两种反常积分敛散性的判别方法
反常积分的审敛法

第11章 反常积分§11. 1 反常积分的概念一 基本内容一、无穷限反常积分定义 1 设函数()f x 在[, )a +∞上有定义,且在任意区间[, ]a u 上可积,如果lim()d uau f x x→+∞⎰存在,则称此极限为()f x 在[, )a +∞上的反常积分,亦称为()f x 在[,)a +∞上的无穷限反常积分,简称无穷限积分,记作 ()d af x x+∞⎰.ie ()d lim()d uaau f x x f x x+∞→+∞=⎰⎰:,此时并称 ()d af x x+∞⎰收敛.如果极限不存在,则称 ()d af x x+∞⎰发散.同理可定义 ()d lim()d bbuu f x x f x x-∞→-∞=⎰⎰, ()d ()d ()d a af x x f x x f x x+∞+∞-∞-∞=+⎰⎰⎰,几何解释如图.()d af x x+∞⎰收敛是指图中阴影区域的 面积存在.二、瑕积分定义 2 设函数()f x 在(, ]a b 上有定义,且在点a 的任一右邻域内无界,而在[, ](, ]u b a b ⊂上有界可积,如果 lim ()d buu a f x x+→⎰存在,则称此极限为无界函数()f x 在上(, ]a b 的反常积分,记作 ()d baf x x⎰,ie ()d lim ()d bbauu af x x f x x+→=⎰⎰:,并称 ()d baf x x⎰收敛,否则称其发散.其中a 称为瑕点.无界函数的反常积分亦称为瑕积分.同理可得b 为瑕点时,()d lim ()d buaau bf x x f x x-→=⎰⎰.当()f x 的瑕点(, )c a b ∈,则定义()d ()d ()d bcbaacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d u bauu cu cf x x f x x -+→→=+⎰⎰.若, a b 都是()f x 的瑕点,则定义()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d c uucu au bf x x f x x+-→→=+⎰⎰.二 习题解答1 讨论下列无穷积分是否收敛?若收敛,则求其值 (1)2d x xe x+∞-⎰;解:由于2201d (1)2ux u xe x e --=--⎰,21limd 2ux u xe x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(2)2d x xe x+∞--∞⎰;解:由于22 01d (1)2x u uxe x e -=--⎰21limd 2x ux xe x -→-∞=-⎰而2220d d d 0x x x xe x xe x xe x +∞+∞----∞-∞=+=⎰⎰⎰所以该反常积分收敛,且收敛于0.(3)0x +∞⎰;解:由于21ux ⎛⎫= ⎝⎰,lim 212u →+∞⎛⎫= ⎝.所以该反常积分收敛,且收敛于2.(4) 2 11d (1)x x x +∞+⎰;解:由于22 111111d d (1)1uu x x x x x x x ⎛⎫=-+ ⎪++⎝⎭⎰⎰11111ln 1ln ln 2ux u x x u u ++⎛⎫=-+=-+- ⎪⎝⎭.211limd 1ln 2(1)uu x x x →+∞=-+⎰.所以该反常积分收敛,且收敛于1ln 2-.(5) 2 1d 445x x x +∞-∞++⎰;解:由于 22 0 0111d d(21)4452(21)1u u x x x x x =+++++⎰⎰011arctan(21)arctan(21)228|u x u π=+=+-2 01lim d 445488u u x x x πππ→+∞=-=++⎰,022 111d d(21)4452(21)1uu x x x x x =+++++⎰⎰011arctan(21)arctan(21)282|u x u π=+=-+02 1lim d 44584u u x x x ππ→-∞=+++⎰所以该反常积分收敛,且收敛于2π.(6)1sin d x e x x+∞-⎰;解:由于 11sin d [1(sin cos )]2ux ue x x e u u --=-+⎰,11lim sin d 2ux u e x x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(7) sin d x e x x+∞-∞⎰;解:由于 01sin d [1(sin cos )]2uxu e x x e u u =-+⎰,1limsin d ux u e x x →+∞=∞⎰.所以该反常积分发散. (8)1x +∞⎰.解:由于 1ln(u x u =+⎰,1lim u u x →+∞=+∞⎰.所以该反常积分发散.2 讨论下列瑕积分是否收敛?若收敛,则求其值(1) 1d ()b p a x x a -⎰; 解:由于x a =为瑕点,而11 ()1()11d 11()ln()ln()1p p b p u b a u a p x p px a b a u a p --⎧---≠⎪=--⎨-⎪---=⎩⎰,1 ()11lim d 1()1pb p u u a b a p x p x a p +-→⎧-<⎪=-⎨-⎪∞≥⎩⎰,所以1p <时,该瑕积分收敛,且值为1()1pb a p ---;所以1p ≥时,该瑕积分发散.(2) 12 01d 1x x -⎰;解:由于1x =为瑕点,而u2011d [ln(1)ln(1)]12x u u x =+---⎰,u2011lim d 1u x x -→=∞-⎰.所以该瑕积分发散.(3)2x⎰;解:由于1x =为瑕点,而2(1uux x ==⎰⎰,1lim 2uu x -→=⎰.同理21lim 2uu x +→=⎰,所以该瑕积分收敛,且值为4.(4)1x ⎰;解:由于1x =为瑕点,而1u x =⎰,1lim 1uu x -→=⎰所以该瑕积分收敛,且值为1. (5)1ln d x x⎰;解:由于0x =为瑕点,而1ln d 1ln ux x u u u=-+-⎰,1lim ln d 1uu x x +→=-⎰.所以该瑕积分收敛,且值为1-. (6)x ⎰;解:令2sin x t =,则cos d x t t t=⎰⎰222 02sin d (1cos2)d 2t t t t πππ==-=⎰⎰,所以该瑕积分收敛,且值为2π.(7)1x⎰;解:令2sin x t =,则12 0x tπ=⎰⎰2 02d t ππ==⎰.所以该瑕积分收敛,且值为π.(8) 1 01d (ln )p x x x ⎰. 解:由于0x =,1为瑕点,又11(ln )111d (ln )ln ln 1p p x C p px x x x C p -⎧+≠⎪-=⎨⎪+=⎩⎰,而1p =时,1limlnln x x -→=∞,1p <时,101lim (ln )1p x x p +-→=∞-1p >时,111lim (ln )1p x x p --→=∞-所以p R ∀∈,瑕积分 101d (ln )px x x ⎰发散.3 举例说明:瑕积分 ()d ba f x x⎰收敛时, 2 ()d baf x x⎰不一定收敛.解:例如x ⎰收敛于2π,但 1 0d 1x x x -⎰发散.4 举例说明:积分()d af x x+∞⎰收敛,且()f x 在[,)a +∞上连续时,不一定有lim ()0x f x →+∞=.解:例如 +4 1sin d x x x∞⎰.因令x =+ +4 111sin d 4x x x t ∞∞=⎰⎰.所以 +4 1sin d x x x∞⎰收敛,且4()sin f x x x =在[,)a +∞上连续,但lim ()x f x →+∞不存在.5 证明:若 ()d af x x+∞⎰收敛,且lim ()x f x A→+∞=存在,则0A =. 证:假设0A ≠,不妨设0A >,因lim ()x f x A→+∞=,所以0M ∃>,()2Ax M f x ∍>⇒>“”.于是()d ()2uMAf x x u M >-⎰,从而lim()d uMu f x x →+∞=∞⎰.此与 ()d af x x+∞⎰收敛矛盾,故0A =.6 证明:若()f x 在[,)a +∞上可导,且()d af x x+∞⎰与()d af x x+∞'⎰都收敛,则lim ()0x f x →+∞=.证:因为()d ()()u af x x f u f a '=-⎰,所以由()d af x x+∞'⎰都收敛知lim ()x f x →+∞存在,故由上一题知lim ()0x f x →+∞=.§11. 2 无穷限积分的性质与收敛判别一 基本内容一、无穷限积分的性质 由无穷限积分的定义知()d af x x+∞⎰收敛lim()d uau f x x→+∞⇔⎰存在;由极限的柯西收敛准则知lim()d uau f x x→+∞⎰存在0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.定理1()d af x x+∞⎰收敛0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.性质1 若 1 ()d ,af x x +∞⎰ 2 ()d af x x+∞⎰都收敛,则12,k k ∀,[] 1111()()d ak f x k f x x +∞+⎰也收敛,且[] 11111122 ()()d ()d ()d a aak f x k f x x k f x x k f x x+∞+∞+∞+=+⎰⎰⎰.性质2 若,()u a f x ∀>在[, ]a u 上可积,则b a ∀>, ()d af x x+∞⎰与 ()d bf x x+∞⎰同收同发,且()d ()d ()d b aabf x x f x x f x x+∞+∞=+⎰⎰⎰.性质3 若,()u a f x ∀>在[, ]a u 上可积,则()d af x x+∞⎰收敛()d af x x+∞⇒⎰收敛,且()d ()d aaf x x f x x+∞+∞≤⎰⎰.定义1 如果 ()d af x x+∞⎰收敛,则 ()d af x x+∞⎰称绝对收敛.二、比较判别法比较判别法仅应用于绝对收敛的判别. 由于()()d uaF u f x x=⎰单调上升,所以,()d af x x+∞⎰收敛()()d ua F u f x x⇔=⎰有上界.定理2 若,(),()u a f x g x ∀>在[, ]a u 上可积,且,()()x a f x g x ∀>≤,则 ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛;而 ()d af x x+∞⎰发散()d ag x x+∞⇒⎰发散.推论 (比较判别法的极限形式)若,(),()u a f x g x ∀>在[, ]a u 上可积,, ()0x a g x ∀>>,且()lim()x f x cg x →+∞=, 则(1) 0c <<+∞ ()d af x x+∞⇒⎰与 ()d ag x x+∞⎰同收同发; (2) 0c =时, ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛; (3) c =+∞时, ()d ag x x+∞⎰发散()d af x x+∞⇒⎰发散.当选用 11d p x x +∞⎰为比较“尺子”时,则得下面的柯西判别法.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]a u 上可积,则1(1) ()p f x x ≤,且1p >时, ()d a f x x+∞⎰收敛; 1(2) ()p f x x ≥,且1p ≤时, ()d a f x x+∞⎰发散.定理'3(柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]a u 上可积,且lim ()p x x f x λ→+∞=,则(1) 0λ≤<+∞,且1p >时, ()d af x x +∞⎰收敛; (2) 0λ<≤+∞,且1p ≤时, ()d af x x+∞⎰发散.三、狄立克雷判别法与阿贝尔判别法 此法是对一般无穷限积分的敛散性判别. 定理4 (狄立克雷判别法) 若,()()d uau a F u f x x∀>=⎰有界,()g x 在[,)a +∞上单调,且lim ()0x g x →+∞=,则()()a f x g x dx +∞⎰收敛.定理 5 (阿贝尔判别法) 若()d af x x+∞⎰收敛,()g x 在[,)a +∞上单调有界,则()()d af xg x x+∞⎰收敛.二 习题解答1 设()f x 与()g x 是定义在[,)a +∞上的函数,u a ∀>,()f x 与()g x 在[,]a u 上可积,证明:若2 ()d af x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,则 ()()d af xg x x+∞⎰与 2 [()()]d af xg x x+∞+⎰亦收敛.证:(1) 因为t R ∀∈,()2()()0tf x g x -≥,从而()2()()d 0a tf x g x x +∞+≥⎰, 即222()d 2()()d ()d 0aaat f x x t f x g x x g x x +∞+∞+∞-+≥⎰⎰⎰.故由判别式为负得()2222()()d 4()d ()d 0aaaf xg x x f x x g x x +∞+∞+∞-≤⎰⎰⎰.即()222()()d ()d ()d aaaf xg x xf x xg x x+∞+∞+∞≤⎰⎰⎰.而 2()d a f x x+∞⎰,2()d ag x x+∞⎰收敛,所以 ()()d a f x g x x+∞⎰收敛.又2 [()()]d af xg x x+∞+⎰2()d af x x +∞=⎰2()()d af xg x x +∞+⎰2()d ag x x+∞+⎰,所以2 [()()]d af xg x x+∞+⎰收敛.证:(2) 因为 2 ()d af x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,。
反常积分的敛散性判定方法

内蒙古财经大学本科学年论文反常积分敛散性的判定方法作者陈志强学院统计与数学学院专业数学与应用数学年级2012级学号122094102指导教师魏运导师职称教授最终成绩75分目录摘要..............................................................。
(1)关键词………………………………………………。
.……。
….…………。
.1引言-—--—-———-———--——----—---————-------——-—--———-—-—-—--—---—--—-—-—-----————-—--————--—--—2一、预备知识......................................。
...。
. (2)1.无穷限反常积分…………………………。
.…….…。
…………….。
22.瑕积分........................。
..........。
(3)3。
反常积分的性质........................。
...........。
(3)二、反常积分的收敛判别法.....................................。
.. (4)1无穷积分的收敛判别 (4)(1)。
定义判别法......................。
......。
...................。
(4)(2)。
比较判别法.....................。
............................。
(4)(3)。
柯西判别法.....................。
.. (5)(4)阿贝尔判别法。
…………………..……。
…。
……………。
6(5)。
狄利克雷判别法.............................。
. (7)2瑕积分的收敛判别......................。
........................... ...。
§6.2反常积分判敛法

§6.2反常积分判敛法复习:1.反常积分⎪⎩⎪⎨⎧无界函数的反常积分无穷限的反常积分2.P 积分⎰∞+ apxdx 当1>p 时收敛;当1≤p 时发散。
3. q 积分⎰-baqa x dx )(及)()( b a x b dx baq<-⎰当1<q 时收敛;当1≥q 时发散。
6.2.1无穷区间反常积分判敛法定理1(比较判别法)设),[)( ),(+∞∈a C x g x f ,且)()(0x g x f ≤≤(),[+∞∈a x ), 则(1)当⎰∞+ )(a dx x g 收敛时,⎰∞+ )(a dx x f 也收敛; (2)当⎰∞+ )(adxx f 发散时,⎰∞+ )(adxx g 也发散。
证明:设⎰∞+ )(adxx g 收敛A 于,∵)()(0x g x f ≤≤,∴a b ≥∀,有A dx x g dx x g dx x f b I ababa=≤≤=⎰⎰⎰∞+ )()()()(∵0)()(≥='b f b I ,∴)(b I 单调不减且有上界, 故⎰+∞→+∞→=bab b dxx f b I )(lim)(lim 存在,即⎰∞+ )(adxx f 收敛。
(2)用反证法由(1)即得。
例1.判别反常积分的敛散性: (1)dxex⎰∞+-12解:∵xxee--<<20,而eedx ex x111=-=∞+-∞+-⎰,∴dxex⎰+∞-1收敛,故dxex⎰∞+-12也收敛, (2)⎰∞++0sin 1xx dx解:∵011sin 11>+≥+xxx ,而+∞=+=+∞+∞+⎰)1ln(1x xdx ,∴⎰∞++01xdx 发散,故⎰∞++0sin 1xx dx 也发散。
由于反常积分)0( >⎰∞+a xdx ap当1>p 时收敛;当1≤p 时发散。
因此在定理1中取pxx g 1)(=,即可得反常积分的极限判别法。
定理2(极限判别法)设),[)(+∞∈a C x f ,0)(≥x f ,且l x f x p x =+∞→)(lim ,则当(1)当1>p ,+∞<≤l 0时,⎰∞+ )(a dx x f 收敛; (2)当1≤p ,+∞≤<l 0时,⎰∞+ )(adxx f 发散。
§9.3反常积分判敛法

1 1 dx (q 1
的 q 积分 )收敛,
xx
0x
2
sin 1
sin 1
∴
1 0
x x
dx
,从而
1 0
x dx 收敛。 x
例 5.判别反常积分 ett x1 dt 的敛散性。 0
3.3 函数
1. 函数的定义
函数(x) ett x1 dt ,x(0,) 称为伽马函数。 0
2. 函数的递推公式 : (x1) x(x)(x 0)
例2.判别下列反常积分的敛散性:
(1) x arctan xdx
1 3 x 4 1
(2) ex2dx 0
解:∵ lim x 2 ex2 lim x 2 0 ,( p 2, l 0.)
x
x e x2
∴ ex2 dx 收敛, 1
e
x2
dx
称为概率积分,利用重积分的知识可得
0
ex2 dx 。
0
3.2 被积函数有无穷型间断点的反常积分的判敛法
定理 4(比较判别法)
设 f (x),g(x)C[a, b) , x b 为无穷型间断点,
且 x[a,b) 时,0 f (x) g(x) ,
则敛时,
b a
f
(x)dx
也收敛;
b
b
(2)当 a f (x)dx 发散时,a g(x)dx 也发散。
0
2
注意比较法和极限法只有在被积函数非负的条件下才能用;
若f (x) 0,可考虑 f (x) 0;对 变号的函数,有下列结论 :
定理
设f (x) C[a,) , 若反常积分 f (x) dx收敛,
a
则 f (x)dx也收敛.(绝对收敛的反常积分必收敛).
§6.2反常积分判敛法1

1 x 1 x2
1 1 , p 2, l 1, 1 1 x2
3
(2) x 2 dx
1 1 x 2 3
解:∵ lim x x 2 lim x2 x , p 1, l ,
x 1 x 2 x 1 x 2
3
∴ x 2 dx 发散。
1 1 x 2
(3) x arctan xdx
0 (1 x 2 )(1k 2 x 2 )
解:x1 是瑕点。
1
∵ lim (1 x) 2
1
x1
(1 x2 )(1k 2 x2 )
lim
1
1 , (q 1, l
x1 (1 x)(1k 2x2 ) 2(1k 2 )
2
1) 2(1k 2 )
∴ 1
dx
收敛。
0 (1 x2 )(1k 2 x2 )
(2)
定理 4(比较判别法)
设 f (x),g(x)C[a, b) , x b 为无穷型间断点,
且 x[a,b) 时,0 f (x) g(x) ,
则(1)当
b
ag
(x)dx
收敛时,
b a
f
(x)dx
也收敛;
b
b
(2)当 a f (x)dx 发散时,a g(x)dx 也发散。
定理 5(极限判别法)
设 f (x)C[a, b) , f (x) 0 ,x b 为无穷型间断点,
0
当 x 为正整数n 时,有
(n1)n(n)n(n1)(n1) n(n1)(n2)21(1)n!(1)
而(1) etdt 1 ,故 (n1) n !。 0
3. 函数的定义域的扩充
当 1 x 0 ,即x1 0 时,(x1) 有定义, 从而定义(x) (x1) ,1 x 0 ,
课件:反常积分判敛法

lim ( xa)q f ( x)l 。
xa
16
例 5.判别下列反常积分的敛散性:
(1) 1
dx
(k 2 1) (椭圆积分)
0 (1 x2 )(1k 2 x2 )
解: x1是瑕点。
1
∵ lim (1 x) 2
1
x1
(1 x2 )(1k 2 x2 )
lim
1
1
,(q
1 ,
l
1
)
x1 (1 x)(1k 2 x2 ) 2(1k 2 ) 2
I1
1 0
et
t
x1
dt
,
I2
et t x1 dt ,
1
先讨论 I1 的敛散性。
①当 x1 时,I1 是常义积分,收敛的;
∵ lim (t 0)1x et t x1 lim et 1 ,
t0
t0
20
②当0 x1 时,有 q1 x1, l 1,
∴ I1
1 et t x1 dt 收敛。
0
③ x0时,
1
0
收敛。
例 2.判别下列反常积分的敛散性:自习
(1)
1 1 sinx2dx
解:∵
0sin
1 x2
1 x2
, 而
1
1 x2
dx
收敛
,
∴
sin
1
1 x2
dx
收敛
。
(2)
0
1
dx x sinx
解:∵
1
1 x sinx
1 1 x
0
,而
dx 0 1 x
ln(1
x)
0
,
∴
5.5 反常积分的审敛法

3 2
根据极限审敛法 , 该积分发散 .
5.5 反常积分的审敛法
函数
二、无界函数反常积分的审敛法
无界函数的反常积分可转化为无穷限的反常积分 . 由定义 例如
1 令 x a , 则有 t b f ( x) d x lim
a
f ( x) d x a f ( x) d x lim 0 a
函数
这表明左端的积分可用 函数来计算. 例如,
5.5 反常积分的审敛法 四、内容小结
函数
1. 两类反常积分的比较审敛法和极限审敛法 .
2. 若在同一积分式中出现两类反常积分, 可通过 分项使每一项只含一种类型的反常积分, 只有 各项都收敛时, 才可保证给定的积分收敛 . 3. 函数的定义及性质 .
根据极限审敛法, 椭圆积分收敛 .
5.5 反常积分的审敛法
函数
三、 函数
1. 定义5.4 函数
( s )
s 1 x x e 0
d x ( s 0)
下面证明这个特殊函数在 s 0 内收敛 .令
I1
ቤተ መጻሕፍቲ ባይዱ
1) 讨论 I1 . 当s 1时, I1 是定积分 ; 1 1 1 s 1 x 当0 s 1时, x e 1 s x 1 s x e x 而1 s 1, 根据比较审敛法知 I1 收敛 .
函数
的敛散性 .
解
由比较审敛法可知原积分收敛 .
5.5 反常积分的审敛法 例2 判别反常积分
函数
1
1
dx x 1 x2
2
的敛散性 .
解
lim x
x
2
x 1 x
两种反常积分敛散性的判别方法

两种反常积分敛散性的判别方法反常积分是指在规定的区间上,被积函数无界,或者积分区间为无穷区间的情况下,计算积分时出现的问题。
判断反常积分的收敛性或发散性是数学分析中的一项重要内容。
下面将介绍两种常见的反常积分的收敛性判别方法。
一、比较判别法比较判别法是反常积分判别方法中最常用的一种方法。
主要思想是通过比较待求反常积分与已知收敛或发散的积分之间的大小关系来判断待求反常积分的收敛性或发散性。
1.比较判别法之比较审敛准则a.比较审敛准则:若对于一个正值函数f(x)及一个非负函数g(x),在其中一点x0附近有f(x)≤g(x),则在该点附近函数f(x)的反常积分收敛则函数g(x)的反常积分也收敛。
b.比较审敛准则的推广:若对于一个正值函数f(x)及一个非负函数g(x),在其中一区间上有f(x)≤g(x),则在该区间上函数f(x)的反常积分收敛则函数g(x)的反常积分也收敛。
2.比较判别法之极限审敛准则a. 极限审敛准则:若在其中一点x0附近,存在一个正数A,使得lim[f(x)/g(x)] = A,则在该点附近函数f(x)的反常积分收敛则函数g(x)的反常积分也收敛。
b. 极限审敛准则的推广:若在其中一区间上,存在一个正数A,使得lim[f(x)/g(x)] = A,则在该区间上函数f(x)的反常积分收敛则函数g(x)的反常积分也收敛。
比较判别法的优点是简单易用,但需要找到合适的比较函数,有时可能比较困难。
二、绝对收敛性判别法绝对收敛性判别法是反常积分收敛性判别方法中的另一种重要方法。
主要思想是通过研究被积函数的绝对值函数的收敛性来判断原函数的收敛性。
1. 绝对收敛性判别法之Dirichlet判别法a. Dirichlet判别法:若被积函数f(x)在区间[a,b]上满足以下两个条件:i.f(x)在[a,b]上的每个有限区间上是单调函数;ii. f(x)在[a,b]上仅有有限个间断点则f(x)的反常积分在区间[a,b]上绝对收敛。