数据挖掘教学大纲
《数据挖掘》课程教学大纲

《数据挖掘》课程教学⼤纲《数据挖掘》课程教学⼤纲⼀、《数据挖掘》课程说明(⼀)课程代码:14132007(⼆)课程英⽂名称:Data Mining(三)开课对象:计算机与信息管理及其相关专业(四)课程性质:数据挖掘是信息与计算科学专业的专业课程,本课程以数据挖掘为主要内容,讲述实现数据挖掘的各主要功能、挖掘算法和应⽤,并通过对实际数据的分析更加深⼊地理解常⽤的数据挖掘模型。
掌握⼤型数据挖掘软件SAS Enterprise Miner的使⽤,培养学⽣数据分析和处理的能⼒。
先修课程:《数据库原理》、《概率论与数理统计》、《SAS软件基础》。
(五)教学⽬的:通过《数据挖掘》课程的教学,使学⽣理解数据挖掘的基本概念和⽅法,学习和掌握SAS Enterprise Miner中的数据挖掘⽅法。
学⽣能够借助SAS Enterprise Miner软件⼯具进⾏具体数据的挖掘分析。
(六)教学内容:本课程主要学习的内容包括数据预处理、分类与预测、聚类分析等内容。
(七)教学时数课程学时:48学分:3(⼋)教学⽅式以多媒体教学⼿段为主要形式的课堂教学(九)考核⽅式和成绩记载说明考核⽅式笔试加上机⼤作业,严格考核学⽣出勤情况,达到学籍管理规定的旷课量取消考试资格。
综合成绩根据平时成绩和期末成绩评定,平时成绩占40% ,期末成绩占60% 。
⼆、讲授⼤纲与各章的基本要求第⼀章数据挖掘导论教学要点:1、熟悉数据挖掘的基本概念和功能2、了解数据挖掘的系统分类教学时数:8学时教学内容:第⼀节数据挖掘发展概述2、基本应⽤概述第⼆节数据挖掘功能1、概念描述:定性与对⽐2、关联分析3、分类与预测4、聚类分析5、异类分析6、演化分析第三节数据挖掘系统1、系统分类2、系统应⽤3、数据挖掘在医学信息系统和社会保险领域的应⽤考核要求:1、数据挖掘发展概述1.1功能和基本应⽤概述(识记)2、数据挖掘功能2.1概念描述(识记)2.2关联分析(领会)2.3分类与预测 (领会)2.4聚类分析 (领会)2.5异类分析 (领会)2.6演化分析 (领会)3、数据挖掘系统(应⽤)第⼆章数据预处理教学要点:1.了解数据预处理的重要性2.熟悉数据预处理的⽅法教学时数:6学时教学内容:第⼀节数据清洗1、噪声数据处理2、不⼀致数据处理第⼆节数据集成与转换1、数据集成处理2、数据转换处理1、数据清洗1.1噪声数据处理(领会)1.2不⼀致数据处理(领会)2、数据集成与转换2.1数据集成处理(应⽤)2.2数据转换处理(应⽤)第三章分类与预测教学要点:1、掌握分类与预测基本知识2、了解各项分类和预测⽅法教学时数:12学时教学内容:第⼀节分类与预测基本知识1、分类基础2、预测基础第⼆节基于决策树的分类第三节贝叶斯分类第四节神经⽹络分类第五节预测⽅法1、线性与多变量回归2、⾮线性回归3、其他回归模型考核要求:1、分类与预测基本知识1.1分类基础(识记)1.2预测基础(识记)2、基于决策树的分类(领会)3、贝叶斯分类(领会)4、神经⽹络分类(领会)5、预测⽅法5.1线性与多变量回归(领会)5.2⾮线性回归(领会)5.3其他回归模型(领会)第四章聚类分析教学要点:1、掌握聚类分析基本概念2、了解聚类分析基本⽅法教学时数:12学时教学内容:1、基础知识2、聚类分析⽅法:K-MEANS算法等考核要求:1、基础知识(识记)2、聚类分析⽅法:K-MEANS算法等(应⽤)三、推荐教材和参考书⽬:1、《数据挖掘原理与技术》,张云涛、龚玲著,电⼦⼯业出版社,20042、《数据仓库与数据挖掘技术》,陈京民编著,电⼦⼯业出版社,20023、《数据挖掘与OLAP理论与实务》,林杰斌主编,清华⼤学出版社,2003.14、《数据挖掘》,朱明编著,中国科学技术⼤学出版社,2002.25、《数据挖掘教程》, Richard J. Roiger, Michael W. Geatz 著,翁敬农译,清华⼤学出版社,20036、《数据挖掘原理》,David Hand, Heikki Mannila, Padhraic Smyth著,张银奎、廖丽、宋俊等译,机械⼯业出版社,2003。
《数据挖掘》教学大纲

《数据挖掘》教学大纲一、课程的性质、目的与任务数据挖掘是综合了机器学习、统计和数据库的一门现代计算机技术,旨在发现海量数据中的模型与模式,具有巨大的应用前景。
在很多重要的领域,数据挖掘都发挥着积极的作用。
因此这门课程是计算机专业及相关专业的重要课程之一。
《数据挖掘》课程是计科专业与软工专业的专业任选课程,通过本课程的学习使学生掌握数据挖掘的基本概念,了解数据挖掘的定义和功能以及实现数据挖掘的主要步骤和具体实现方法,初步掌握数据挖掘的算法。
使同学们在学习本课程后,能实现简单的数据挖掘算法编程,了解实现数据挖掘的具体操作。
通过本课程的学习,要求学生达到:1.了解数据挖掘技术的整体概貌2.了解数据挖掘技术的主要应用及当前的研究热点问题和发展方向3.掌握最基本的概念、算法原理和技术方法二、课程教学基本内容与要求第一章引言(一)基本教学内容1.1什么激发了数据挖掘,为什么它是重要的1.2什么是数据挖掘1.3对何种数据进行挖掘1.4数据挖掘功能——可以挖掘什么类型的模式1.5所有模式都是有趣的吗1.6数据挖掘系统的分类1.9数据挖掘的主要问题(二)基本要求教学目的:掌握数据挖掘的基本概念、理解数据挖掘的形成与发展过程、了解数据挖掘的数据对象、了解数据挖掘所具有的功能。
教学重点:重点讲解数据挖掘的功能教学难点:数据挖掘功能第二章数据预处理(一)基本教学内容2.1 为什么要预处理数据2.2 描述性数据汇总2.3 数据清理2.4 数据集成和变换2.5 数据归约2.6 数据离散化和概念分层产生(二)基本要求教学目的:了解数据预处理的原因,掌握数据预处理的方法。
教学重点:数据清理、数据集成和变换、数据归约、数据离散化和概念分层教学难点:数据归约、数据离散化和概念分层第三章数据仓库与OLAP技术概述(一)基本教学内容3.1 什么是数据仓库3.2 多维数据模型3.3 数据仓库的系统结构3.4 数据仓库实现3.5 从数据仓库到数据挖掘(二)基本要求教学目的:理解数据仓库的概念,了解数据仓库的多维数据模型,理解数据仓库的系统结构,掌握数据立方体的有效计算。
数据仓库与数据挖掘教学大纲

数据仓库与数据挖掘教学大纲引言概述:数据仓库与数据挖掘是现代信息技术领域中的重要概念,对于培养学生的数据分析和决策能力具有重要意义。
因此,制定一份完善的数据仓库与数据挖掘教学大纲是必不可少的。
本文将从数据仓库与数据挖掘的基本概念、教学目标、教学内容、教学方法和评价方式五个方面,详细阐述数据仓库与数据挖掘教学大纲的内容。
一、基本概念1.1 数据仓库的定义与特点数据仓库是指将各类数据按照一定的结构和规范集成到一个统一的存储空间中,以支持决策分析和业务智能的技术体系。
它具有数据集成、主题导向、面向决策支持等特点。
1.2 数据挖掘的定义与作用数据挖掘是指通过自动或者半自动的方式,从大规模数据中发现隐藏的模式、关联和规律,用于预测、分类、聚类和异常检测等任务。
它可以匡助人们更好地理解数据,提供决策支持和业务洞察。
1.3 数据仓库与数据挖掘的关系数据仓库提供了数据挖掘所需的高质量、一致性和集成性数据,而数据挖掘则通过对数据仓库进行分析和挖掘,发现有价值的信息和知识。
二、教学目标2.1 知识目标学生应该掌握数据仓库和数据挖掘的基本概念、原理和方法,了解数据仓库与数据挖掘在实际应用中的意义和作用。
2.2 技能目标学生应该具备数据仓库和数据挖掘的建模、设计和实施能力,能够运用相应的工具和算法进行数据分析和挖掘。
2.3 态度与价值观目标学生应该培养数据驱动决策的思维方式,注重数据的质量和准确性,提高数据分析和决策的能力。
三、教学内容3.1 数据仓库的建设与管理包括数据仓库的设计原则、数据抽取与清洗、数据集成与转换、数据加载与更新、数据仓库的查询与分析等内容。
3.2 数据挖掘的基本方法与算法包括分类与预测、聚类分析、关联规则挖掘、时序模式挖掘等数据挖掘的基本方法和常用算法。
3.3 数据挖掘的应用案例通过实际案例的分析和讨论,让学生了解数据挖掘在不同领域中的应用,如市场营销、金融风控、医疗健康等。
四、教学方法4.1 理论讲授予案例分析通过教师的讲解和案例的分析,向学生介绍数据仓库与数据挖掘的基本概念和方法,培养学生的理论思维和实际应用能力。
大数据分析与挖掘教学大纲

大数据分析与挖掘教学大纲一、课程简介1.1课程名称:大数据分析与挖掘1.2学时数:36学时1.3课程类型:专业选修课1.4先修课程:数据结构、计算机网络、数据库技术等1.5授课教材:《大数据分析与挖掘》(第三版)二、课程目标2.1理论目标:(1)了解大数据分析与挖掘的基本概念和原理;(2)掌握大数据分析与挖掘的基本方法和技术;(3)了解大数据分析与挖掘在实际应用中的特点和挑战。
2.2技能目标:(1)能够使用常见的大数据分析工具和软件进行数据挖掘;(2)能够分析大数据中的模式和趋势,并做出合理的预测和决策;(3)能够根据实际问题,设计并实施大数据分析和挖掘流程。
三、教学内容3.1数据挖掘概述(1)数据挖掘的定义与关键任务;(2)数据挖掘的过程与方法。
3.2数据预处理(1)数据清洗的概念与方法;(2)数据集成与变换的技术;(3)数据规约与选择的策略。
3.3数据挖掘模型与算法(1)分类与回归算法;(2)聚类算法;(3)关联规则挖掘算法;(4)时序模式挖掘算法。
3.4大数据分析与挖掘工具(1)Hadoop平台的基本原理与使用;(2)Spark平台的基本原理与使用;(3)Python和R语言在大数据分析与挖掘中的应用。
3.5大数据分析与挖掘的应用(1)电子商务领域的用户行为分析;(2)社交媒体数据的情感分析;(3)金融领域的风险预测与仿真;(4)医疗领域的疾病诊断与预测。
四、教学方法4.1理论课程采用传统讲授和案例分析相结合的方式进行。
4.2实验课程设置针对性的实际数据集进行分析和挖掘。
五、教学评价5.1平时成绩占总评成绩的40%,主要包括作业和小组项目。
5.2期末考试占总评成绩的60%。
六、参考资料6.1教材:《大数据分析与挖掘》(第三版),张三等著,清华大学出版社。
6.2参考书:《数据挖掘:方法与应用》,李四著,机械工业出版社。
6.3最新的相关学术论文和研究报告。
以上为大数据分析与挖掘教学大纲的初步设计,具体的教学内容和评价方法还需要根据实际情况进行调整和完善。
数据挖掘教学大纲

数据挖掘教学大纲标题:数据挖掘教学大纲引言概述:数据挖掘是一门涉及数据处理、分析和挖掘技术的重要学科,对于培养学生的数据分析能力和解决实际问题的能力具有重要意义。
因此,设计一份完善的数据挖掘教学大纲是非常必要的。
一、课程简介1.1 数据挖掘的定义和意义:介绍数据挖掘的概念及其在实际应用中的重要性。
1.2 课程目标:明确教学目标,包括培养学生的数据分析能力和解决实际问题的能力。
1.3 课程结构:概述课程的教学内容和安排,为学生提供清晰的学习路线。
二、基础知识2.1 数据预处理:介绍数据清洗、数据集成、数据转换和数据规约等基础知识。
2.2 数据挖掘算法:讲解常用的数据挖掘算法,如分类、聚类、关联规则挖掘等。
2.3 模型评估:介绍模型评估的方法和指标,如准确率、召回率、F1值等。
三、高级技术3.1 特征选择:讲解特征选择的方法和技巧,包括过滤式、包裹式和嵌入式特征选择。
3.2 集成学习:介绍集成学习的概念和常见方法,如Bagging、Boosting和随机森林等。
3.3 深度学习:简要介绍深度学习的原理和应用,包括神经网络、卷积神经网络和循环神经网络等。
四、实践案例4.1 数据挖掘工具:介绍常用的数据挖掘工具,如Weka、RapidMiner和Python 中的Scikit-learn等。
4.2 实际案例分析:通过真实数据集进行案例分析,让学生将理论知识应用到实际问题中。
4.3 课程项目:设计课程项目,让学生在实践中巩固所学知识,培养解决实际问题的能力。
五、评估与考核5.1 作业与考试:设计作业和考试,检验学生对数据挖掘知识的掌握程度。
5.2 课程评估:进行课程评估,采集学生反馈,不断改进教学内容和方法。
5.3 学习资源:提供学习资源和参考资料,匡助学生更好地学习和掌握数据挖掘知识。
结语:设计一份完善的数据挖掘教学大纲是为了匡助学生系统学习数据挖掘知识,培养其数据分析能力和解决实际问题的能力。
通过合理的课程设置和教学方法,可以提高学生的学习兴趣和学习效果,为他们未来的发展奠定良好的基础。
《数据分析与数据挖掘》课程教学大纲

《数据分析与数据挖掘》课程教学大纲引言概述:《数据分析与数据挖掘》是一门重要的课程,它在培养学生数据分析能力和数据挖掘技术方面起着关键作用。
本文将详细介绍该课程的教学大纲,包括课程目标、教学内容、教学方法、考核方式等。
一、课程目标:1.1 培养学生的数据分析思维:通过该课程的学习,学生将掌握数据分析的基本方法和技巧,培养数据分析思维,能够利用数据解决实际问题。
1.2 培养学生的数据挖掘技术:课程将介绍数据挖掘的基本概念和常用算法,培养学生掌握数据挖掘技术,能够从大量数据中发现有价值的信息。
1.3 培养学生的团队合作能力:课程将通过实际案例和项目,培养学生的团队合作能力,使他们能够在团队中协作解决实际问题。
二、教学内容:2.1 数据分析基础知识:介绍数据分析的基本概念、数据类型、数据清洗和预处理等内容,为后续学习打下基础。
2.2 数据挖掘算法:学习数据挖掘的常用算法,包括聚类分析、分类算法、关联规则挖掘等,了解算法原理和应用场景。
2.3 数据可视化:介绍数据可视化的方法和工具,培养学生对数据的可视化分析能力,使得数据分析结果更加直观和易懂。
三、教学方法:3.1 理论授课:通过讲解理论知识,使学生掌握数据分析和数据挖掘的基本概念和方法。
3.2 实践操作:通过实际案例和项目,让学生亲自动手进行数据分析和数据挖掘,提升实际操作能力。
3.3 团队合作:组织学生进行团队项目,培养学生的团队合作能力和解决实际问题的能力。
四、考核方式:4.1 课堂作业:布置课堂作业,检验学生对理论知识的掌握和理解。
4.2 项目实践:要求学生完成一个数据分析或者数据挖掘项目,考核学生的实际操作能力和团队合作能力。
4.3 期末考试:进行综合性的理论考试,考察学生对整个课程的综合掌握程度。
五、总结:《数据分析与数据挖掘》课程教学大纲旨在培养学生的数据分析能力和数据挖掘技术,通过理论教学和实践操作,使学生能够熟练掌握数据分析和数据挖掘的基本方法和技巧。
《数据分析与数据挖掘》课程教学大纲

《数据分析与数据挖掘》课程教学大纲引言概述:《数据分析与数据挖掘》课程是一门涉及数据处理、数据挖掘和数据分析的重要课程。
通过学习这门课程,学生将能够掌握数据分析的基本概念和方法,了解数据挖掘的原理和技术,从而能够应用这些知识解决实际问题。
本文将从课程目标、课程内容、教学方法和评估方式四个方面详细阐述《数据分析与数据挖掘》课程的教学大纲。
一、课程目标:1.1 培养学生的数据分析能力。
通过学习本课程,学生将能够掌握数据分析的基本概念和方法,包括数据收集、数据清洗、数据处理和数据可视化等方面的技术,从而能够独立进行数据分析工作。
1.2 培养学生的数据挖掘能力。
学生将学习数据挖掘的原理和技术,包括数据预处理、特征选择、模型构建和模型评估等方面的知识,从而能够应用数据挖掘技术解决实际问题。
1.3 培养学生的问题解决能力。
通过实际案例的分析和解决,学生将培养问题解决的能力,包括问题分析、解决方案设计和实施等方面的能力。
二、课程内容:2.1 数据分析基础知识。
包括数据类型、数据收集和数据清洗等基本概念和方法。
2.2 数据处理和数据可视化。
学生将学习数据处理的技术,包括数据转换、数据集成和数据规约等方面的方法,同时还将学习数据可视化的原理和技术,从而能够通过可视化手段更好地理解和展示数据。
2.3 数据挖掘算法。
学生将学习数据挖掘的基本算法,包括聚类分析、分类分析和关联规则挖掘等方法,同时还将学习数据挖掘的应用案例,从而能够应用数据挖掘技术解决实际问题。
三、教学方法:3.1 理论授课。
教师将通过讲解课件和案例分析等方式,向学生传授数据分析和数据挖掘的理论知识。
3.2 实践操作。
学生将通过实际操作数据分析和数据挖掘工具,进行数据处理、数据可视化和数据挖掘等实践操作,从而提升实际应用能力。
3.3 课堂讨论。
教师将引导学生进行课堂讨论,分享实际案例和解决方案,培养学生的问题解决能力。
四、评估方式:4.1 课堂作业。
学生将完成一系列的课堂作业,包括数据分析和数据挖掘的实践操作和理论题目,以检验学生对课程内容的掌握程度。
《数据仓库与数据挖掘》教学大纲

《数据仓库与数据挖掘》教学大纲一、课程概述数据挖掘是一门新兴的交叉性学科,是在信息技术领域迅速兴起的决策支持新技术。
数据挖掘是数据库研究、开发、和应用最为活跃的分支之一。
本课程的先修课程为数据结构、高等数学、数据库技术等。
本课程标准适用于计算机科学与技术、信息管理与信息系统专业。
二、课程目标1.了解数据管理技术从数据库到数据仓库的发展过程。
2.掌握数据仓库的定义、特点和研究数据仓库的必要性。
3.掌握数据仓库的体系结构和联机分析处理的概念4.掌握数据仓库的数据组织、数据预处理与规划管理5.掌握数据仓库规划、设计、管理的基本方法6.掌握数据挖掘的基本概念及与数据仓库的关系7.熟悉聚类分析、分类发现和关联规则等数据挖掘算法的使用环境、算法特点,并能进行算法复杂性的分析。
8.认识数据挖掘的发展趋势和应用前景9.能够在科研实践中应用数据仓库技术和应用数据挖掘的方法。
三、课程内容和教学要求这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。
这四个层次的一般涵义表述如下:知道———是指对这门学科和教学现象的认知。
理解———是指对这门学科涉及到的概念、原理、策略与技术的说明和解释,能提示所涉及到的教学现象演变过程的特征、形成原因以及教学要素之间的相互关系。
掌握———是指运用已理解的教学概念和原理说明、解释、类推同类教学事件和现象。
学会———是指能模仿或在教师指导下独立地完成某些教学知识和技能的操作任务,或能识别操作中的一般差错。
教学内容和要求表中的“√”号表示教学知识和技能的教学要求层次。
本标准中打“*”号的内容可作为自学,教师可根据实际情况确定要求或不布置要求。
教学内容及教学要求表教学内容 知道 理解 掌握 学会 1 数据仓库概述1.1从数据库到数据仓库1.2 数据仓库的概念与特点1.3 数据仓库中的关键概念1.4 数据仓库的数据组织1.5 数据仓库与数据集市的关系 1.6 数据仓库体系结构1.7 操作数据存储ODS √√√√√√√2 联机分析处理2.1 联机分析处理的概念2.2 OLAP多维数据分析2.3 OLAP数据组织2.5 OLAP工具及评价 √ √√√3 数据仓库设计3.1 数据仓库中的数据模型概述 3.2概念模型设计3.3 逻辑模型设计3.4 物理模型设计3.5 元数据模型3.6 粒度模型 √√√√√√4 数据仓库的规划与开发4.1 数据仓库的投资分析4.2 数据仓库的开发方法 4.3 数据仓库的建立过程 4.4 数据仓库的维护4.5 提高数据仓库的性能 4.6 数据仓库的安全性 √√√√√√教学内容 知道 理解 掌握 学会4.7 分布式数据仓库 √5 数据仓库的工具5.1数据仓库的工具选择5.2 常用数据仓库产品介绍5.3 SQL Server 数据仓库的操作应用 √√√6 数据挖掘概述6.1 数据挖掘的定义对象 6.2 数据挖掘的分类6.3 数据挖掘系统6.4 数据预处理 √ √ √ √7 数据挖掘的算法7.1 分类规则挖掘7.2 预测分析与趋势分析规则7.3 数据挖掘的关联算法7.4 聚类分析7.5 神经网络算法 √ √ √ √ √8 数据挖掘新技术 √9 数据挖掘的工具及其应用9.1 国内外数据挖掘工具及评价9.2 SQL Server 2005数据挖掘工具应用 √√10基于数据挖掘的上市公司财务危机预警应用实例 √四、 课程实施数据仓库与数据挖掘为计算机类选修课程,对于本科生着重强调理解基本概念和掌握最基本的方法,一般情况下,每周安排2课时,共36课时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘教学大纲
一、引言
1.1 数据挖掘的定义和概述
1.2 数据挖掘的应用领域
1.3 数据挖掘的基本步骤和流程
二、数据预处理
2.1 数据清洗
2.1.1 缺失值处理
2.1.2 异常值处理
2.1.3 重复值处理
2.2 数据集成
2.2.1 数据集成技术
2.2.2 数据冗余处理
2.3 数据变换
2.3.1 数据规范化
2.3.2 数据离散化
2.3.3 数据平滑和数据聚集
2.4 数据规约
2.4.1 属性选择
2.4.2 数据压缩
三、数据挖掘技术
3.1 关联规则挖掘
3.1.1 关联规则的定义和基本概念
3.1.2 关联规则挖掘算法
3.1.3 关联规则的评估和应用
3.2 分类与预测
3.2.1 分类与预测的定义和基本概念
3.2.2 分类与预测算法
3.2.3 分类与预测的评估和应用
3.3 聚类分析
3.3.1 聚类分析的定义和基本概念
3.3.2 聚类分析算法
3.3.3 聚类分析的评估和应用
3.4 异常检测
3.4.1 异常检测的定义和基本概念
3.4.2 异常检测算法
3.4.3 异常检测的评估和应用
四、数据挖掘工具和平台
4.1 常用的数据挖掘工具介绍
4.1.1 WEKA
4.1.2 RapidMiner
4.1.3 Python中的数据挖掘库
4.2 数据挖掘平台的选择和使用
4.2.1 平台的功能和特点
4.2.2 平台的比较和评估
五、数据挖掘应用案例分析
5.1 电商行业的用户购买行为分析
5.2 社交媒体数据的情感分析
5.3 医疗领域的疾病诊断和预测
5.4 金融行业的信用评估和风险管理
六、数据挖掘的伦理和隐私问题
6.1 数据挖掘的伦理问题
6.2 数据挖掘的隐私保护措施
6.3 数据挖掘的法律法规和政策要求
七、数据挖掘的发展趋势
7.1 深度学习在数据挖掘中的应用
7.2 大数据时代下的数据挖掘
7.3 数据挖掘与人工智能的融合
结语
数据挖掘作为一门重要的技术和工具,对于各行各业的发展和决策具有重要意义。
通过本课程的学习,学生将掌握数据挖掘的基本概念、方法和工具,能够应用数据挖掘技术解决实际问题,并了解数据挖掘的伦理和隐私问题。
希望学生通过课程的学习,能够在未来的工作和研究中充分发挥数据挖掘的作用,为社会和经济的发展做出贡献。