第三章(3-2)润湿性
电子教案与课件:《应用胶体与界面化学》第三章 表面张力与润湿作用

一 、润 湿 作 用
凝聚态物体表面一种流体被另一种流体取代的过程称为润湿(wetting)。例如, 液体将固体表面的气体取代,形成液体膜或液滴。液体取代固体表面气体,液 体不能完全展开的过程称为沾湿(adhesion)。沾湿是原有的气液和固气界面消 失形成新的固液界面。若形成单位界面,此过程在恒温、恒压条件下,自由能 的改变为 WA 称为黏附功,是将单位固液界面拉开外界需做的最小功,WA 表征固液界面(即 固体与液体分子间)作用力的大小。WA>0(即 ΔGA<0)是沾湿过程自发进行的条 件。 液体自发在固体表面展开成一薄层,此过程称为铺展(spreading)。铺展是固气 界面消失、气液界面和固液界面形成的过程。若形成单位界面,此过程自由能 的改变为 S 称为铺展系数。此过程自发进行的标准是 ΔS>0(即 ΔGs<0)。
一 、 几个小实验
在石蜡表面上的小水滴会自动成球形;在水面上用简单的方法可使金属针(或分 值硬币)漂浮,但不能使它们悬浮于水中;从管口缓慢自然形成的液滴形状与橡 胶薄膜中盛水悬起的形状很相似;插入水中的毛笔笔毛是分散开的,当笔头提 出水面后笔毛并拢,成一体状。这些实验现象说明:①液体表面与体相液体的 性质不完全相同;②液体表面似存在一弹性膜;③液体表面有自动缩小的本能。 液体表面的这些特点可从力学和能量的角度予以解释。
第二节 弯曲液面内外压力差与曲率 半径的关系——Laplace公式
一、Laplace公式的简单导出
二、LaplaBiblioteka e公式的应用举例一、Laplace公式的简单导出
弯曲液面与平液面不同,弯曲液面表面张力在法线方向的合力不等于零。凸液 面,表面张力合力方向指向液体内部;凹液面,合力方向指向液体上方。为保 持弯曲液面的存在与平衡,弯曲液面内外两侧有压力差:弯曲液面突向一侧的 压力总是小于另一侧的;换言之,当液面两侧有压力差时,能形成弯曲液面, 液面突向的一侧压力小,两侧压力差与液体表面张力和弯曲液面的曲率半径有 关。
第三章、 除尘理论及技术

8、捕集除尘效率高且运行稳定,特别是对亚微米 的粒子有很大的优势
作用在粒子上的静电力相对较大,其驱进 速度较大 ✓以0.2μm的粒子为例,对旋风除尘器和电除尘 器进行比较:
150mm旋风除尘器中,取入 口风速为25m/s,其离心沉降 终末速度为2.0×10-4m/s,
在电除尘器典型场强下, 该粒子的终末沉降速度 为5.0×10-2m/s。
✓粉尘比表面积越大,润湿性降低,粘附性增强, 凝聚性增大,处理设备输送阻力增大。
3、粉尘的含水率及润湿性 (1) 粉尘的含水率
粉尘中的水分包括自由水分和结合水分。
mW 100%
mW md
第三章 、除尘理论及技术
(2)粉尘的润湿性
✓尘粒能否与液体相互附着或附着难易的性质称为 粉尘的润湿性。
✓当固体粒子与液体接触时,如果接触面扩大而能相 互附着,就是能润湿;
第三章 、除尘理论及技术
为什么空气调节中的微粒净化装置不采用负 电晕而采用正电晕?
✓ 负电晕放电时,产生速度很高的自由电子 和负离子,在碰撞电离过程中会产生比正电 晕多得多的臭氧(O3)和氮氧化物(NOx), 所以空气调节中的微粒净化装置不采用负电 晕而采用正电晕。
第三章 、除尘理论及技术
二、电除尘器的特点
水平气流重力沉降室
第三章 、除尘理论及技术
t H t L
us
v0
us 颗粒沉降速度,m / s; v0 载有颗粒物的气流速度,m / s; t、t 沉降所需时间和滞留沉降室的时间,s;
us
v0 H L
Q LW
Q 气体体积流量,m3 / s; W 沉降室的宽度,m。
水平气流重力沉降室
第三章 、除尘理论及技术
二、惯性除尘器
表面活性剂功能与应用——润湿作用

第三章表面活性剂功能与应用一一润湿作用一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。
表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。
润湿过程往往涉及三相,其中至少两相为流体。
1. 润湿过程润湿作用是一个过程。
润湿过程主要分为三类:沾湿、浸湿和铺展。
产生的条件不同。
其能否进行和进行的程度可根据此过程热力学函数变化判断。
在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。
(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。
如喷洒农药,农药附着于植物的枝叶上。
沾湿附着发生条件:△ G= Y SL- Y SG丫LG V 0 W A= Y SG- Y SL+ Y LG> 0 (沾湿)式中:Y SG Y SL和Y LG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。
如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△ G = Y SL- Y SG< 0W i = Y SG- Y SL》0 (W:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。
铺展发生条件为:△ G= Y SL+Y LG-Y SG< 0S= Y S(- Y SL- Y LG》0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。
从润湿方程可以看出:固体自由能Y SG越大,液体表面张力Y LG越低,对润湿越有利。
2. 接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。
03 2015 第三章 固-液界面的润湿现象

第三章 固液界面湿润现象
表面物理化学 2015
主讲 王中平
3.4.2 低能表面的润湿性与临界表面张力
Zisman等发现,液体同系物在同一固体表面上的接触角随 表面张力降低而变小,若以Cosθ对液体表面张力作图,可得 一直线,将直线 外延到cosθ=1处,所对应的液体表面张力值 称为临界表面张力,以γc表示。
浮镜式的液滴而不展开。将彻底精炼过的石油放在水 面上就有此现象。 对于液-液界面,这一效应表现在A和B的相互溶解 上。例如苯在水面上,开始迅速蔓延,然而因为苯和 水相互饱和,苯集结拢来成为透镜状。而留下的水表 面也非纯水,相当于苯在水中的饱和溶液。
21
第三章 固液界面湿润现象
表面物理化学 2015
16
第三章 固液界面湿润现象
表面物理化学 2015
主讲 王中平
(2)固体表面粗糙性 粗糙性常用粗糙因子(又称粗糙度)r 来度量粗糙程度。 r的定义:固体的真实表面积与相同体积固体假想的平滑表面积 之比。(显然r≥l。r越大,表面越粗糙。) 将Young润湿方程应用于粗糙表面的体系,若某种液体在 粗糙表面上的表观接触角为θ’,则有Wenzel方程
h g h sin 1 1 2 a
2
2
当ρ、γl-g已知,只要测出h,便可得θ。 其中a是毛细常数。在适当的照明下,弯 月面的末端相当分明(除非θ非常小), 利用滑动显微镜可测定h。
12
第三章 固液界面湿润现象
表面物理化学 2015
主讲 王中平
3、透过测量法 主要用于固体粉末接触角的测量,其基本原理是, 固体粒子间的空隙,相当于一束毛细管,毛细作用使 液体透入粉末中,由于毛细作用与液体的表面张力和 对固体的接触角有关,故通过测定某种已知表面张力 的液体在固体粉末中的透过,可得到接触角θ。
最新第三章(3-2)润湿性课件PPT

表8—4 不同烃类组分在聚四氟乙烯光面上的前进角
烃 类戊
烷己
烷辛
烷十 二 烷
(C5H12)
(C6H14)
(C8H18)
(C12H 26)
前进角
0
8
26
42
(度)
原油中烃类所含碳原子数越多,接触角就越大。
2、油藏岩石润湿性的认识
第三章(3-2)润湿性
一、储层岩石润湿性
1、润湿的基本概念:
(1)润湿:
自然界现象:将水滴在玻璃板上,水在玻璃板上迅速铺开,而如果 是水银滴在玻璃板上,水银液滴在玻璃板上呈现球滴。
空气 水
空气 水银
玻璃
玻璃
润湿:是指液体在分子力的作用下沿固体表面流散的现象。
润湿研究对象: 不混容的两相液体-固体三相体系,或液体-气体-固体
静止时,θ= 30°,岩石亲水
1
2
水驱油速度为V1时,θ= 60°,岩石亲水性减弱
水驱油速度为V2> V1时,θ= 75°,岩石亲水性再减弱
水驱油速度为V3> V2时,θ= 115°,岩石类似亲油性, 发生润湿反转
研究动润湿滞后的意义:
亲水油藏水驱油时,当水驱油的速度过大时,将 导致油藏岩石具有“亲油”的性质。实践证明,亲油 油藏水驱油的残余油饱和度比亲水油藏水驱油的残余 油饱和度大;因此,从提高原油采收率的目的出发, 注水开发的油藏,并非注水速度越大就越好。
如下图所示,油水在岩石孔隙中静止时,接触角为30°,岩石表面具有较强 的水润湿;当水驱油在岩石孔隙中流动时,接触角发生了改变,接触角随水驱油 速度的增大而变大,即滞后现象越严重,当水驱油速度的增大到某一值时,岩石 表面变为亲油性,发生了润湿反转现象。
第三章平版胶印印刷

成不溶于显影液的物质,形成亲油的印刷部分。未见光部分
的感光剂保持其原有的可溶性,在显影中被除去,露出铝版 基,形成亲水的空白部分。
第三节 平版制版
二、打样 在印刷前将拼组完成的整版图文通过打样设备复制出印 样。 (一)打样的目的: 1、对原版的质量进行检查。就是先打出一样张来,看看有 没有错,色彩的再现性是否达到了要求。 2、确定标准,客户认可。为正式印刷提供样张,如果这个 样张客户认可了,签字了,正式印刷的时候色彩呀、阶调呀 都要基本追上样张。 为什么说基本呢?因为打样的时候油墨转移方式、印刷材 料、印刷环境都与实际印刷不同,因此,样张和实际印刷机 的印张总是有点差异。 (二)打样的分类 1、完全打样。也叫硬打样,用打样机打出样张。 2、不完全打样。也叫软打样,在屏幕上显示出来。
第一节 平版胶印的内涵 一、利用水墨不相容的原理进行印刷
目前,平版印刷的印版是以铝为版基的PS版,经过一 系列的物理、化学处理,在它的表面形成亲油拒水的图文 部分和亲水拒油的空白部分,印刷时,图文部分亲墨疏水, 空白部分亲水疏墨,这样就利用水墨不相容的原理使平版 印刷的油墨转移得以实现。
第一节 平版胶印的内涵 二、平版印刷是利用橡皮布进行的间接印刷 胶印是间接印刷,它在印版滚筒和压印滚筒之间,安 装了一个橡皮滚筒,印版上的图文先转移到橡皮滚筒的橡 皮布上,再转印到承印物的表面。由于加了这么个橡皮布, 平版印刷就有了“胶印”之称。 因为它是间接印刷,印版不直接与承印物接触,而只 与橡皮布接触,大大提高了印版的寿命。
第 五 节 平 版 胶 印 水 墨 平 衡
平版胶印不仅有墨,而且要有水,在印刷的 过程中,到达印版滚筒的墨量是多少,水量是多 少,很有讲究,要保持水墨平衡,否则,墨相对 多了或水相对多了,都不能很好的再现原稿。 在制版的时候我们知道,对平版印版的表面 进行处理,形成亲水疏油和亲油疏水的表面区域 ,即非图像区和图像区。印刷时是利用油水不相 容的原理,非图文部分和图文部分分别依赖于水 膜和墨膜来抗拒彼此的浸润。 抗拒是抗拒,但是这个浸润不是一点没有的, 因为水膜和墨膜的表面张力不同。(举例) 这和水墨的交界处是一样的,尽管水墨不相 容,但由于它们的表面张力不同,交界处互相是 有一定浸润的。
03第三章 药物溶解与溶出及释放-2

• 糖类与醇类 a.糖类—右旋糖酐、半乳糖、蔗糖等;
醇类—山梨醇、甘露醇、木糖醇等; b.常用它们的特点是水溶性强,毒性小,因分子中有 多个羟基,可同药物以氢键结合生成固体分散体,适
用于剂量小、熔点高的药物,尤以甘露醇为最佳。
• 有机酸类
a.常用有枸橼酸、琥珀酸、酒石酸、胆酸、去氧胆酸
等,分子量小,易溶于水而不溶于有机溶剂;
• 来源易得,成本低廉
4
(一)常用水溶性载体材料:高分子聚合物、 表面活性剂、有机酸、糖类及纤维素衍生物等。
• 聚乙二醇(PEG)
a.药物从PEG分散物中溶出速度主要受PEG分子量影
响(1000-20000)。一般随PEG分子量增大,药物溶
出速度降低。
b. 最常用的为PEG4000和6000—熔点低、毒性小、化
学性质稳定、与多种药物配伍。
c. 药物为油类时,宜用分子量更高的PEG类作载体,
如PEG12000、PEG6000与PEG20000的混合物。单用
PEG6000作载体,则固体分散体变软,特别是温度较
高时载体a.无定型高分子聚合物,无毒,熔点较高(不宜采
用熔融法),易溶于水和多种有机溶剂,对多种 药物有较强抑晶作用。 b. PVP易吸湿,所制备的固体分散物贮存过程中易 吸湿而析出药物结晶。
• 表面活性剂类 a.作为载体材料的表面活性剂大多含聚氧乙烯基,
其特点是溶于水或有机溶剂,载药量大,在蒸发 过程中可阻滞药物产生结晶。 b.常用Pluronic F68(片状固体,毒性小,粘膜刺激 性极小,采用熔融法和溶剂法制备固体分散体。
6
• 纤维素衍生物
羟丙纤维素(HPC)、羟丙甲纤维素(HPMC)等。
22
4. 研磨法
油层物理何更生版第三章3-4节课件

24
2 评 估 岩 石 储 集 性
25
3.
确
定
Swr
4.确定油层Pc(J(sw)函数) J(sw)=Pc(K/)0.5/cosθ 利用J(sw)函数可求出同一类型岩石平均Pc 曲线,还可找出不同类型岩石的物性特征。
26
5.确定自由水面的高度h(确定油水过渡带)油
水过渡带成因(见下图):
图
3-50 油藏中的油水过渡带分布示意图
22
复习思考题: 1.毛管压力Pc公式是怎样建立的? 2.指出毛管压力Pc的三个意义。 3.油水润湿角大于900 时,是水驱油的动 力还是阻力? 4.何谓贾敏效应?写出其公式。 5.简述毛管压力Pc曲线的测定原理。 6.毛管压力Pc曲线的形状与岩石的分选有 何关系?
23
五、毛管力曲线的应用
1.研究岩石孔隙结构 (1)孔隙喉道分布曲线; (2)孔隙喉道累积分布曲线。
27
应用上式需将室内(Pc)l换成油层条件下的(Pc)R: 室内(Pc)L=2б 地层 (Pc)R=2б 因为 cosθ
wgcosθ wg/r 0wcosθ 0w/r
(Pc)R/(Pc)L=б
owcosθ 0w/б wgcosθ wg;
0w/cosθ wg≈1
∴ (Pc)R=(Pc)L (б
w0
/б
13
3.贾敏效应 珠泡在孔道窄口遇阻时产生的阻力效应。此种情况, 前后两端弯液面曲率不等,因而产生了第三种毛管效应 Pc3,即 Pc3 = 2б wo(1/R2"-1/R1ˊ) 若使珠泡通过喉道,所需的附加压差为 Pc3=2б wo/(1/r-1/R1ˊ) r = R 2" 若考虑液滴后端的R1ˊ=∞,则Pc3为最大时, Pc3=2б wo(1/r-1/∞)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
润湿滞后: 润湿滞后:指三相润湿周界沿固体表面移动的迟缓而产生润湿接 触角改变的现象。 触角改变的现象。
润湿滞后的影响因素包括: 润湿滞后的影响因素包括:
倾斜一个角度α 倾斜一个角度
1、润湿次序(三相周界的移动方向)的影响 、润湿次序(三相周界的移动方向)
润湿次序的含义:固体(岩石)表面一开始是和油接触, 润湿次序的含义:固体(岩石)表面一开始是和油接触,后来水把油驱 赶走代之以水和固体(岩石)表面接触,或者是反之的情况。 赶走代之以水和固体(岩石)表面接触,或者是反之的情况。 三相周界的移动方向的含义: 三相周界的移动方向的含义: A点移动方向是水驱油的方向,即水将占据油原来的部分空间; 点移动方向是水驱油的方向,即水将占据油原来的部分空间; 点移动方向是水驱油的方向 B点移动方向是油驱水的方向,即油将占据水原来的部分空间; 点移动方向是油驱水的方向,即油将占据水原来的部分空间; 点移动方向是油驱水的方向 前进角( ):水驱油 润湿相流体驱赶非润湿相流体)时的接触角; 水驱油( 前进角(θ1):水驱油(润湿相流体驱赶非润湿相流体)时的接触角; 后退角( ):油驱水 非润湿相流体驱赶润湿相流体)时的接触角; 油驱水( 后退角(θ2):油驱水(非润湿相流体驱赶润湿相流体)时的接触角; 由于润湿次序的不同产生了两个不等的接触角,且在一般情况下有: 由于润湿次序的不同产生了两个不等的接触角,且在一般情况下有: θ1>θ > θ2 (θ为原始接触角) 为原始接触角) 为原始接触角 静润湿滞后: 静润湿滞后:由润湿次序不同 而引起的接触角的变化。 而引起的接触角的变化。
二、 润湿滞后现象及其影响因素
润湿滞后是在流体流动过程中出现的一种润湿现象。如图下所示, 润湿滞后是在流体流动过程中出现的一种润湿现象。如图下所示,将原来水平放 置的亲水固体(岩石)表面倾斜一个角度α 可以发现, 置的亲水固体(岩石)表面倾斜一个角度α,可以发现,油-水-固(岩石)三相周界 岩石) 不能立即向前移动,而是油-水两相界面发生变形,使得原始的接触角发生改变, 不能立即向前移动,而是油-水两相界面发生变形,使得原始的接触角发生改变,然 后,三相周界才向前移动。 三相周界才向前移动。
第二节 储层岩石的润湿性 及其对水驱油的影响
本节内容主要包括以下方面: 本节内容主要包括以下方面: 1、润湿性概念 2、岩石润湿性 3、润湿滞后现象及其影响因素 4、油藏岩石润湿性的测定 5、岩石润湿性与水驱油的相互关系 岩石润湿性与水驱油的相互关系
一、储层岩石润湿性
1、润湿的基本概念: 润湿的基本概念:
3、固体表面粗糙度的影响 、 岩石颗粒表面粗糙程度增加,三相周界移动更加迟缓, 岩石颗粒表面粗糙程度增加,三相周界移动更加迟缓, 润湿滞后现象更为显著。 润湿滞后现象更为显著。 固体的棱角和尖锐凸起对润湿滞后有很大的影响。 固体的棱角和尖锐凸起对润湿滞后有很大的影响。尖 锐对对三相周界的移动阻力很大,如下图所示, 锐对对三相周界的移动阻力很大,如下图所示,此时接触角 应该加上“形角 ,才能反映滞后现象, 形角τ” 越大, 应该加上“形角τ”,才能反映滞后现象, “形角 越大, 滞后也越显著。 滞后也越显著。
润湿研究对象: 润湿研究对象: 不混容的两相液体-固体三相体系,或液体-气体- 不混容的两相液体-固体三相体系,或液体-气体-固体 三相体系。 三相体系。 (2)润湿相流体与非润湿相流体: )润湿相流体与非润湿相流体: 能沿固体表面铺开的那一相称为润湿相流体, 能沿固体表面铺开的那一相称为润湿相流体,另一相称为 非润湿相流体。(气相在大多数情况下是非润湿相) 非润湿相流体。(气相在大多数情况下是非润湿相)
(1)润湿: )润湿:
自然界现象:将水滴在玻璃板上,水在玻璃板上迅速铺开, 自然界现象:将水滴在玻璃板上,水在玻璃板上迅速铺开,而如果 是水银滴在玻璃板上,水银液滴在玻璃板上呈现球滴。 是水银滴在玻璃板上,水银液滴在玻璃板上呈现球滴。
空 气 空 气 下沿固体表面流散的现象。 润湿:是指液体在分子力的作用下沿固体表面流散的现象。
4、表面活性物质吸附的影响 、
石油中天然活性物质或人工注入油层的活性剂吸附在岩石的的表面, 石油中天然活性物质或人工注入油层的活性剂吸附在岩石的的表面,润 湿滞后现象增强。 湿滞后现象增强。 下图表明: 下图表明: 曲线1:在光滑干净的大理石表面,水滴趋于平衡的速度很快; 曲线 :在光滑干净的大理石表面,水滴趋于平衡的速度很快; 曲线2:在油中预浸 天的大理石表面 水滴趋于平衡的速度较慢; 天的大理石表面, 曲线 :在油中预浸59天的大理石表面,水滴趋于平衡的速度较慢; 曲线3:经过油酸(活性剂)预处理的大理石表面,水滴趋于平衡的速度更慢; 曲线 :经过油酸(活性剂)预处理的大理石表面,水滴趋于平衡的速度更慢;
附着功W:指将单位面积的湿相流体(如水 如水)从固体表面 亲水岩石表面 亲水岩石表面)驱开所 附着功 :指将单位面积的湿相流体 如水 从固体表面 (亲水岩石表面 驱开所
作的功。(是润湿的反过程。) 作的功。(是润湿的反过程。) 。(是润湿的反过程
由上图知, 由上图知,拉开前的比表面能为σ1,3,拉开后的比表面能为σ2,3 + σ1,2 因此: 因此:W= (σ2,3 + σ1,2 )- σ1,3 因为: 因为: σ2,3 - σ1,3 = σ1,2 cosθ 所以: 1+cosθ) 所以: W=σ1,2 (1+cosθ) 由上式看出, 角越小 附着功W越大 即湿相流体( 角越小, 越大, 由上式看出,θ角越小,附着功 越大,即湿相流体(水)对岩石的润湿程度越 因此,研究附着功的意义是:用附着功判断岩石润湿性。 强; 因此,研究附着功的意义是:用附着功判断岩石润湿性。
研究岩石润湿反转的意义: 研究岩石润湿反转的意义:
岩石润湿反转的特性, 岩石润湿反转的特性,已被油田得到了广泛的合理应 用。表面活性剂驱油是合理应用润湿反转特性的一个实例。 表面活性剂驱油是合理应用润湿反转特性的一个实例。 从地面向油层注入一定量的表面活性剂溶液, 从地面向油层注入一定量的表面活性剂溶液,通过表面活 性剂在油层岩石颗粒表面的吸附, 性剂在油层岩石颗粒表面的吸附,使亲油岩石颗粒表面向 亲水转换,有利于“剥落”岩石颗粒表面的“油膜” 亲水转换,有利于“剥落”岩石颗粒表面的“油膜”,从 而达到提高原油采收率的目的。 而达到提高原油采收率的目的。
(1)当θ<90°时, < ° 水对岩石表面选择性润湿;水为润湿相流体; 水对岩石表面选择性润湿;水为润湿相流体;岩石亲水 或称水湿岩石; 越小 岩石的亲水性越强; 越小, 或称水湿岩石; θ越小,岩石的亲水性越强; (2)当θ>90°时, > ° 油对岩石表面选择性润湿;油为润湿相流体; 油对岩石表面选择性润湿;油为润湿相流体;岩石亲油 或称油湿岩石; 越大 岩石的亲油性越强; 越大, 或称油湿岩石; θ越大,岩石的亲油性越强; (3)当θ=90°时, ° 油、水润湿岩石的能力相当,岩石既不亲水也不亲油, 水润湿岩石的能力相当,岩石既不亲水也不亲油, 即岩石为中性润湿 中性润湿; 即岩石为中性润湿;
2、三相周界移动速度的影响 、
如下图所示,油水在岩石孔隙中静止时,接触角为 ° 如下图所示,油水在岩石孔隙中静止时,接触角为30°,岩石表面具有较强 的水润湿;当水驱油在岩石孔隙中流动时,接触角发生了改变,接触角随水驱油 的水润湿;当水驱油在岩石孔隙中流动时,接触角发生了改变,接触角随水驱油 速度的增大而变大,即滞后现象越严重,当水驱油速度的增大到某一值时, 速度的增大而变大,即滞后现象越严重,当水驱油速度的增大到某一值时,岩石 表面变为亲油性,发生了润湿反转现象。 表面变为亲油性,发生了润湿反转现象。
动润湿滞后: 三相周界移动速度而引起的接触角的变化。 动润湿滞后:由三相周界移动速度而引起的接触角的变化。
静止时, 静止时,θ= 30°,岩石亲水 ° 1 2
水驱油速度为V 水驱油速度为 1时,θ= 60°,岩石亲水性减弱 °
水驱油速度为V 水驱油速度为 2> V1时,θ= 75°,岩石亲水性再减弱 °
3、润湿的实质
油水对岩石表面选择性润湿是作用于三相周界的两相界面张力相互作用 油水对岩石表面选择性润湿是作用于三相周界的两相界面张力相互作用 岩石表面选择性润湿 的结果,当其达到平衡时, 的结果,当其达到平衡时,有:
σ2,3 =
σ1,3 + σ1,2 cosθ
cosθ=A(润湿张力) σ2,3 - σ1,3 = σ1,2 cosθ=A(润湿张力)
水驱油速度为V 水驱油速度为 3> V2时,θ= 115°,岩石类似亲油性, ° 岩石类似亲油性, 发生润湿反转
研究动润湿滞后的意义: 研究动润湿滞后的意义:
亲水油藏水驱油时,当水驱油的速度过大时, 亲水油藏水驱油时,当水驱油的速度过大时,将 导致油藏岩石具有“亲油”的性质。实践证明, 导致油藏岩石具有“亲油”的性质。实践证明,亲油 油藏水驱油的残余油饱和度比亲水油藏水驱油的残余 油饱和度大;因此,从提高原油采收率的目的出发, 油饱和度大;因此,从提高原油采收率的目的出发, 注水开发的油藏,并非注水速度越大就越好。 注水开发的油藏,并非注水速度越大就越好。
A的物理意义:水对岩石表面选择性润湿导致油—岩石界面比表面能的减小。 的物理意义:水对岩石表面选择性润湿导致油 岩石界面比表面能的减小。 岩石界面比表面能的减小 的物理意义 润湿的实质:固体表面自由能的减小。 润湿的实质:固体表面自由能的减小。
4、附着功W(也称粘附功 、附着功 也称粘附功 也称粘附功)
2、储层岩石润湿程度的确定——接触角(θ)(润湿角) 储层岩石润湿程度的确定 接触角( )(润湿角) 接触角 )(润湿角
研究对象: 研究对象:水-油-岩石三相体系。(气-油-岩石和气-水-岩石三相体系 岩石三相体系。(气 。( 岩石和气- 中,气体为非润湿相流体) 气体为非润湿相流体) 分别以1代表水、 代表油、 代表岩石。 分别以1代表水、2代表油、3代表岩石。 表示岩石润湿性程度的参数——接触角 也称润湿角 接触角θ(也称润湿角 表示岩石润湿性程度的参数 接触角 也称润湿角) 接触角θ的确定:通过水 油 岩石三相交点做水 油界面的切线,切线与水-岩 岩石三相交点做水-油界面的切线 接触角 的确定:通过水-油-岩石三相交点做水 油界面的切线,切线与水 岩 的确定 石界面之间的夹角 经过水相)称为接触角( )。 之间的夹角( 180° 石界面之间的夹角(经过水相)称为接触角(θ)。 ( 0° < θ <18 °) °