北师大版数学七年级上册 2.3绝对值 同步练习2

合集下载

2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题(教师版)

2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题(教师版)

2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题专题课1 绝对值的应用类型1 绝对值的非负性①|a |≥0.①若|a |+|b |=0,则a =b =0.1.若|x |=x ,则x 的取值范围是( )A .x >0B .x ≤0C .x ≥0D .x <0 2.若|x -2|=2-x ,则x 的取值范围是__________. 3.已知|x -3|+|y -1|=0,求2x +3y 的值.4.已知有理数|x -2|与|y -3|互为相反数,求x +y +xy 的值.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是________. 6.当b =12 时,5-|2b -1|会有最大值,最大值是________.7.已知x 为有理数,则|x -5|+|x -3|的最小值是________.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =________;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x-3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少?专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 ________-0.009;-2 0192 020 ________-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;(2)-45 与-56 ;(3)-821 与-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是________.4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度?5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)画出数轴,标出A,B,C三点在数轴上的位置,并写出A,B,C三点表示的数;(2)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D表示的数.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=________,b=________.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是________.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.-4 B.0 C.-2 D.4 12.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )13.有理数a,b在数轴上的位置如图所示,且|a|=2,|b|=3,则a=________,b=________.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B→D(________),C→________(-3,-4);(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程.类型4利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52 ,-3,观察数轴,与点A 的距离3的点表示的数是________,A ,B 两点之间的距离为________;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是________;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是________,点N 表示的数是________. 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是________; ①从-2到2有5个整数,分别是________________; ①从-3到3有7个整数,分别是________________________; ①从-100到100有________个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有________个整数;(3)在单位长度是1 cm 的数轴上任意画一条长为1 000 cm 的线段AB ,线段AB 盖住的整点最多有多少个?专题课4 有理数的加减运算技巧有理数的加减运算的简便方法归纳 方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).方法2 同号结合法——把正数和负数分别结合相加 【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.方法3 同分母结合法 【例3】 计算:(1)-23 -35 +78 -13 -25 +18 ;(2)-479 -(-315 )-(+229 )+(-615 ).方法4 凑整结合——分数相加,把相加得整数的数先结合相加 【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78 .方法5 分解——将一个数拆分成两个数的和或差 【例5】 计算:-156 +(-523 )+2434 +312 .方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14 ,…,根据规律完成下列各题. (1)19×10=________; (2)计算12 +16 +112 +120 +…+19 900的值为________.易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123 .强化训练 计算:(1)(-7)-(+5)+(-4)-(-10);(2)-9+6-(+11)-(-15);(3)3.5-4.6+3.5-2.4;(4)12 +(-23 )+45 +(-12 )+(-13 );(5)-478 -(-512 )+(-412 )-318 ;(6)0.25+112 +(-23 )-14 +(-512 );(7)|-12 |-(-2.5)-(-1)-|0-212 |;(8)0+1-[(-1)-(-37 )-(+5)-(-47 )]+|-4|;(9)-205+40034 +(-20423 )+(-112 );(10)-12 -16 -112 -120 -130 -142 -156 -172 ;(11)1-2-3+4+5-6-7+8+…+97-98-99+100.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳 方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412 ).方法2 运用乘法对加法的分配律 【例2】 计算:(1)-16×(34 -78 +12 )+(-1)2020.(2)391314 ×(-14);方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367 .方法4 除法变乘法,再利用乘法对加法的分配律 【例4】 计算:(113 -58 +712 )÷(-124 ).强化训练计算:(能用简便方法的尽量用简便方法计算) (1)-0.75×(-112 )÷(-214 );(2)-(3-5)×32÷(-1)3;(3)(-1.5)×45 ÷(-25 )×34 ;(4)-14-(12 -23 +14 )×12;(5)(-5)÷(-127 )×(-214 )÷7;(6)1318 ÷(-7);(7)(-5)-(-5)×110 ÷110 ×(-5);(8)2×(-137 )-234 ×13+(-137 )×5+14 ×(-13);(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18 ;(10)-14-(-512 )×411 +(-2)3÷|-32+1|;(11)1-(-112 )÷(12 -14 -16 );(12)1-0.52 -|0.5-23 |÷13 ×|-2-(-3)2|;(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.2021-2022学年北师大版七年级数学上册第二章有理数及其运算章末专题复习练习题专题课1绝对值的应用类型1绝对值的非负性①|a|≥0.①若|a|+|b|=0,则a=b=0.1.若|x|=x,则x的取值范围是( C )A.x>0 B.x≤0 C.x≥0 D.x<02.若|x-2|=2-x,则x的取值范围是x≤2.3.已知|x-3|+|y-1|=0,求2x+3y的值.解:因为|x-3|和|y-1|均为非负数,即|x-3|≥0, |y-1|≥0,又因为|x-3|+|y-1|=0,所以|x-3|=0,|y-1|=0.所以x-3=0,y-1=0.所以x=3,y=1.所以2x+3y=2×3+3×1=9.4.已知有理数|x-2|与|y-3|互为相反数,求x+y+xy的值.解:因为|x-2|与|y-3|互为相反数,所以|x-2|=-|y-3|.所以|x-2|+|y-3|=0.所以x-2=0,y-3=0.所以x=2,y=3.所以x+y+xy=2+3+2×3=11.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是2. 6.当b =12 时,5-|2b -1|会有最大值,最大值是5.7.已知x 为有理数,则|x -5|+|x -3|的最小值是2.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =7或-3;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x -3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少? 解:(2)当3≤x ≤6时,|x -3|+|x -6|有最小值,最小值为3. (3) 当x =2时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值为7.专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( C )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( A )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( A )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .解:-a ,-b 对应的点如图所示. 由数轴上点的位置可得-b <a <-a <b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.解:各数分别为:3.5,-3.5,-12,±3,-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12 >-1>-3>-3.5.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( D )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( D )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 >-0.009;-2 0192 020 >-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来. 解:5>1>0>-2>-3.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2,且0.1<0.2,所以-0.1>-0.2.(2)-45 与-56;解:因为|-45 |=45 =2430 ,|-56 |=56 =2530 ,且2430 <2530 , 所以-45 >-56 .(3)-821 与-|-17 |.解:-|-17 |=-17.因为|-821 |=821 ,|-17 |=17 =321 ,且821 >321 , 所以-821 <-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( B )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( A ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( B )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( A )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( C )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是-7或-1. 4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度? 解:如图所示.4>212>-1.5>-|-3|>-5.最大数与最小数两点之间相距9个单位长度.5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C .(1)画出数轴,标出A ,B ,C 三点在数轴上的位置,并写出A ,B ,C 三点表示的数; (2)根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D 出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D 表示的数. 解:(1)如图:A ,B ,C 三点表示的数分别为4,6,-4.(2)点C 可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.(3)从原点向右爬4个单位长度,再向左爬7个单位长度,可以到D ,结合数轴可得,点D 表示的数为-3.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=3,b=-3.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是2或-4.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( A )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?解:(1)点C表示的数是-1.(2)点C表示的数是0.5,D表示的数是-4.5.类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( D )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( C )A .-4B .0C .-2D .412.已知a ,b 是不为0的有理数,且|a |=-a ,|b |=b ,|a |>|b |,那么用数轴上的点来表示a ,b 时,正确的是( C )13.有理数a ,b 在数轴上的位置如图所示,且|a |=2,|b |=3,则a =2或-2,b =3.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B →D (+3,-2),C →A (-3,-4);(2)若贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程.解:|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10(米).答:贝贝走过的路程为10米.类型4 利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52,-3,观察数轴,与点A 的距离3的点表示的数是4或-2,A ,B 两点之间的距离为3.5;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是4.5;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是-6.5,点N 表示的数是4.5.16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;①从-2到2有5个整数,分别是-2,-1,0,1,2;①从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;①从-100到100有201个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有21个整数;(3)在单位长度是1 cm的数轴上任意画一条长为1 000 cm的线段AB,线段AB盖住的整点最多有多少个?解:依题意,得①当线段AB起点在整点时覆盖1 001个数;①当线段AB起点不在整点,即在两个整点之间时覆盖1 000个数.综上所述,线段AB盖住的整点最多有1 001个.专题课4有理数的加减运算技巧有理数的加减运算的简便方法归纳方法1相反数结合法【例1】计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2同号结合法——把正数和负数分别结合相加【例2】计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.方法3同分母结合法【例3】计算:(1)-23 -35 +78 -13 -25 +18; 解:原式=(-23 -13 )+(-35 -25 )+(78 +18) =-1-1+1=-1.(2)-479 -(-315 )-(+229 )+(-615). 解:原式=[-479 -(+229 )]+[-(-315 )+(-615)] =-7-3=-10.方法4 凑整结合——分数相加,把相加得整数的数先结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78. 解:原式=0.75-3+0.25+18 +78=(0.75+0.25)+(18 +78)-3 =1+1-3=-1.方法5 分解——将一个数拆分成两个数的和或差【例5】 计算:-156 +(-523 )+2434 +312. 解:原式=(-1-56 )+(-5-23 )+(24+34 )+(3+12) =[(-1)+(-5)+24+3]+[(-56 )+(-23 )+34 +12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14,…,根据规律完成下列各题.(1)19×10 =19 -110 ; (2)计算12 +16 +112 +120 +…+19 900 的值为99100 .易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123. 解:原式=6+34 +3+13 -5-14 -3-12 +1+23=(6+3-5-3+1)+(34 +13 -14 -12 +23) =2+1=3.强化训练计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(4)12 +(-23 )+45 +(-12 )+(-13); 解:原式=[12 +(-12 )]+[(-23 )+(-13 )]+45=0+(-1)+45=-15.(5)-478 -(-512 )+(-412 )-318; 解:原式=-478 +512 -412 -318=(-478 -318 )+(512 -412) =-8+1=-7.(6)0.25+112 +(-23 )-14 +(-512); 解:原式=14 +112 +(-23 )-14 +(-512) =(14 -14 )+[112 +(-23 )+(-512)] =-1.(7)|-12 |-(-2.5)-(-1)-|0-212|; 解:原式=12 +2.5+1-212=12 +1+(2.5-212) =112.(8)0+1-[(-1)-(-37 )-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37 -5+47]+4 =1-[(-1+37 +47)-5]+4 =10.(9)-205+40034 +(-20423 )+(-112); 解:原式=(-205)+400+34 +(-204)+(-23 )+(-1)+(-12) =(400-205-204-1)+(34 -23 -12) =-10+(-512) =-10512.(10)-12 -16 -112 -120 -130 -142 -156 -172; 解:原式=-(12 +16 +112 +120 +130 +142 +156 +172) =-(1-12 +12 -13 +13 -14 +14 -15 +15 -16 +16 -17 +17 -18 +18 -19 ) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100)=-1+1-1+1-…-1+1=0.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412). 解:原式=-531 ×29 ×3115 ×92=-(531 ×3115 )×(29 ×92) =-13×1 =-13.方法2 运用乘法对加法的分配律【例2】 计算:(1)-16×(34 -78 +12)+(-1)2020. 解:原式=-16×34 +16×78 -16×12+1 =-12+14-8+1=-5.(2)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367. 解:原式=-367×(4-3+6) =-27.方法4 除法变乘法,再利用乘法对加法的分配律【例4】 计算:(113 -58 +712 )÷(-124). 解:原式=(43 -58 +712)×(-24) =43 ×(-24)-58 ×(-24)+712×(-24) =-32+15-14=-31.强化训练计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112 )÷(-214); 解:原式=-34 ×(-32 )×(-49) =-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45 ÷(-25 )×34; 解:原式=32 ×45 ×52 ×34=94.(4)(2020·成都成华区期末)-14-(12 -23 +14)×12; 解:原式=-1-12 ×12+23 ×12-14×12 =-1-6+8-3=-2.(5)(-5)÷(-127 )×(-214)÷7; 解:原式=-5×79 ×94 ×17=-54.(6)1318÷(-7); 解:原式=1318 ×(-17) =(14-78 )×(-17) =-2+18=-178.(7)(-5)-(-5)×110 ÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5) =-5-25=-30.(8)2×(-137 )-234 ×13+(-137 )×5+14×(-13); 解:原式=-137 ×(2+5)-13×(234 +14) =-107×7-13×3 =-10-39=-49.(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)-14-(-512 )×411+(-2)3÷|-32+1|; 解:原式=-1+112 ×411-8÷8 =-1+2-1=0.(11)1-(-112 )÷(12 -14 -16); 解:原式=1+112 ÷(612 -312 -212) =1+112 ÷112=1+1=2.(12)1-0.52-|0.5-23 |÷13 ×|-2-(-3)2|; 解:原式=-4-16×3×11 =-4-112=-192.(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.解:原式=[(-1)-32 ×18+56 ×18+19×18]÷4 =(-1-27+15+2)÷4 =(-11)÷4=-114.。

北师大版数学七年级上册期中同步练习含答案

北师大版数学七年级上册期中同步练习含答案

北师大版数学七年级上册期中同步练习(含答案)七年级上学期北师大版数学期中同步练习一.选择题(共10小题)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃ B.+2℃ C.+3℃ D.﹣3℃2.有下列各数:﹣1,﹣9,﹣2.23,0,0.,+3,,﹣,其中分数有()A.1个B.2个C.3个D.4个3.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.4.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q5.已知x3m﹣1y3与﹣x5y2n+1是同类项,则5m+3n的值是()A.12 B.13 C.16 D.176.下列说法正确的是()A.没有最小的有理数B.0既是正数也是负数C.有理数包括整数、分数和小数D.﹣1是最大的负有理数7.已知a是一个两位数,b是一个一位数,若把b置于a的左边可以得到一个三位数,则这个三位数可表示成()A.ba B.10b+a C.100b+a D.100b+10a8.如果a、b互为相反数(a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.29.按如图的程序计算,若开始输入的值x为正整数,最后输出的结果小于20,则输出结果最多有()种.A.2个B.3个C.4个D.5个10.如图所示:下列各三角形中的三个数均有相同的规律,由此规律最后一个三角形中,y的值是()A.380 B.382 C.384 D.386二.填空题(共8小题)11.2023年5月11日,国务院第七次全国人口普查小组在发布会上公布,全国人口共141178万人,则141178万人用科学记数法表示为人.12.﹣xy3+2x2y4﹣3是次项式,常数项是.13.比较大小:﹣0.4﹣.14.已知x2﹣2x=3,则3x2﹣6x﹣4的值为.15.已知:(a+2)2+|b﹣1|=0,则(a+b)2022=.16.若代数式:﹣x|a|y3与x2yb是同类项,则a﹣b=.17.有理数a,b,c在数轴上对应的点的位置如图所示,则式子:|c ﹣a|﹣2|a﹣b|+|b+c|=.18.已知关于x的一元一次方程+3=2023x+m的解为x=2,那么关于y的一元一次方程+3=2023(1﹣y)+m的解y=.三.解答题(共7小题)19.计算:(1)﹣4+1.5﹣3.75+8;(2)﹣1.25﹣3+|﹣﹣1|.20.计算:(1)﹣12022×[﹣23﹣32+÷(﹣)]﹣2;(2)[﹣5×+(﹣1)2023]÷(﹣).21.化简:(1)﹣2a2﹣(3a2﹣6a+1)+3;(2)﹣3x﹣(2x﹣3y2)+.22.解方程:(1)3x﹣4x﹣6=1﹣3x+5;(2)3(5x+4)﹣2(x﹣1)=43﹣4(x+3).23.先化简,再求值:5x2y﹣[﹣2(﹣2x2y+xy2﹣3)+3x2y]+2,其中|x|=3,y=,且xy<0.24.春节,即农历新年,是一年之岁首、传统意义上的年节.俗称新春、新年、新岁、岁旦、年禧、大年等,口头上又称度岁、庆岁、过年、过大年.春节历史悠久,由上古时代岁首祈年祭祀演变而来,为了喜迎新春,某水果店现购进水果篮40个和坚果礼盒20个,已知每个水果篮的进价比每个坚果礼盒的进价便宜10%,水果篮每个售价110元,坚果礼盒每个售价150元.(1)春节期间水果店促销,坚果礼盒按售价八折出售,水果篮按原价销售.某公司一共花了1030元买了水果篮和坚果礼盒共9个,问某公司水果篮和坚果礼盒各买了多少个?(2)在(1)的条件下水果篮和坚果礼盒销售一空,水果篮利润是坚果礼盒利润的2倍.问水果篮和坚果礼盒每个进价各是多少元?25.已知数轴上有A、B两点,分别用a、b表示,且关于x、y的多项式2xa+5y2+(b﹣3)y为三次单项式.(1)求出a、b的值,并在数轴上标注A、B两点;(2)若动点Q从B点出发,以每秒2个单位长度的速度向左运动;同时动点P从A点出发,以每秒3个单位长度的速度向右运动,动点P到达原点后立即向左运动(只改变方向,不改变速度大小),则经过多长时间动点P与动点Q到原点的距离相等;(3)在(2)的条件下,P、Q出发的同时,又有一动点M从B点出发,以每秒3.5个单位长度的速度向左运动,则经过多长时间,动点P、Q、M互为余下两点的中点?(请直接写出答案)2022-2023学年七年级上学期北师大版数学期中同步练习(答案)一.选择题(共10小题)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃ B.+2℃ C.+3℃ D.﹣3℃【答案】A2.有下列各数:﹣1,﹣9,﹣2.23,0,0.,+3,,﹣,其中分数有()A.1个B.2个C.3个D.4个【答案】C3.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.【答案】D4.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q【答案】D5.已知x3m﹣1y3与﹣x5y2n+1是同类项,则5m+3n的值是()A.12 B.13 C.16 D.17【答案】B6.下列说法正确的是()A.没有最小的有理数B.0既是正数也是负数C.有理数包括整数、分数和小数D.﹣1是最大的负有理数【答案】A7.已知a是一个两位数,b是一个一位数,若把b置于a的左边可以得到一个三位数,则这个三位数可表示成()A.ba B.10b+a C.100b+a D.100b+10a【答案】C8.如果a、b互为相反数(a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.2【答案】A9.按如图的程序计算,若开始输入的值x为正整数,最后输出的结果小于20,则输出结果最多有()种.A.2个B.3个C.4个D.5个【答案】B10.如图所示:下列各三角形中的三个数均有相同的规律,由此规律最后一个三角形中,y的值是()A.380 B.382 C.384 D.386【答案】B二.填空题(共8小题)11.2023年5月11日,国务院第七次全国人口普查小组在发布会上公布,全国人口共141178万人,则141178万人用科学记数法表示为1.41178×109人.【答案】1.41178×109.12.﹣xy3+2x2y4﹣3是六次三项式,常数项是﹣3.【答案】六,三,﹣3.13.比较大小:﹣0.4>﹣.【答案】见试题解答内容14.已知x2﹣2x=3,则3x2﹣6x﹣4的值为5.【答案】5.15.已知:(a+2)2+|b﹣1|=0,则(a+b)2022=1.【答案】1.16.若代数式:﹣x|a|y3与x2yb是同类项,则a﹣b=﹣1或﹣5.【答案】﹣1或﹣5.17.有理数a,b,c在数轴上对应的点的位置如图所示,则式子:|c ﹣a|﹣2|a﹣b|+|b+c|=3a﹣b.【答案】3a﹣b.18.已知关于x的一元一次方程+3=2023x+m的解为x=2,那么关于y的一元一次方程+3=2023(1﹣y)+m的解y=﹣1.【答案】﹣1.三.解答题(共7小题)19.计算:(1)﹣4+1.5﹣3.75+8;(2)﹣1.25﹣3+|﹣﹣1|.【答案】(1)2;(2)﹣3.5(或).20.计算:(1)﹣12022×[﹣23﹣32+÷(﹣)]﹣2;(2)[﹣5×+(﹣1)2023]÷(﹣).【答案】(1)20;(2).21.化简:(1)﹣2a2﹣(3a2﹣6a+1)+3;(2)﹣3x﹣(2x﹣3y2)+.【答案】(1)﹣5a2+6a+2;(2)﹣4x+2y2.22.解方程:(1)3x﹣4x﹣6=1﹣3x+5;(2)3(5x+4)﹣2(x﹣1)=43﹣4(x+3).【答案】(1)x=6;(2)x=1.23.先化简,再求值:5x2y﹣[﹣2(﹣2x2y+xy2﹣3)+3x2y]+2,其中|x|=3,y=,且xy<0.【答案】﹣2x2y+2xy2﹣4,﹣10.24.春节,即农历新年,是一年之岁首、传统意义上的年节.俗称新春、新年、新岁、岁旦、年禧、大年等,口头上又称度岁、庆岁、过年、过大年.春节历史悠久,由上古时代岁首祈年祭祀演变而来,为了喜迎新春,某水果店现购进水果篮40个和坚果礼盒20个,已知每个水果篮的进价比每个坚果礼盒的进价便宜10%,水果篮每个售价110元,坚果礼盒每个售价150元.(1)春节期间水果店促销,坚果礼盒按售价八折出售,水果篮按原价销售.某公司一共花了1030元买了水果篮和坚果礼盒共9个,问某公司水果篮和坚果礼盒各买了多少个?(2)在(1)的条件下水果篮和坚果礼盒销售一空,水果篮利润是坚果礼盒利润的2倍.问水果篮和坚果礼盒每个进价各是多少元?【答案】(1)水果篮:5个;坚果礼盒:4个(2)水果篮的进价为:90元;坚果礼盒的进价为:100元.25.已知数轴上有A、B两点,分别用a、b表示,且关于x、y的多项式2xa+5y2+(b﹣3)y为三次单项式.(1)求出a、b的值,并在数轴上标注A、B两点;(2)若动点Q从B点出发,以每秒2个单位长度的速度向左运动;同时动点P从A点出发,以每秒3个单位长度的速度向右运动,动点P到达原点后立即向左运动(只改变方向,不改变速度大小),则经过多长时间动点P与动点Q到原点的距离相等;(3)在(2)的条件下,P、Q出发的同时,又有一动点M从B点出发,以每秒3.5个单位长度的速度向左运动,则经过多长时间,动点P、Q、M互为余下两点的中点?(请直接写出答案)【答案】(1)a=﹣4,b=3.图象见解答;(2)经过1秒或秒时,动点P与动点Q到原点的距离相等;(3)当t=秒时,点M为P,Q的中点;当t=秒或4秒时,点P为M,Q的中点.。

北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)

北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)

北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。

北师大版七年级数学上册:2.3绝对值(教案)

北师大版七年级数学上册:2.3绝对值(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了绝对值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对绝对值的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.培养学生逻辑推理和数学抽象思维,通过对绝对值性质的探究,提升推理能力和数学建模素养。
5.在解决实际问题的过程中,鼓励学生合作交流,培养团队合作精神和问题解决能力。
三、教学难点与重点
1.教学重点
-理解并掌握绝对值的概念:绝对值是数与零点的距离,这一概念是本节课的核心,需要学生深刻理解。
-计算有理数的绝对值:包括正数、负数、零的绝对值计算,以及在实际问题中的应用。
-掌握绝对值在数轴上的表示:理解数轴上各点与原点的距离即为该点的绝对值。
-运用绝对值性质解决问题:如|a|=|b|意味着a和b可能相等,也可能互为相反数。
-绝对值方程和不等式的求解:这是绝对值知识的高级应用,要求学生能够解决形如|ax+b|=c或|ax+b|>c的问题。
举例解释:
-对于重点知识中的绝对值概念,可以通过数轴上两点之间的距离来形象说明,强调无论点在数轴的哪一侧,其绝对值都是非负数。
-绝对值方程和不等式的求解:特别是含有绝对值符号的复合不等式,学生容易在求解过程中迷失方向。
-在实际问题中识别和应用绝对值:需要学生具备一定的抽象思维,将实际问题转化为数学模型。
举例解释:
-对于绝对值的双重性,可以通过对比+5和-5的绝对值来强调,尽管它们在数轴上的位置不同,但绝对值相同。

最新北师大版七年级数学上册《绝对值》优质导学案

最新北师大版七年级数学上册《绝对值》优质导学案

2.3 绝对值【学习目标】1.认真阅读课本15—17页,想一想,有理数的绝对值在数轴上看有什么意义?正数、零、负数的绝对值分别有什么特征?2.你会求一个数的绝对值吗?任何一个数的绝对值是一个什么数?3.已知一个数的绝对值,怎样求这个数?4.请思考互为相反数的两个数的绝对值有什么关系?【重点,难点】重点:绝对值的概念 难点:绝对值的实际意义是什么?为什么它是整数或零?【自主学习】一、绝对值的概念 我们把一个数在 上对应的点到 的 叫做这个数的绝对值二.求一个数(不涉及字母)的绝对值;会求绝对值已知的数1. 求下列各数的绝对值:一般地,一个正数的绝对值是它 ;一个负数的绝对值是它的 ;零的绝对值是 ;互为相反数的两个数的绝对值 。

3,3,0,51,2+--+2. 求绝对值等于2的数三、计算:1.19++-2.810---四、绝对值与相反数完成书本P16课内练习第1题【合作探究】1.见书本P17作业题第1、2题2.见书本P17作业题第3、4题3.见书本P17作业题第5题4.见书本P 17作业题第6题5.写出绝对值小于4的所有整数巩固提高:6.已知031=-++b a ,求a 与b 的值7. 如图,M,N,P,R 分别是数轴上的四个整数所对应的点,其中有一点是原点,且MN=NP=PR=1。

数a 对应的点在M 与N 之间,数b 对应的在P 与R 之间,若|a|+|b|=3,则原点是( )A .M 或R B.N 或P C.M 或N D.P 或R【课后作业】 班级 姓名 学号1.-0.125的相反数是 ,绝对值是2.数轴上表示-6 和6的两点,它们到原点的距离都是3.=-21 ;=--41 ;=-3121 4.=÷-31432 ;=--831611 ;=-π14.35.符号是“+”号,绝对值是7的数是6.绝对值是5.1,符号是“-”号的数是7.若两个数相等,那么它的绝对值 ;若两个数的绝对值相等,那么这两个数的关系为8.绝对值最小的有理数是 ,绝对值等于它的相反数的数是 ,绝对值等于它本身的数是 .(填“零”、“非负数”、“正数”、“非正数”、“负数”)9.抽查4个零件的长度,超过规定长度的记为正,不足规定长度的记为负,下列是4个零件的抽查结果,则其中误差最大的是( )A.-0.3B.-0.2C.0.1D.0.0510.若a 是有理数,则下列说法正确的是( ) A.-a 是负有理数 B.a 是正数 C. a 是非负数 D.-a 是负数 11.已知数轴上A 点到原点的距离是2,那么数轴上到A 点的距离为3的点所表示的数有( )A.1个B.2个C.3个D.4个12.探索下列一组数的规律,然后填空: ⋅⋅⋅--+-+-,13,,9,8,5,4,1,0x(1)根绝你探索的规律,则x 的值为 ;(2)利用你找出的x ,可得x 的相反数与x 的绝对值的和是 ;(3)探索出第10个数是 .13.一辆出租车从O 站出发,先向东行驶12km ,接着向西行驶10km ,然后又向东行驶5km(1)画一条数轴,以O 站出发,向东为正方向,在数轴上表示出租车每次行驶的终点位置;(2)求各次路程的绝对值的和.这个数据的实际意义是什么?【当堂检测】1.-8的绝对值是 ,记作 = .2.-3.2的相反数是 ,绝对值是 .3.=212 ;=0 ;=-31 4.=-6.1 ;=--21 5.计算:=--5.25.2 ;=⨯326.绝对值是21的数是励志名言:1、学习从来无捷径,循序渐进登高峰。

精品 2014年七年级数学上册暑期讲义+同步练习--有理数 第02课 相反数 数轴 绝对值

精品 2014年七年级数学上册暑期讲义+同步练习--有理数 第02课 相反数 数轴 绝对值

第02课相反数数轴绝对值知识点:数轴:做数轴.三要素:数轴画法:①在平面内画一条直线;②标出原点;③用一定的长度作为单位长度,左边和右边标出数字数轴上的点的意义:一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示-a的点在原点的左边,与原点的距离是a个单位长度。

注意:任何一个有理数都可以用数轴上的点来表示。

两点间距离公式:若A对应数字m,B对应数字n,则线段AB=两点中点公式:若A对应数字m,B对应数字n,则线段AB的中点C对应数字为相反数代数概念:,0的相反数是0.几何意义:在数轴上,表示互为相反数的两个数分别位于,且相等。

注意:(1)相反数是指只有符号不同的两个数;(2)相反数是成对出现的,不能单独存在,因而不能说“-6是相反数”。

规定:在任何一个数的前面添上一个"+"号,表示这个数本身;添上一个"-"号,就表示这个数的相反数.一般地,数a的相反数是-a,其中a可是正数和负数和0.注意:a不一定是正数,同样-a也不一定是负数。

公式:若a与b互为相反数,则:或或“-”个数决定结果正负:(1)当“-”个数为偶数个,值为(2)当“-”个数为奇数个,值为“-”号的三种主要意义:(1)性质符号:写在一个数值的前面,表示这个数是负数. 比如,-5表示“负5”这个负数,在这里的“-”号就是表示负数的一种符号,它表明“-5”的性质是负数.(2)相反数符号:表示一个数的相反数时,我们常在这个数的前面添上“-”号.绝对值: 。

例1.判断下图中所画的数轴是否正确?如不正确,指出错在哪里?例2.将 -5、2.5、212、-4、3.25、21、0、1各数用数轴上的点表示出来。

例3.借助数轴回答下列问题:(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来; (2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。

例4.(1)与原点距离为2.5个单位长度的点有 个,它们表示的有理数是 。

北师大版七年级数学上册第二章 2.2数轴 同步提高测试题

北师大版七年级数学上册第二章 2.2数轴 同步提高测试题一、选择题1、下列说法正确的是( )①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③有理数如1001-在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点。

A.①②③④B.②③④C.③④D.④2、以下四个论断中不正确的是( )A.在数轴上,关于原点对称的两个点所对应的两个有理数互为相反数B.两个有理数互为相反数,则它们在数轴上对应的两个点关于原点对称C.两个有理数不等,则它们的绝对值不等D.两个有理数的绝对值不等,则这两个有理数不等3、如图,有理数a ,b 在数轴上对应的点如下,则有( ).A.a >0>bB.a >b >0C.a <0<bD.a <b <0 4、数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在该数轴上随意画出一条长2000厘米的线段AB ,则线段AB 盖住的整点的个数为( )A.2001B.2000C.2000或2001D.2001或20025、如图,在数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d -2a =10,那么数轴的原点应是( )A .A 点 B.B 点 C.C 点 D.D 点 : ( )A.ac >abB.bc ab <C.ab bc <D.b a c b +>+7、与原点距离是2.5个单位长度的点所表示的有理数是( )A.2.5B.-2.5C.±2.5D.这个数无法确定8、有理数a ,b ,c 在数轴上的位置如图所示,式子|a |+|b |+|a +b |+|b -c |化简结果为( )A.2a +3b -cB.3b -cC.b +c D .c -b9、不相等的有理数a 、b 、c 在数轴上对应点分别为A 、B 、C ,若|a -b |+|b -c |=|a -c |,那么点B ( )A.在A.C 点右边B.在A.C 点左边C.在A.C 点之间D.以上均有可能10、若|a |+a =0,则a 是( ).A.正数B.负数C.正数或0D.负数或0二、填空题11、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是___________。

最新北师大版七年级上有理数及其运算同步练习题12

2.1有理数一、 选择题:1.下面说法中正确的是 ( )A .“向东5米”与“向西10米”不是相反意义的量;B .如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;C .如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;D .若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米...2、0是( )A. 正数 B. 负数 C. 整数 D. 正有理数3、 下列说法中正确的是( )A. 整数又叫自然数B. 0是整数C. 一个数不是正数就是负数D. 0不是自然数4、下面说法中,不正确的是 ( )A .在有理数中,零的意义仅表示没有;B .0不是正数,也不是负数,但是有理数;C .0是最小的整数;D .0不是偶数.二、 填空题:1.用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______;(3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______;2、最小的自然数是 ,最大的负整数是 ,最小的非负整数是 。

3. 将下列各数分别填入相应的大括号里:5,-65 ,2013,-0.2,6.8,0,-92 ,-10,85,-2。

正数集合{ } 整数集合{ }负数集合{ } 分数集合{ }4. 不用负数,请讲出下列各题的意义。

(1)某公司在2013年上半年营销情况是-20万元。

(2)向西走了-40米。

(3)运走-60吨大米。

三、 解答题:1、 把下列各数分别填在题后相应的集合中:-15 ,0,-1,0.7,2,-3, 278,-15.1,+28。

(1)正数集合:(2)负数集合:(3)整数集合:(4)分数集合:(5)正整数集合:(6)负整数集合:(7)正分数集合:2、某地一天中午12时的气温是6°C,傍晚5时的气温比中午12时下降了4°C,凌晨4时的温度比傍晚5时还低4°C,问傍晚5时的气温是多少?凌晨4时的气温是多少?2.2数轴一填空题:1.在数轴上表示的两个数中,的数总比的数大。

(北师大版)数学配套练习册七年级上册答案

(北师大版)数学配套练习册七年级上册答案§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90三、1. 正数有:1,2.3,68,+123;负数有:-5.5, ,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{ ,0.02,-7.2, , ,2.1…}负分数集合:{ ,-7.2, … }非负有理数集合:{0.02, ,6,0,2.1,+5,+10…};2. 有31人能够达到引体向上的标准3. (1) (2) 0§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.。

北师大版数学初一上册同步练习:数轴(word解析版)

北师大版数学初一上册同步练习:22.2 数轴(word解析版)学校:___________姓名:___________班级:___________一.选择题(共14小题)1.A为数轴上一点,一只蚂蚁从A点动身,爬了4个单位长度到了原点,则点A表示的数是()A.4 B.﹣4 C.8或﹣8 D.4或﹣42.有理数a、b、c在数轴上表示如图,①a+b<0②bc≤0③c﹣a>0④;上述式子正确的个数为()A.1个B.2个C.3个D.4个3.数轴上A,B两点所表示的数分别是3,﹣2,则表示AB之间距离的算式是()A.3﹣(﹣2) B.3+(﹣2)C.﹣2﹣3 D.﹣2﹣(﹣3)4.如图,5个都市的国际标准时刻(单位:时)在数轴上表示如图所示,那么北京时刻2021年11月15日20时应是()A.纽约时刻2021年11月15日5时B.巴黎时刻2021年11月15日13时C.汉城时刻2021年11月15日19时D.伦敦时刻2021年11月15日11时5.已知数轴上的点A到原点的距离是3,那么在数轴上到点A的距离是3所表示的数有()A.4个B.3个C.2个D.1个6.学校、书店和图书馆依次坐落在一条南北走向的大街上,书店位于学校南边200m处,图书馆位于学校北边100m处,小红从学校沿街向南走了50m,接着又向北走了﹣150m,现在小红的位置在()A.书店 B.学校C.图书馆D.学校南边100m处7.有理数﹣1.5在数轴上表示正确的是()A. B.C.D.8.一个机器人从数轴原点动身,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,同时每步的距离是1个单位长,xn表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:(1)x3=3;(2)x5=1;(3)x108<x104;(4)x2021<x2021;其中,正确结论的序号是()A.(1)、(3)B.(2)、(3)C.(1)、(2)、(3) D.(1)、(2)、(4)9.下列数轴正确的是()A. B. C.D.10.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>011.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在那个数轴上随意画出一条长为2021厘米的线段AB,则线段AB盖住的整点的个数是()A.2021 B.2021 C.2021或2021 D.2021或202112.数轴上的点A到原点的距离是3,则点A表示的是为()A.6或﹣6 B.3 C.﹣3 D.3或﹣313.2021的相反数是()A.﹣2021 B.C.2021 D.﹣14.假如a与﹣2互为相反数,那么a等于()A.﹣2 B.2 C.﹣D.二.填空题(共10小题)15.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.16.一只小球落在数轴上的某点P0,第一次从p0向左跳1个单位到P 1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,若小球从原点动身,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.17.如图,在一条东西方向的公路上有A,B两个站点,两站相距40千米,甲车从A站动身,以48千米/时的速度向东匀速行驶,同时乙车从B 站动身,以36千米/时的速度向东匀速行驶,设t小时后两车相距20千米,则t的值是.18.将数轴上表示﹣1的点A向右移动5个单位长度,现在点A所对应的数为.19.小红在写作业时,不慎将一滴墨水滴在数轴上,依照图中的数据,请确定墨迹遮盖住的整数共有个.20.如图所示,数轴上点A所表示的数为a,则a的值是.21.如图,小黄和小陈观看蜗牛爬行,蜗牛在以A为起点沿数轴匀速爬向B点的过程中,到达C点时用了9分钟,那么到达B点还需要分钟.22.点A、B分别是数﹣3,﹣1在数轴上对应的点.使线段AB沿数轴向右移动到A′B′,且线段A′B′的中点对应的数是3,则点A′对应的数是,点A移动的距离是.23.当a,b互为相反数,则代数式a2+ab﹣2的值为.24.﹣2和它的相反数之间的整数有个.三.解答题(共4小题)25.依照下面给出的数轴,解答下面的问题:(1)请你依照图中A、B(B在﹣2与﹣3的正中)两点的位置,分别写出它们所表示的有理数A:B:;(2)观看数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣2表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2021(M在N的左侧),且M、N两点通过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:N:.26.为了迎接全国文明都市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,假如规定向东为正,向西为负,从动身点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)现在,这辆警车的司机如何向队长描述他的位置?(2)假如现在距离动身点东侧2千米处显现交通事故,队长命令他赶忙赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)27.快递员骑摩托车从快递公司动身,先向东骑行2km到达A村,连续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到公司.(1)以快递公司为原点,以向东方向为正方向,用1cm表示1km画数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100km耗油2.5L,完成此次任务,摩托车耗油多少升?28.①已知x的相反数是﹣2,且2x+3a=5,求a的值.②已知﹣[﹣(﹣a)]=8,求a的相反数.2021-2021学年度北师大版数学七年级上册同步练习:2.2 数轴(wor d解析版)参考答案与试题解析一.选择题(共14小题)1.【分析】依照绝对值的意义得:到原点的距离为4的点有4或﹣4,即可得到A表示的数.【解答】解:∵|4|=4,|﹣4|=4,则点A所表示的数是±4.故选:D.2.【分析】先由数轴可得a<c<0<b,再依照有理数的加,减与乘法判定即可.【解答】解:由数轴可得a<c<0<b,可得①a+b<0,正确;②bc<0,错误;③c﹣a>0,正确;④;故④正确,正确的有3个.故选:C.3.【分析】依照A、B两点所表示的数,利用数轴上两点间的距离公式即可求出线段AB的长度.【解答】解:∵数轴上A、B两点所表示的数分别是3、﹣2,∴A、B之间距离为3﹣(﹣2).故选:A.4.【分析】从数轴上能够看出,巴黎时刻比北京时刻晚7小时,即在北京时刻的基础上减7小时,确实是巴黎时刻了.【解答】解:∵巴黎时刻比北京时刻晚7小时,∴在北京时刻2021年11月15日20时,巴黎时刻2021年11月15日13时.故选:B.5.【分析】依照数轴的相关概念解题.【解答】解:∵数轴上的点A到原点的距离是3,∴A点坐标为±3.又∵与3表示的点距离是3所表示的数有0和6;与﹣3表示的点距离是3所表示的数有0和﹣6;∴在数轴上到点A的距离是3所表示的数有0,±6.故选:B.6.【分析】假如学校在数轴的原点上,相北为正,则学校对应的数是0,书店对应的数是﹣200,图书馆对应的数是100,依照题意列出算式,求出结果,即可得出选项.【解答】解:假如学校在数轴的原点上,相北为正,则学校对应的数是0,书店对应的数是﹣200,图书馆对应的数是100,0+(﹣50)+(﹣150)=﹣200,即现在小红的位置是在书店,故选:A.7.【分析】依照点在数轴上表示判定即可.【解答】解:A、是1.5,错误;B、是﹣0.5,错误;C、是﹣1.5,正确;D、是﹣1,错误;故选:C.8.【分析】本题应先解出机器人每5秒完成一个循环,解出对应的数值,再依照规律推导出答案.【解答】解:依题意得:机器人每5秒完成一个前进和后退,即前5个对应的数是1,2,3,2,1;6~10是2,3,4,3,2.依照此规律即可推导判定.(1)和(2),明显正确;(3)中,108=5×21+3,故x108=21+1+1+1=24,104=5×20+4,故x1 04=20+3﹣1=22,24>22,故错误;(4)中,2021=5×401+2,故x2021=401+1+1=403,2021=401×5+3,故x2021=401+3=404,正确.故选:D.9.【分析】数轴的三要素:原点、正方向和单位长度.【解答】解:A、右边为正方向,正负数标错了,错误;B、单位长度不统一,错误;C、右边单位长度不统一,错误;D、正确.故选:D.10.【分析】依照数轴上点的位置判定即可.【解答】解:依照题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.11.【分析】分线段AB的端点与整点重合和不重合两种情形考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2021+1=2021,∴2021厘米的线段AB盖住2021或2021个整点.故选:C.12.【分析】依照题意能够求得数轴上的点A到原点的距离是3时,点A 表示的数.【解答】解:∵|3﹣0|=3,|﹣3﹣0|=3,∴数轴上的点A到原点的距离是3,则点A表示的数为±3,故选:D.13.【分析】依照相反数的意义,可得答案.【解答】解:2021的相反数是﹣2021,故选:A.14.【分析】一个数的相反数确实是在那个数前面添上“﹣”号.【解答】解:﹣2的相反数是2,那么a等于2.故选:B.二.填空题(共10小题)15.【分析】先依照已知条件能够确定线段AB的长度,然后依照点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,依照题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.16.【分析】依照题意,能够发觉题目中每次跳跃后相关于初始点的距离,从而能够解答本题.【解答】解:由题意可得,小球从原点动身,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是6÷2=3,小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是:n+2﹣(2n÷2)=2,故答案为:3,2.17.【分析】分两种情形构建方程即可解决问题.【解答】解:设t小时后两车相距20千米.由题意:40+36t﹣48t=20或48t﹣(40+36t)=20解得t=或5.因此或5小时后两车相距20千米.故答案为或5小时.18.【分析】点A在数轴上,表示的数为﹣1,点A向右移动5个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【解答】解:﹣1+5=4.答:现在点A所对应的数为4.故答案为:4.19.【分析】依照有理数大小比较的方法,判定出﹣和2之间的整数有多少个即可.【解答】解:∵﹣和2之间的整数有3个:﹣1、0、1,∴墨迹遮盖住的整数共有3个.故答案为:3.20.【分析】依照图形,利用勾股定理能够求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.21.【分析】由数轴可得A到C有三个单位长度,用时9分钟能够求得每个单位长度用的时刻,由C到B有两个单位程度,从而能够求得由C到B 用的时刻,本题得以解决.【解答】解:∵9÷3=3,∴2×3=6,即由C到点B还需要6分钟.故答案为:6.22.【分析】第一依照点A、B分别是数﹣3,﹣1在数轴上对应的点,求出线段AB的中点对应的数是多少;然后用线段A′B′的中点对应的数减去线段AB的中点对应的数,求出点A移动的距离是多少;最后用点A表示的数加上点A移动的距离,求出点A′对应的数是多少即可.【解答】解:∵点A、B分别是数﹣3,﹣1在数轴上对应的点,∴线段AB的中点对应的数是:(﹣3﹣1)÷2=﹣2,∴点A移动的距离是:3﹣(﹣2)=5,∴点A′对应的数是:﹣3+5=2.故答案为:2、5.23.【分析】依照互为相反数的和为0,即可解答.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣2=a(a+b)﹣2=0﹣2=﹣2,故答案为:﹣2.24.【分析】依照相反数的意义,可得答案.【解答】解:﹣2和它的相反数2之间的整数有﹣2,﹣1,0,1,2,故答案为:5.三.解答题(共4小题)25.【分析】(1)(2)观看数轴,直截了当得出结论;(3)A点与﹣2表示的点相距4单位,其对称点为﹣0.5,由此得出与B点重合的点;(4)对称点为﹣0.5,M点在对称点左边,距离对称点2021÷2=1005个单位,N点在对称点右边,离对称点1005个单位,由此求出M、N两点表示的数.【解答】解:(1)由数轴可知,A点表示数1,B点表示数﹣2.5.(2)A点表示数1,与点A的距离为4的点表示的数是:﹣3或5.(3)当A点与﹣2表示的点重合,则B点与数1.5表示的点重合.(4)由对称点为﹣0.5,且M、N两点之间的距离为2021(M在N的左侧)可知,点M、N到﹣0.5的距离为2021÷2=1005,因此,M点表示数﹣0.5﹣1005=﹣1005.5,N点表示数﹣0.5+1005=100 4.5.故答案为:(1)A:1 B:﹣2.5;(2)﹣3或5;(3)1.5;(4)M:﹣1005.5 N:1004.5.26.【分析】(1)把数据+2,﹣3,+2,+1,﹣2,﹣1,﹣2相加,然后依照运算的结果可判定他的位置;(2)把数据+2,﹣3,+2,+1,﹣2,﹣1,﹣2,+2的绝对值相加得到他所走的路程,然后运算耗油量.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为动身点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|+|+2|=18(千米),∴18×0.2=3.6(升),∴这次出警共耗油3.6升.27.【分析】(1)依照题意画出数轴即可;(2)依照数轴即可求出CA的距离;(3)求出邮递员走的总路程,依照题意即可求出耗油的数量.【解答】解:(1)依题意得,数轴为:(2)依题意得:点C与点A的距离为:2+4=6(km);(3)依题意得,邮递员骑了:2+3+9+4=18(km)∴共耗油量为:18×0.025=0.45(升)答:摩托车耗油0.45升.28.【分析】①直截了当利用相反数的定义得出x的值,进而得出a的值;②直截了当去括号得出a的值,进而得出答案.【解答】解:①∵x的相反数是﹣2,且2x+3a=5,∴x=2,故4+3a=5,解得:a=;②∵﹣[﹣(﹣a)]=8,∴a=﹣8,∴a的相反数是8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 绝对值
一、选择题
1、下列各组中互为相反数的是( )

A、–2与21 B、2和2 C、–2.5与2 D、21与21
2、若a是有理数,则a一定( )
A、是正数 B、不是正数 C、是负数 D、不是负数
3、如果a是负有理数,则下列各式中成立的是( )
A、aa B、aa C、aa D、aa1
4、质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查
结果如下:第一个为0.13豪米,第二个为–0.12毫米,第三个为–0.15毫米,第四个为0.11毫
米,则质量最差的零件是( )
A、第一个 B、第二个 C、第三个 D、第四个
5、下列说法中正确的是( )
A、绝对值小于2的数有三个 B、绝对值是2的数有两个
C、绝对值是–2的数有一个 D、任何数的绝对值都是正数
6、如果aa,那么( )
A、–a一定是负数 B、–a一定是非负数
C、a一定是正数 D、a不能是0
二、填空题
7、符号是“–”号,绝对值是7的数是______.

8、绝对值不大于3的负整数有______.
9、如果2x,则x=______.

10、若01ba,则a=_______,b=______.

三、解答题
11、比较下列每对数的大小:
32与52, 2与36, 61与112, 73与5
2

,

12、比较下列每对数的大小:
107与103, 21与31, 51与201, 21与3
2

13、已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,甲
数位于乙数的右侧,两点之间的距离是8,求这两个数.
14、说出符合下列条件的字母所表示的有理数是正数?负数? 还是零?
(1)aa (2)aa (3)aa (4)aa

参考答案
一、1.D 2.D 3.A 4.C 5.B 6.B
二、7、-7
8、-1,-2,-3
9、2或-2
10、0,1
三、
11、>,=,<,>
12、<,<,<,>
13、甲为6,乙为-2.
14、(1)正数或零 (2)正数 (3)负数 (4)正数

相关文档
最新文档