护)为多层建筑。
总建筑面积39188 平方米,其中地上33257 平方米,地下5931 平方米,建筑高度为11.95 米。
1.2系统概述能耗监测系统是指通过对国家机关办公建筑和大型公共建筑安装分类和分项能耗计量装置,采用远程传输等手段及时采集能耗数据,实现重点建筑能耗的在线监测和动态分析功能的硬件系统和软件系统的统称。
在我国目前的能耗结构中,建筑所造成的能源消耗,已占我国总的商品能耗的20%~30%。
而建筑运行的能耗,包括建筑物照明、采暖、空调和各类建筑内使用电器的能耗,将一直伴随建筑物的使用过程而发生。
在建筑的全生命周期中,建筑材料和建造过程所消耗的能源一般只占其总的能源消耗的20%左右,大部分能源消耗发生在建筑物的运行过程中。
建筑节能主要是为了降低各类建筑运行过程中消耗的能源。
根据建筑能耗特点的不同,建筑可分为三类:住宅建筑,一般性非住宅建筑和大型公共建筑。
根据对大量数据的研究,大型公共建筑的单位面积能耗是前两类建筑的4~8 倍。
具有很大的节能潜力。
为了更好地对我国大型公共建筑实际运行能耗数据进行评价和检验,建立大型公共建筑分项用能实时监测系统是建筑节能的第一步。
这有利于在后续的建筑运行当中开展基于能耗数据的节能诊断、改造、运行、管理的服务。
1.3需求分析本工程为同景地产两江工业园,属大型办公建筑。
用电设备较多,能耗较大,实现能耗管理对于本项目有着较高要求,需要根据管理中心能耗进行监管。
同时根据以后的运营情况,对水电都进行数据管理,实现合理有效的用能匹配。
招标文件要求如下:1、电的能耗计量:针对各楼栋、各区域、各楼层各用电回路电能耗数据进行实时监测,根据每个配电箱的电力回路的不同用途进行分项计量,根据电力远传仪表的数量和位置设置相应的电表数据采集器,然后通过采集器将所有电力回路能耗数据上传到本地能耗监测管理平台,实现建筑电能分项能耗数据动态监测和远程传输。
2、水的能耗计量:根据设计院给水系统设计,在建筑进水总管和每层楼有表具的总管上安装数字式远传水表。
通过水表数据采集器将水能耗数据上传到本地能耗监测管理平台。
3、系统架构:网络传输分两层架构。
网络控制层采用TCP/IP 协议,数据采集器支持双服务器上传,将相关数据上传至本地能耗管理平台。
现场层数据采集器需要支持RS485、M-BUS 、LONWORKS 等接口,支持各类标准的MODBUS 、DLT-645 等各类标准国家协议。
4、系统要求:本项目能源管理平台设置在管理中心。
现场采集器通过网络和上一级能耗监测平台的联网,同时本地服务器软件进行网络进行同步数据采集和分析,完成相关的能耗分析功能。
采集器通过485 协议将对应的数据采集。
现场采集器必须按照建设部《国家机关办公建筑及大型公共建筑分项能耗数据采集传输导则》和《国家机关办公建筑及大型公共建筑分项能耗数据采集技术导则》进行数据采集和传输,技术规程要求必须上传的能耗数据必须从采集器直接上传省市平台。
能效管理系统采用同方泰德ezEMS2.0 能源管理系统,能够对整个建筑的水、电等用能情况进行实时信息采集,并实现显示、分析、处理、维护及优化管理的目的。
从而实现以下功能:实现建筑能耗实时监测,确切掌握各能耗总量及动态变化;对建筑各能耗进行系统诊断,指导合理用能;协助管理方建立节能长效机制;对采用的节能新技术进行后评估;在系统基础上实现分项用能定额管理制度;在建筑物内建立分项用能实时监控管理平台可以以实际能耗数据为基础对建筑的现有用能状况进行分析,可进一步对各项用电能耗情况进行节能诊断,得出切实可行的节能办法,包括管理节能和技术节能,降低建筑的能源消耗,提高建筑物的运行管理水平,减少运行管理费用。
1.3.1设计依据《国家机关办公建筑及大型公共建筑分项能耗数据采集技术导则》《国家机关办公建筑及大型公共建筑分项能耗数据传输技术导则》《国家机关办公建筑及大型公共建筑数据中心建设与维护技术导则》《国家机关办公建筑和大型公共建筑能耗动态监测系统建设、验收与运行管理规范》《国家机关办公建筑及大型公共建筑楼宇分项计量安装技术导则》《民用建筑能耗数据采集标准》JGJ/T154-2007《多功能电能表通信规约》DL/T 645-1997《多功能电能表》DL/T614-1997《电能计量装置技术管理规程》DL/T 448-2000《电测量及电能计量装置设计技术规程》DL/T 5137-2001《电能计量装置安装接线规则》DL/T 825-2002《户用计量仪表数据传输技术条件》CJ/T 188-2004《自动化仪表工程施工及验收规范》GB50093-2002《低压配电设计规范》GB50054-95《民用建筑电气设计规范》JGJ 16-2008《电能计量柜基本试验方法》DL/T549-1994《电能计量柜》GB/T16934-1997《电气装置安装工程电缆线路施工及验收规范》GB 50168-2006 《建筑电气施工质量验收规范》GB50303-20021.3.2设计原则一、开放性本系统中可以根据不同厂商的设备技术,以及系统的扩展需求,在本项目的产品技术选型中,我们将尽量避免采用专有技术,从而使本系统中的软硬件平台具有充分的开放性。
二、先进性本系统中的软硬件平台建设、应用系统的设计开发以及系统的维护管理所采用的产品技术均综合考虑当今互联网的发展趋势,采用相对先进同时市场相对成熟的产品技术,以满足系统未来的发展需求。
三、高性能考虑到本系统为大量远端用户提供WEB 服务,系统设计应从服务器处理能力、网络带宽传输能力、软件系统效率等角度综合分析,合理设计结构、配置,以确保大量用户并发访问的峰值时段,系统具有足够的处理能力,保障服务质量。
四、安全性本系统对安全性问题予以高度重视,从操作系统层,网络层,应用层每个层次都有相应的措施。
系统应采用了网段隔离,用户验证等技术以解决传输安全,系统安全和信息安全的需求。
五、可靠性本系统应从系统结构、网络结构、技术措施、设备选型等方面综合考虑,以确保系统中任何一个环节都没有单故障节点,实现7× 24×365 的不间断服务。
六、扩展性在本系统中,所有的网络、服务器、存贮、应用软件的设计都将遵循可扩充的原则,以实现随着物业管理业务的发展而扩展。
2设计方案2.1 总体设计数据采集是整个能效管理系统工作的基础,数据采集部分的核心内容在于以下两个方面:1)以今后节能分析和管理工作的需要为出发点,确定同景地产两江工业园计量分项的基本原则,对重要用电支路的用电情况进行数据采集。
2)保证数据采集工作所得数据的意义的正确性。
这需要设计和实行有效的校核方式来保证,即确认所装计量表的数据意义是否与设计时目标相同。
2.2 系统组成能效管理系统由数据采集系统、数据传输网络系统、后台分析系统软件系统三大部分组成。
2.3数据采集系统设计2.3.1采集设计一、电量采集支路本工程由供电部门在高压侧设置高压计量,在低压侧设置动力分计量。
考虑到总配电室原已安装计量远传表具,本次不再进行安装采集表具,用原有采集表具进行采集。
变电所低压侧总断路器处设置电子式多功能电表进行计量;变电所所有低压出线回路均设置电子式普通电能表进行计量。
其它场所均采用电子式普通电表进行计量。
电量采集根据《国家机关办公建筑和大型公共建筑能耗监测系统分项能耗数据采集技术导则》的要求,同时考虑到本大型公共建筑的实际使用情况,充分考虑到了大量预留用电支路的情况,针对照明、空调、动力及特殊用电支路进行能耗数据采集,共计471 个采集回路。
通过这些回路的能耗统计分析,可以对同景地产两江工业园建设项目的日常用电情况有个清晰的分类。
由于备用及消防支路为不常用支路,本次不允与计量。
计量系统符合以下要求:1)能提供建筑物总能耗、分项能耗、一级子项能耗和部分二级子项能耗数据。
2)空调系统前端设备的计量可区分主机和附属设备,空调末端设备和空调插座按楼层或分区计量。
3)动力用电按不同功能的设备分别计量:电梯、水泵、通风机。
特殊用电按区域单独计量:如信息中心等。
系统架构拓扑图电能计量装置包括电能表、电流互感器及二次回路等。
根据招标文件、图纸等相关资料要求,本次设计的电能计量设备满足以下技术要求:(一)电子式多功能电表1)计量功能:具有监测和计量三相电流、电压、有功功率、功率因数、有功电能、最大需量、总谐波含量的功能;2)通信接口:具有数据远传功能,具有符合行业标准的物理接口;3)通信协议:采用标准开放的协议或符合《多功能电能表通信协议》DL/T645 中有关规定;4)精度等级:有功不低于1.0 级,无功不低于2.0 级。
(二)电子式普通电能表1)计量功能:具有监测三相(单相)电流及有功功率和计量三相(单相)有功电能的功能;2)通信接口:具有数据远传功能,具有符合行业标准的物理接口;3)通信协议:采用标准开放的协议或符合《多功能电能表通信协议》DL/T645 中有关规定;4)精度等级:不低于1.0 级。
(三)电流互感器电流互感器精度等级不低于0.5 级;电流互感器性能参数符合《电流互感器》GB1208 规定的技术要求。
二、水量采集支路根据设计院给水系统设计,在建筑进水总管和每层楼有表具的总管上安装数字式远传水表。
用水量采集按照使用区域划分,主要采集生活给水总用水量,各楼层用水量。