中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

合集下载

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。

2. 平行线定义:两条永不相交的直线的位置关系是平行线。

3. 平行线性质:①两直线平行,同位角相等。

②两直线平行,内错角相等。

③两直线平行,同旁内角互补。

④同一平面内,过直线外一点有且只有一条直线与已知直线平行。

⑤平行于同一直线的两直线平行。

即c b b a ∥,∥,则c a ∥。

4. 平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角相等,两直线平行。

④垂直于同一直线的两直线平行。

即若c a b a ⊥⊥,,则c a ∥。

⑤平行于同一直线的两直线平行。

即若c b b a ∥,∥,则c a ∥。

5. 平行线间的距离:平行线间的距离处处相等。

练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。

中考数学知识点(相交线、平行线)12968

中考数学知识点(相交线、平行线)12968

9. (分类)9.1. 相交线(包含题目总数:4)两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角.如图 1 中的1与 3 就是对顶角.我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做邻补角.如图 1 中的1与 2 就是邻补角.这样可以得到邻补角和对顶角的重要性质:邻补角互补,对顶角相等.图1 图 2如图2,直线AB、CD与EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角.其中像1与5 ,这两个角分别在AB 、CD 的上方,并且在EF 的右侧,像这样位置相同的一对角叫做同位角.如2 与6, 3与7, 4 与8都是同位角;3与5,这两个角都在AB、CD之间,并且3在EF的左侧,5在EF的右侧,像这样的角叫做内错角•女口4与6是内错角;3与6在直线AB、CD之间,并且在EF的同一旁,像这样的一对角叫做同旁内角.如4与5是同旁内角.9.2. 垂线(包含题目总数:3)两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直.其中一条直线叫另一条直线的垂线,它们的交点叫垂足.如图,直线AB、CD 互相垂直,记作“ AB CD ”或CD丄AB),读作“ AB垂直于CD ” .女口果垂足是0 ,记作“ AB垂直于CD , 垂足为O” .垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直.性质2:直线外一点与直线上各点连结的所有线段中,垂线段最短.简称:垂线段最短.空间里也有垂直的情况.空间中垂直的判定方法有下面两种:(1)直线与平面垂直的判定方法:若一条直线垂直于一个平面内的两条相交直线,则这条直线与这个平面垂直.(2)平面与平面垂直的判定方法:若一个平面经过另一个平面的一条垂线,则这两平面互相垂直.9.3. 平行线(包含题目总数:8)008020 ;008030;008040;008050 ;008070;008090 ;008160;008170 ;9.3.1. 平行线的概念在同一个平面内,不相交的两条直线叫做平行线.平行用符号“// ”表示,如图,直线AB 与CD是平行线,记作“ AB〃CD ” ,读作“ AB平行于CD ” •在同一个平面内,两条直线的位置关系只有两种:相交或平行.①平行线是无限延伸的,无论怎样延伸也不相交.②今后遇到线段、射线平行时,特指线段、射线所在的直线平行.9.3.2. 平行公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都和第三条直线平行,那么这两条直线也相互平行.即:如果a//b ,c//b ,那么a//c .9.3.3. 平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行,简单的说成:同位角相等,两直线平行.平行线的两个判定定理:1、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行.2、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行.注意:上面的判定是由角的等量关系得到两直线的位置关系,判定直线平行还有下面三种判定方法:(1)平行于同一直线的两直线平行;(2)垂直于同一直线的两直线平行;(3) 平行线的定义.9.3.4. 平行线的性质(1) 两条平行线被第三条直线所截,同位角相等.(2) 两条平行线被第三条直线所截,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补.9.3.5. 空间中的平行关系在空间里,既不相交也不平行的直线是异面直线.在空间里,如果一条直线与一个平面没有公共点,就说这条直线与这个平面互相平行.在空间里,如果两个平面没有公共点,就说这两个平面互相平行.直线与平面、平面与平面平行的判定:①不在平面内的一条直线,只要与平面内的某一条直线平行,那么这条直线与这个平面平行.②如果一个平面内两条相交直线都与另一个平面平行,那么这两个平面互相平行.9.4. 命题、定理、证明(包含题目总数:2)008140 ;008150;命题的概念:判断一件事情的语句,叫做命题.命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出判断.例如:“直角都相等” ,“相等的角是对顶角”等都是命题.“连结P、Q两点”、“过点p作直线I”等都不是命题.命题的一般形态:任一个命题都可以写成形式:“如果……,那么……有时也写成:“若•……,则•……•”“倘若……,那么…….”命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.命题的分类(按正确、错误与否分):命题真命题正确的命题假命题错误的命题所谓正确的命题就是:如果题设成立,那么结论一定成立的命题所谓错误的命题就是:如果题设成立,不能保证结论总是成立的命题注意:对于假命题并不要求:在题设成立时,结论一定错误,事实上,只要你不能保证结论一定成立,这个命题就是假命题了,因此,要说明一个命题是假命题,只要举出一个“反例”就可以了公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理,如“同位角相等,两直线平行”、“两直线平行,同位角相等”等.、I •、、+ :注息:①公理是通过长期实践反复验证过的,不需要再进行推理而都承认的真命题•②公理可以作为判定其它命题真假的根据• 定理:用推理的方法判断为正确的命题叫做定理,如“内错角相等,两直线平行”、“两直线平行,内错角相等”等等.注意:定理都是真命题,但真命题不一定都是定理,一般选择一些最基本最常用的真命题作为定理,可以用它们为根据推证其它命题,这些被选作定理的真命题,在教科书中是用黑体字排印的.证明:判断一个命题的正确性的推理过程叫做证明.注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“对顶角相等”这个命题,如果只采用测量的方法,只能测量有限个对顶角是相等的,但采用推理方法证明了对顶角相等,那么就可以确信一切对顶角相等.证明的一般步骤:(1) 根据题意,画出图形;(2) 根据题设、结论、结合图形,写出已知求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程.①在一般情况下,分析的过程不要求写出来,有些题目中,已经画出了图形,写好了已知、求证,这时,只要写出“证明”一项就可以了.②证明中的每一步推理都要有根据,不能“想当然” ,这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理,在初学证明时,要求把根据写在第一步推理后面的括号内,其中像等量代换,利用等式性质加减乘除等代数运算可不注理由.。

中考数学几何初步及平行线、相交线复习

中考数学几何初步及平行线、相交线复习

第四单元第 20 课时几何初步及平行线、订交线知识点回顾知识点 1:立体图形与平面图形1.常有的立体图形:长方体、正方体、球、圆柱、圆锥、棱锥、棱柱等。

平面图形:长方形、正方形、三角形、圆等。

2.主视图、俯视图与左视图 :(1)从物体的 _____观察,看到物体的正面的图形称为主视图.(2)从物体的 ______向下观察,看到物体的顶面的图形称为俯视图.(3)从物体的 _______观察,看到物体的左面的图形称为左视图.物体的主视图、俯视图与左视图合成为物体的三视图.(4)常有几何体的三视图:几何体主视图俯视图左视图3.几种常有几何体的张开图:1.圆柱张开图:上、下底面为________,侧面是 ________ ,长方形的长是圆柱的底面周长,宽是圆柱的高。

2.圆锥张开图:底面是_______,侧面是 ________,扇形的弧长是底面圆的周长。

3.棱柱张开图:上、下底面是_____________ ,侧面都是 _________。

4.棱锥张开图:底面是__________,侧面都是 ________,这些三角形的公共极点就是棱锥的极点。

4.正方体的表面张开图 :把正方体的表面张开成平面图形后,有很多种形状,若是将经过平移、旋转等变化后可以重合的两个图形看作是同一图形,那么正方体的表面张开图共有11 种不同样的情况。

我们可以将则11 种图形分类:( 1)“一·四·一”型,中间一行 4 个作侧面,两边各 1 个分别作上下底面,?共有 6种.如图( 1)——( 6).( 2)“二·三·一” (或一·三·二)型,中间 3 个作侧面,上(或下)边2?个那行,相连的正方形作底面,不相连的再下折作另一个侧面,共 3 种.如图( 7)——( 9).( 3)“二·二·二”型,成阶梯状.如图(10).( 4)“三·三”型,两行只能有 1 个正方形相连.如图(11).(1)( 2)( 3)( 5)( 4)( 6)(7)(8)(9)(10)(11)例 1、( 2009 年内蒙古包头)将一个正方体沿某些棱张开后,可以获取的平面图形是()A.B.C.D.【解析】本题观察图形的张开与折叠中,正方体的常有的十余种张开图有关内容,可将这四个图折叠后,看能否组成正方形,显然只有 C 吻合要求。

中考数学相交线与平行线复习知识点

中考数学相交线与平行线复习知识点

中考数学相交线与平行线复习知识点中考数学相交线与平行线复习知识点相交线与平行线作为初中几何的入门课,在每年中考数学中所占分值为2至10分,主要考察学生基本几何知识的掌握和理解情况,主要考点有6个。

下面是店铺收集的有关中考数学相交线与平行线复习知识点,希望对你有所帮助。

1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

4.平行线:在同一平面内,不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的`一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

6.命题:判断一件事情的语句叫命题。

7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

9.定理与性质对顶角的性质:对顶角相等。

10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

12.平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

13.平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

【中考数学相交线与平行线复习知识点】。

中考数学专项练习相交线与平行线(含解析)

中考数学专项练习相交线与平行线(含解析)

中考数学专项练习相交线与平行线(含解析)一、单选题1.下面四个图形中,∠1与∠2互为对顶角的是()A.B. C.D.2.下列说法:(1)同角的余角相等(2)相等的角是对顶角(3)在同一平面内,不相交的两条直线叫平行线(4)直线外一点与直线上各点连接的所有线段中,垂线段最短中,正确的个数是()A.1B.2C.3D.43.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°4.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()A.10°B.15°C.20°D.30°5.如图,已知直线AB、CD相交于点O,OB平分∠EOD,若∠EOD= 110°,则∠AOC的度数是()A.35°B.55°C.70°D.110°6.如图,在△ABC中,∠CAB=70º,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB, 则∠BAD的度数为()A.30°B.35°C.40°D.50°7.如图所示,在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于点H,EF⊥AB于点F,则下列结论中,不正确的是()A.ACD=B B.CH=CE=EF C.AC=AF D.CH=HD8.如图,以下推理正确的是()A.若AB∥CD,则∠1=∠2B.若AD∥BC,则∠1=∠2C.若∠B=∠D,则AB∥CDD.若∠CAB=∠ACD,则AD∥BC9.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,因此AD∥BC B.因为∠C+∠D=18 0°,因此AB∥CDC.因为∠A+∠D=180°,因此AB∥CD D.因为∠A+∠C=18 0°,因此AB∥CD10.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A.3B.4C.4D.2二、填空题11.填写理由AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?什么缘故?解:BE∥/DF∵AB⊥BC,∠ABC=________即∠3+∠4=________又∵∠1+∠2=90°,且∠2=∠3∴________=________理由是:________∴BE∥DF理由是:________12.如图,a∥b,∠1=65°,∠2=140°,则∠3等于________.13.如图,直角三角尺的直角顶点在直线b上,∠3 = 25°,转动直线a,当∠1=________,时,a∥b14.如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是依照________15.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=________度.16.如图,在正方体中,与线段AB平行的线段有________.17.如图,已知AB∥CD,O是∠BAC与∠ACD的平分线的交点.OE ⊥AC于E,OE=2,则点O到AB与CD的距离之和为________.18.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,O D∥AB交BC于D,OE∥AC交BC于E,若BC=10 cm,则△ODE的周长________cm.三、运算题19.如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.20.如图在四边形ABCD中,∠B=∠D=90°,AE、CF分别平分∠BA D和∠BCD.试问直线AE、CF的位置关系如何?请说明你的理由.21.如图,已知EF∥AD,∠1=∠2,∠BAC=68°,求∠AGD的度数.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.四、解答题23.如图,直线l1∥l2,∠BAE=125°,∠ABF=85°,则∠1+∠2等于多少度?24.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.25.已知:如图,a//b,∠1=55°,∠2=40°,求∠3和∠4的度数.五、综合题26.如图,点M(4,0),以点M为圆心,2为半径的圆与x轴交于点A、B,已知抛物线y= x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象.(2)点P为此抛物线对称轴上一个动点,求PC﹣PA的最大值.(3)CE是过点C的⊙M的切线,E是切点,CE交OA于点D,求O E所在直线的函数关系式.答案解析部分一、单选题1.【答案】C【考点】对顶角、邻补角【解析】【解答】解:依照对顶角的定义可知:C中∠1、∠2属于对顶角,故选C.【分析】依照对顶角的定义来判定,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,如此的两个角叫做对顶角.2.【答案】C【考点】余角和补角,对顶角、邻补角,垂线段最短【解析】【解答】解:同角的余角相等,故(1)正确;如图:∠ACD=∠BCD=90°,但两角不是对顶角,故(2)错误;在同一平面内,不相交的两条直线叫平行线,故(3)正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故(4)正确;即正确的个数是3,故选C.【分析】依照余角定义,对顶角定义,垂线段最短,平行线定义逐个判定即可.3.【答案】C【考点】平面中直线位置关系【解析】【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故答案为:C.【分析】第一依照同位角相等,两直线平行可得a∥b,再依照平行线的性质可得∠3=∠5,再依照邻补角互补可得∠4的度数.4.【答案】B【考点】平行线的性质【解析】【解答】过点P作PM∥AB,∴AB∥PM∥CD,∴∠BAP=∠APM,∠DCP=∠MPC,∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,∴45°+α=(60°-α)+(30°-α),解得α=15°.故选B.【分析】过点P作一条直线平行于AB,依照两直线平行内错角相等得:∠APC=∠BAP+∠PCD,得到关于α的方程,解即可.注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.5.【答案】B【考点】角平分线的定义,对顶角、邻补角【解析】【解答】解:∵∠EOD=110°,OB平分∠EOD,∴∠BOD = ∠EOD=55°,∴∠AOC=∠BOD=55°,故选:B.【分析】依照角平分线定义可得∠BOD= ∠EOD,由对顶角性质可得∠A OC=∠BOD.6.【答案】C【考点】平行线的性质,全等三角形的判定与性质,旋转的性质【解析】【分析】因为△ADE是由△ABC绕点A逆时针旋转得到的,因此△ADE≌△ABC,因此∠CAB=∠EAD=70º,AE=AC,因为EC∥AB,因此∠CAB=∠ECA=70°,因为AE=AC,因此∠AEC=70°,因此∠EAC=180°-70°×2=40°,因此∠CAD=∠EAD-∠EAC=70º-40°=30°,因此∠BAD=∠CAB-∠CAD =70º-30°=40°.【点评】该题是常考题,要紧考查学生对图形旋转的意义,以及对全等三角形性质和角的等量代换的应用。

2024河南中考数学一轮知识点复习专题 线段、角、相交线与平行线 课件

2024河南中考数学一轮知识点复习专题 线段、角、相交线与平行线 课件
相等
定理 的距离④______.
∴ = .
性质
如果 ⊥ ,
在角的内部,到角两边的
定理
⊥ , = ,
相等
距离⑤______的点在这个
的逆
那么点 在 ∠ 的
角的平分线上.
定理
平分线上.
图示
考点3 相交线
1.对顶角(如图(1))
(1)对顶角有: ∠1 与 ∠3 , ∠2 与 ∠4 , ∠5 与 ∠7 , ∠6 与 ∠8 .
离相等,切忌只证明直线上有一个点到线段两端点的距离相等,就说这条直线
是线段的垂直平分线.如图, = ,但直线 不是线段 的垂直平分线.
考点4 平行线
1.平行公理及推论
一条
平行公理
经过直线外一点有且只有⑱______直线与这条ห้องสมุดไป่ตู้线平行.
平行公理的推论 如果 // , // ,那么 // .
2.平行线的判定和性质
判定
相等 ⇌ 两直线平行;
同位角⑲______
性质
判定
平行
内错角相等 ⇌ 两直线⑳______;
性质
判定
互补 ⇌ 两直线平行.
同旁内角㉑______
性质
考点5 命题
1.命题
判断一件事情的语句,叫做命题.
真命题:如果题设成立,那么结论一定成立,
这样的命题叫做真命题.
假命题:如果题设成立时,不能保证结论一
3.角平分线
内容
概念
字母表示
从一个角的顶点引出的一 若 是 ∠ 的平分
条射线,把这个角分成两 线,则 ∠ = ③
个相等的角,这条射线叫
做这个角的平分线.

2021中考数学知识点总结 线段、角、相交线、平行线 (13大知识点+例题)

2021中考数学知识点总结 线段、角、相交线、平行线 (13大知识点+例题)

线段、角、相交线、平行线知识点:一、直线:直线是几何中不加概念的大体概念,直线的两大特点是“直”和“向两方无穷延伸”。

二、直线的性质:通过两点有一条直线,而且只有一条直线,直线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。

三、射线: 一、射线的概念:直线上一点和它们的一旁的部份叫做射线。

2.射线的特点:“向一方无穷延伸,它有一个端点。

”四、线段:一、线段的概念:直线上两点和它之间的部份叫做线段,这两点叫做线段的端点。

二、线段的性质(公理):所有连接两点的线中,线段最短。

五、线段的中点:一、概念如图1一1中,点B 把线段AC 分成两条相等的线段,点B 叫做线段图1-1AC 的中点。

二、表示法:∵AB =BC∴点 B 为 AC 的中点或∵ AB = 21MAC ∴点 B 为AC 的中点,或∵AC =2AB ,∴点B 为AC 的中点反之也成立∵点 B 为AC 的中点,∴AB =BC或∵点B 为AC 的中点, ∴AB= 21AC 或∵点B 为AC 的中点, ∴AC=2BC六、角一、角的两种概念:一种是有公共端点的两条射线所组成的图形叫做角。

要弄清概念中的两个重点①角是由两条射线组成的图形;②这两条射线必需有一个公共端点。

另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

能够看出在起始位置的射线与终止位置的射线就形成了一个角。

2.角的平分线概念:一条射线把一个角分成两个相等的角,这条射线叫做那个角的平分线。

表示法有三种:如图1—2(1)∠AOC =∠BOC(2)∠AOB =2∠AOC = 2∠COB(3)∠AOC =∠COB=21∠AOB 七、角的气宇:气宇角的大小,可用“度”作为气宇单位。

把一个圆周分成360等份,每一份叫做一度的角。

1度=60分;1分=60秒。

八、角的分类:(1)锐角:小于直角的角叫做锐角(2)直角:平角的一半叫做直角(3)钝角:大于直角而小于平角的角(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。

几何初步、相交线与平行线、命题知识点演练(讲练)(原卷版)-2023年中考数学一轮复习

几何初步、相交线与平行线、命题知识点演练(讲练)(原卷版)-2023年中考数学一轮复习

专题4.1几何初步、相交线与平行线、命题知识点演练考点1:直线、线段、射线相关知识例1.(1).(2022秋·河北石家庄·七年级石家庄外国语学校校考期中)下列图形和相应语言描述错误的是()A.过一点O可以作无数条直线B.点P在直线AB外C.延长线段BA,使AC=2ABD.延长线段AB至点C,使得BC=AB(2)(2023秋·安徽芜湖·七年级统考期末)下列说法正确的是()A.射线OP和射线PO是同一条射线B.两点之间直线最短C.将一根木条固定在墙上至少需要两枚钉子,其原理是“两点确定一条直线”D.线段AB就是A、B两点间的距离(3)(2023秋·四川宜宾·七年级统考期末)下列生活实例中,数学原理解释错误..的是()A.测量两棵树之间的距离,要拉直皮尺,应用的数学原理是:两点之间,线段最短B.用两颗钉子就可以把一根木条固定在墙上,应用的数学原理是:两点确定一条直线C.测量跳远成绩,应用的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短D.从一条河向一个村庄引一条最短的水渠,应用的数学原理是:在同一平面内,过一点有且只有一条直线与已知直线垂直(4)(2023秋·湖南长沙·七年级湖南师大附中校考期末)2022年12月26日上午10时06分,渝厦高铁常德至益阳段开通运营。

某列车从常德至长沙运行途中停靠的车站依次是:常德—常德汉寿—益阳南—宁乡西—长沙南,59分钟即可抵达长沙,这标志着渝厦高铁常益长段实现了全线开通。

每两站之间由于方向不同,车票也不同,那么铁路运营公司要为常德至长沙南往返最多需要准备()张车票.A.10B.15C.20D.30例2.(2023秋·河南洛阳·七年级统考期末)如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.(1)作线段AB;(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;(3)作直线BC,与射线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是:______.(温馨提醒:截取用圆规,并保留痕迹;画完图后要一一下结论.)例3.(2023秋·广东珠海·七年级统考期末)在一条水平直线上,自左向右依次有四个点A,B,C,D,AD= 16cm,BC=7cm,CD=2AB,线段AB以每秒2cm的速度水平向右运动,当点A到达点D时,线段AB停止运动,设运动时间为t秒.(1)当t=0秒时,AB=___________cm,CD=___________cm;(2)当线段AB与线段CD重叠部分为2cm时,求t的值;(3)当t=5.5秒时,线段AB上是否存在点P,使得PD=11PC?若存在,求出此时PC的长,若不存在,请说明理由.知识点训练1.(2023秋·四川南充·七年级统考期末)针对所给图形,下列说法正确的是()A .点O 在射线AB 上B .点A 在线段OB 上C .射线OB 和射线AB 是同一条射线D .点B 是直线AB 的一个端点2.(2023春·重庆沙坪坝·七年级重庆南开中学校考开学考试)下列说法中正确的是( )A .若AP =PB ,则点P 是线段AB 的中点B .射线AB 和射线BA 表示不同射线C .连接两点的线段叫做两点间的距离D .由不在同一直线上的几条线段首尾顺次相连所组成的封闭图形叫多边形3.(2023秋·湖南益阳·七年级统考期末)以下关于图的表述,不正确的是( )A .点A 在直线BD 外B .点D 在直线AB 上C .射线AC 是直线AB 的一部分D .直线AC 和直线BD 相交于点B4.(2023秋·辽宁鞍山·七年级统考期末)如图,用适当的语句表述图中点与直线的关系,错误的是( )A .点P 在直线AB 外B .点C 在直线AB 外 C .点M 不经过直线ABD .点B 经过直线AC5.(2021秋·福建厦门·七年级厦门市第五中学校考期末)根据语句“点C 不在直线AB 上,直线AB 与射线BC 交于点B .”画出的图形是( )A .B .C .D .6.(2023秋·湖北武汉·七年级统考期末)往返于A 、B 两地的客车,中途停靠3个站,每两个站间的票价均不相同,需准备()种车票.A.10B.20C.6D.127.(2023秋·天津南开·七年级南开翔宇学校校考期末)如图所示,点A、B、C在直线l上,则下列说法正确的是()A.图中有2条线段B.图中有6条射线C.点C在直线AB的延长线上D.A、B两点之间的距离是线段AB8.(2023秋·湖北孝感·七年级统考期末)下列说法:①连接两点之间线段的长度叫两点之间的距离;②∠A 的补角与∠A的余角的差一定等于直角;③从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线;④平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个.其中正确结论的个数是()A.1B.2C.3D.49.(2022秋·河南周口·七年级校考期末)平面上不重合的两点确定1条直线,不同三点最多可确定3条直线,若平面上9条直线任两条相交,交点最多有a个,最少有b个,则a+b=()A.36B.37C.38D.3910.(2022秋·江苏苏州·七年级校考期中)两条不重合的直线最多有一个交点,三条不重合的直线最多有______个交点,100条不重合的直线最多有______个交点.11.(2023秋·黑龙江齐齐哈尔·七年级统考期末)如图,在同一平面内有四个点A,B,C,D,请按要求完成下列问题.(注此题作图不要求写出画法和结论)(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB、AD;(4)我们容易判断出线段AB+AD与BD的大小关系是___________,理由是___________.(5)若∠BAC的补角是其余角的4倍,则∠BAC=___________12.(2022秋·河南三门峡·七年级统考期末)如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.13.(2023秋·四川泸州·七年级统考期末)如图,已知平面内有四个点A,B,C,D,按下列要求尺规作图(不写作法,保留作图痕迹)并解答.(1)画射线AD,直线CD,连接AB;(2)在线段AD的延长线上作DE=AB;(3)在直线CD上确定一点P,使得BP+EP的值最小,并说明作图依据.14.(2023秋·江苏宿迁·七年级统考期末)在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)连接BD,作射线AC;(2)过点B画AD的垂线,垂足为E;(3)在线段BD上作一点F,使△DCF的面积为3.15.(2023秋·四川南充·七年级统考期末)已知线段AB与点C的位置如图.(1)按下列要求画出图形:作射线CB,直线AC;延长AB至点E,使得AE=3AB;(2)在(1)所画图形中,若AB=2cm,点M是AE的中点,求BM的长.16.(2023秋·江苏·七年级统考期末)如图,点C为线段AD上一点,点B为线段CD的中点,且AD=14厘米,BD=3厘米.(1)图中共有几条线段;(2)求AC的长.17.(2022秋·湖北武汉·七年级统考期末)如图,A,B,C是平面上三个点,按要求画出图形,并回答问题.(1)作直线BC,射线AB,线段AC;(2)请用适当的语句表述点A与直线BC的关系:______;(3)从点A到点C的所有线中,线段AC最短,其理论依据是______;(4)若点D是平面内异于点A、B、C的点,过其中任意两点画直线,一共可以画______条.18.(2023秋·湖北襄阳·七年级统考期末)如图,已知B,C在线段AD上,AB=CD,AD=20cm,BC=12cm.(1)图1中共有___________条线段;(2)①比较线段的长短:AC___________BD(填:“>”、“=”或“<”);②如图2,若M是AB的中点,N是CD的中点,求MN的长度.(3)点E在直线AB上,且EA=6cm,请直接写出BE的长.19.(2023秋·山东济宁·七年级统考期末)A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a−b,a−2b−1.若A、C两站之间的距离AC= B、C两站之间的距离BC=2a−b,B、D两站之间的距离BD=7290km,求C、D两站之间的距离.20.(2023秋·湖北武汉·七年级校考期末)按要求完成作图及作答:(1)如图1,请用适当的语句表述点M与直线l的关系:;(2)如图1,画射线PM;(3)如图1,画直线QM;(4)如图2,平面内三条直线交于A、B、C三点,将平面最多分成7个不同的区域,点M、N是平面内另外两点,若分别过点M、N各作一条直线,则新增的两条直线使得平面内最多新增个不同的区域.21.(2023秋·湖北武汉·七年级统考期末)请按要求完成下列问题;(1)在图1中作线段BC;(2)在图1中作射线DA;(3)在图1中找一点P,使得点P到点A、点B、点C、点D四个点的距离之和最小;(4)为探索平面内相交直线的交点个数,小方进行了如下研究:如图2,直线l1和l2相交于点A,两条线交点个数为1;过点B和点C作直线l3,与直线l1和l2相交,新增2个交点;过点D作直线l4,与直线l1、l2和l3相交,新增3个交点……按照此规律,若平面内有10条直线,则最多共有______个交点.考点2:与角有关的知识例4(1)(2023秋·广东阳江·七年级统考期末)如图,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.∠AOC=∠AOB+∠BOC D.∠AOC也可用∠O来表示(2)(2023秋·重庆綦江·七年级统考期末)时钟显示为4:00时,时针与分针所夹的角是()A.90°B.105°C.120°D.135°(3)(2023秋·江苏南通·七年级统考期末)已知∠α=25°,那么∠α的补角等于()A.65°B.75°C.145°D.155°(4)(2023秋·江西吉安·七年级统考期末)拿一个10倍的放大镜看一个1°的角,则这个角为()A.100°B.10°C.1°D.不能确定,视放大镜的距离而定例5.(2023秋·吉林长春·七年级统考期末)如图为半圆形计时器,指针OM绕点O从OB开始逆时针匀速向OA 旋转,速度为10°每秒,指针ON绕点O从OA开始先顺时针匀速向OB旋转,到达OB后立即按原速度逆时针匀速向OA旋转,速度为20°每秒,两指针同时从起始位置出发,当OM到达OA时,两指针都停止旋转.设旋转时间为t秒(1)当t=3时,∠AON=______度;(2)∠BOM=______度(用含t的代数式表示);(3)当t=______时,OM与ON首次重合;(4)求∠MON的度数(用含t的代数式表示,并写出相对应的t的取值范围);知识点训练1.(2023秋·云南曲靖·七年级统考期末)下列图形中,能用∠AOB,∠O,∠1三种表示方法表示同一个角的是()A.B.C .D .2.(2023秋·浙江宁波·七年级统考期末)已知α,β都是钝角,甲、乙、丙、丁四名同学计算16(α+β)的结果依次是26°,50°,72°,90°,其中有一名同学计算正确.这名同学是( )A .甲B .乙C .丙D .丁3.(2023秋·江西南昌·七年级统考期末)若∠A 为锐角,∠B 为直角,∠C 为钝角,则16(∠A +∠B +∠C)的值可.能.是( ). A .30° B .45° C .60° D .75°4.(2023秋·湖南株洲·七年级统考期末)下列关于角的说法,正确的是( )A .一个周角等于360°B .锐角和钝角一定互补C .一个角的补角一定大于这个角D .两个锐角的和一定为钝角5.(2023秋·黑龙江双鸭山·七年级统考期末)下列各图中有关角的表示正确的个数有( )A .1个B .2个C .3个D .4个6.(2023秋·河北保定·七年级校联考期末)下列四个图形中,能同时用∠α,∠AOB ,∠O 三种方法表示同一个角的是( )A . B.C.D.7.(2022秋·天津·七年级校考期末)如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠AOC也可用∠O来表示D.∠β+∠AOB=∠AOC8.(2022秋·河北·七年级校联考期末)下列说法中正确的是()A.在所有连接两点的线中,直线最短B.∠AOB与∠BAO表示的是同一个角C.同角(或等角)的余角相等D.若AB=BC,则点B是线段AC的中点9.(2023秋·福建龙岩·七年级统考期末)已知∠AOB=80°,∠BOC=30°,则∠AOC的度数为().A.50°B.110°C.50°或110°D.无法确定10.(2023秋·河北保定·七年级统考期末)已知:如图1,点A,O,B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒2°的速度旋转;同时射线OB绕点O沿逆时针方向以每秒4°的速度旋转.如图2,设旋转时间为t秒(0≤t≤90).下列说法正确的是()A.整个运动过程中,不存在∠AOB=90°的情况B.当∠AOB=60°时,两射线的旋转时间t一定为20秒C.当t值为36秒时,射线OB恰好平分∠MOAD.当∠AOB=60°时,两射线的旋转时间t一定为40秒11.(2023秋·江苏无锡·七年级江苏省锡山高级中学实验学校校考期末)钟面角是指时钟的时针和分针所成的角.例如:六点钟的时候,时针与分针所成钟面角为180°;七点钟的时候,时针与分针所成钟面角为150°.那么从六点钟到七点钟这一个小时内,哪些时刻时针与分针所成钟面角为100°?请写出具体时刻:______.(结果形如6点2311分)12.(2023秋·山东滨州·七年级统考期末)在钟表上,当时钟显示为10:40时,时针与分针所夹锐角的大小是______.13.(2023秋·山东枣庄·七年级统考期末)上午8点30分,钟面上时针与分针的夹角是______.14.(2023秋·河南平顶山·七年级统考期末)计算:32°45′48″+21°25′14″=____________;27°14′24″=____________°;当时钟指向时间为15:30时,钟表上的时针与分针的夹角为____________度.15.(2023秋·山东滨州·七年级统考期末)若∠α=38∘24′,则∠α的余角的度数为______°.16.(2023秋·江苏南通·七年级统考期末)一个角的余角比它的补角的14大15°,则这个角的度数是______°. 17.(2023秋·广西南宁·七年级南宁市天桃实验学校校考期末)如图,OB 为∠AOC 的平分线,OD 是∠COE 的平分线.(1)如果∠AOB =40°,∠DOE =30°,那么∠BOD 为多少度?(2)如果∠AOE =140°,∠COD =30°,那么∠AOB 为多少度?(3)过点O 作射线OF ,使得∠AOF 与∠BOD 互余,若∠AOE =4∠AOF ,求∠EOF 的度数.18.(2023秋·山东枣庄·七年级统考期末)如图,O 为直线AB 上一点,∠AOC =50°,OD 平分∠AOC ,∠DOE =90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD 的度数;(3)请通过计算说明OE 是否平分∠BOC .19.(2023秋·陕西宝鸡·七年级统考期末)如图,已知∠AOB=90°,∠AOC为锐角,ON平分∠AOC,射线OM 在∠AOB内部.(1)图中共有多少个小于平角的角?(2)若∠AOC=50°,∠MON=45°,求∠AOM的度数.(3)若∠AOC=x°,∠MON=45°,请通过计算判断∠BOM与∠BOC的关系.20.(2023秋·江苏·七年级统考期末)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中与∠COE互补的角是______;(把符合条件的角都写出来)∠EOF,求∠AOD的度数.(2)若∠AOD=1521.(2023秋·山东济宁·七年级统考期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC= 1:2,∠MON的一边OM在射线OB上,另一边ON在直线AB的下方,且∠MON=90°.(1)如图1,求∠CON的度数;(2)将图1中的∠MON绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分锐角∠AOC,求∠MON所运动的时间t值;考点3:平行线与相交线例6.(1)(2023秋·湖北荆门·七年级统考期末)下列说法中,正确的个数有()(1)若a∥b,b∥d,则a∥d;(2)过一点有且只有一条直线与已知直线平行;(3)两条直线不相交就平行;(4)垂直于同一直线的两直线平行.A.1个B.2个C.3个D.4个(2)(2023春·湖南株洲·七年级统考阶段练习)如图,不能判定AD∥BC的条件是()A.∠B+∠BAD=180°B.∠1=∠2C.∠D=∠5D.∠3=∠4(3)(2023秋·山东枣庄·八年级统考期末)枣庄市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=54°.当∠MAC为______度时,AM与CB平行.例7.(2022秋·河南南阳·七年级统考期末)【教材回顾】如下是华师版七年级下册教材第167页,关于同旁内角的定义.图中∠4和∠5处于直线l的同一侧,直线a、b的中间.具有这种位置关系的一对角叫做同旁内角.知识点训练1.(2023秋·河南南阳·七年级统考期末)已知三条不同的直线a,b,c在同一平面内,下列叙述:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,a⊥c,那么b∥c.其中正确的是()A.①②③B.②③④C.①②④D.①②③④2.(2022秋·福建泉州·七年级统考期末)如图所示,图中同旁内角的数量共有()A.3对B.4对C.5对D.6对3.(2023春·重庆渝中·九年级重庆巴蜀中学校考开学考试)如图,直线a、b被直线c所截,∠1的同位角是()A.∠2B.∠3C.∠4D.以上都不是4.(2022秋·福建泉州·七年级统考期末)如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角5.(2023春·全国·七年级专题练习)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c6.(2023春·七年级课时练习)同一平面内的四条直线a,b,c,d满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a⊥c B.b⊥d C.a⊥d D.b∥c7.(2022春·福建龙岩·七年级校考阶段练习)如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D+∠ACD=180°C.∠D=∠DCE D.∠1=∠28.(2023春·全国·七年级专题练习)小林乘车进入车库时仔细观察了车库门口的“曲臂直杆道闸”,并抽象出如图所示的模型,已知AB垂直于水平地面AE.当车牌被自动识别后,曲臂直杆道闸的BC段绕点B缓慢向上旋转,CD段则一直保持水平状态上升(即CD与AE始终平行),在该过程中∠ABC+∠BCD始终等于()A.360°B.180°C.250°D.270°9.(2023秋·河南南阳·七年级统考期末)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件可以判定直线c∥d的是()A.∠1=∠3B.∠2=∠3C.∠1=∠4D.∠4+∠5=180°10.(2023秋·河南洛阳·七年级统考期末)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.14°B.15°C.20°D.22.5°11.(2023秋·山东枣庄·八年级统考期末)欣欣在观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=93°,∠DCE=121°,则∠E的度数是()A.23°B.26°C.28°D.32°12.(2023秋·福建泉州·七年级统考期末)如图,AB⊥CD于点O,OE平分∠AOC,若∠BOF=20°,则∠EOF 的度数为_________.13.(2023秋·福建龙岩·七年级统考期末)如图,直线AB、CD相交于点O,∠AOE=∠COF=90°.(1)写出∠DOE的所有余角________.(2)若∠AOF=70°,求∠COE的度数.14.(2023秋·四川宜宾·七年级统考期末)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOD=2:1.(1)求∠BOE的度数;(2)求∠AOF的补角的度数.15.(2023春·湖南株洲·七年级统考阶段练习)如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.(1)求证:BD∥EF;(2)求证:∠AMD=∠AGF.16.(2023秋·福建泉州·七年级统考期末)如图,已知AB∥DE,∠BAC=90°.(1)求证:AC⊥DE;(2)若∠C+∠D=90°,求证:AD∥BC.17.(2022秋·河南平顶山·八年级统考期末)补全证明过程:(括号内填写理由)如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试说明BD//CE.证明:∵∠1=∠2(已知),∴∥().∴∠D=().又∠D=∠3,∴=().∴BD//CE()考点4:命题有关知识例8.(1)(2023秋·重庆万州·八年级统考期末)下列命题为假命题...的是()A.任何一个数都有平方根B.一个数的立方根等于本身的数有−1、0和1C.有一组直角边相等的两个等腰直角三角形一定全等D.斜边对应相等的两个等腰直角三角形一定全等(2).(2022秋·福建泉州·八年级统考期末)用反证法证明命题“已知在△ABC中,AB=AC,则∠B<90°”时,首先应该假设()A.∠B≥90°B.∠B>90°C.AB≠AC D.AB≠AC且∠B≥90°(3).(2023秋·福建泉州·八年级校联考期末)对于命题“若a>0,则a>√a”,作为反例能说明该命题是假命题的a值是()A.a=1B.a=2C.a=4D.a=16例9.(2022春·江西南昌·七年级校考阶段练习)如图,∠ACD是△ABC的一个外角,请你从下面三个条件:①CE∥AB,②∠A=∠B,③CE平分∠ACD中,选择两个作为题设,另一个作为结论,组成真命题.(1)请问可以组成哪几个真命题,请按“☆☆⇒☆”的形式一一书写出来;(2)请从(1)的真命题中,选择一个加以说明,并写出推理过程.知识点训练1.(2022秋·贵州铜仁·八年级统考期中)下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有()A.1个B.2个C.3个D.4个2.(2023秋·河南新乡·八年级统考期末)下列命题为假命题的是()A.直角三角形的两个锐角互余B.等腰三角形的两边长是4和9,则其周长为17或22C.三条边长之比是1:2:√5的三角形是直角三角形D.有一个内角与其相邻的外角的比为1:2的等腰三角形是等边三角形3.(2022秋·福建泉州·八年级统考期末)“直角都相等”与“相等的角是直角”是()A.互为逆命题B.互逆定理C.公理D.假命题4.(2023秋·河南洛阳·八年级统考期末)用反证法证明“在△ABC中,∠A、∠B对边a,b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a>b5.(2023秋·河南新乡·八年级统考期末)用反证法证明“若a+b≥0,则a,b至少有一个不小于0.”时,第一步应假设()A.a,b都小于0B.a,b不都小于0C.a,b都不小于0D.a,b都大于06.(2023秋·福建泉州·八年级统考期末)对于命题“若a+b<0,则a<0,b<0”,下列能说明该命题是假命题的反例是()A.a=2,b=3B.a=−2,b=3C.a=2,b=−3D.a=−2,7.(2023秋·江西南昌·九年级南昌市第十七中学校考期末)若用反证法证明“圆的切线垂直于过切点的半径”,第一步是提出假设________;11.(2023秋·浙江宁波·八年级统考期末)能说明命题:“若两个角α,β互补,则这两个角必为一个锐角一个钝角”是假命题的反例是_________.8.(2023秋·福建厦门·八年级统考期末)探究活动(1)[知识回顾]如图,王芳不小心把一块三角形的玻璃打成三块碎片,现要配出与原来一样的玻璃,则应携带的玻璃碎片编号是()A.①B.②C.③(2)[直观感知]如图,李明不小心把一块四边形的玻璃打成四块碎片,现要配出与原来一样的玻璃,则应携带的玻璃碎片编号是()A.① ②B.① ③C.① ④D.② ③E.② ④F.③ ④(3)[问题探究]在平面几何里,能够完全重合的两个三角形叫全等三角形.类似的,我们把能够完全重合的两个四边形叫全等四边形.也就是说四条边和四个角都分别相等的两个四边形全等.① 已知:如图,在四边形ABCD与四边形A′B′C′D′中,AB=A′B′,BC=B′C′,CD=C′D′,DA=D′A′,∠ABC=∠A′B′C′.求证:四边形ABCD与四边形A′B′C′D′是全等四边形.② 请类比全等三角形的判定定理,用文字语言表述第① 题的题设与结论:③ 请再写出一个判定四边形全等的真命题.(用符号语言表达,不必证明)9.(2022春·湖南株洲·八年级统考期末)如右图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同一直线上,有如下三个关系式:①AD=BC:②CF=DE;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出1个你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)并证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。

(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。

立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。

(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。

(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。

(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。

2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。

(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。

2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。

5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。

考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。

3.直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两条直线相交有唯一一个公共点.4.点与直线的位置关系:(1)点在直线上,例如点A在直线l上,也可以说是直线l经过点A.(2)点在直线外,例如点A在直线l上,也可以说成是直线l不经过点A.二、线段1.线段的概念:直线上两点和他们之间的部分叫作线段,这两点叫作线段的端点。

2.线段的表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示(字母是无序的).(2)线段也可以用一个小写英文字母来表示,例如线段n.3.线段的基本性质:两点的所有连线中,线段最短,简称:两点之间,线段最短。

4.两点的距离:连接两点的线段的长度叫作这两点的距离。

5.线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

6.线段长短的比较方法:(1)度量法:用刻度尺量出两条线段的长度,再比较长短.(2)叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.7.线段的中点:把一条线段分成两条相等线段的点,叫作这条线段的中点。

三、射线1.射线的概念:直线上一点和它一旁的部分叫作射线,这个点叫射线的端点。

2.射线的特征:射线是直的,有一个端点,不可以度量,不可以比较长短,无限长。

四、直线、射线、线段的区别与联系1.联系:线段向一方无限延长是射线,向两端无限延伸是直线。

射线和线段是直线的一部分。

2.区别:直线可以向两边无限延伸,射线只向一方无限延伸,线段不能延伸.直线、射线不可度量,线段可以度量。

考点03 角一、角的概念1.角的概念:有公共端点的两条直线组成的图形叫作角,这个公共端点是角的顶点,这两条射线是角的两条边。

或者一条射线绕着它的端点旋转而形成的图形叫作角。

射线旋转时的起始位置叫作始边,终止位置叫作终边,射线旋转时经过的平面部分是角的内部。

2.注意:两条射线有公共端点,端点是角的顶点.角的边是射线.角的大小与所画出的角的两边的长短无关。

3.平角与周角:当角的两边在一条直线上时,叫作平角,当始边与终边重合时,所形成的角叫作周角。

4.角的表示:角的几何符号用“ ”表示,表示法通常有以下几种类型:5.角的画法:(1)利用三角板除了可以作出30°,45°,60°,90°的角外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角,他们都是15°角的整数倍.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画出一个角等于已知角。

二、角的度量1.度量仪器:量角器.2.用量角器两角和画角的一般步骤:(1)角的顶点与量角器的中心对齐.(2)一边与刻度尺上的零度线重合.(3)读出另一边所在线的度数。

3.角度制:以度、分、秒为单位的角的度量制,叫作角度制。

(1)把一个周角平均分成360等份,每一份就是1度的角,记作1°.(2)1°的601为1分,记作"1. (3)"1的601为1秒,记作""1. (4)1周角=360°,1平角=180°,1°="60,"1=""604.度、分、秒之间的转换方法:(1)角度的换算关系是六十进制,类似于时间单位的换算.(2)角的度数的换算有两种方式:一是由度化成分、秒的形式,即由高单位化成低单位,每次换算需要乘以60.二是由秒化成分,由分化成度,即由低单位换算成高单位,每次换算需要除以60。

5.角的比较:(1)度量比较法:先用量角器量出角的度数,然后比较他们的大小.(2)叠合比较法:把其中一个角移到另一个角上作比较.6.角平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫作这个角的平分线。

7.余角、补角(1)余角:如果两个角的和为90°,那么这两个角互为余角,其中一个角是另一个角的余角.(2)补角:如果两个角的和为180°,那么这两个角互为补角,其中一个角是另一个角的补角.(3)互余的性质:同角或等角的余角相等.(4)互补的性质:同角或等角的补角相等.(5)一个锐角α的余角可表示为(α-︒90).一个角α的补角可以表示为(α-︒180),显然,一个锐角的补角比它的余角大90°。

8.方位角:(1)正东、正西、正南、正北4个方向不需要用角度表示.(2)方位角以南北方向作为基准,先写南或北,在写偏东或偏西.(3)在同一问题中,观察点可能不止一个,在不同的观测点,都要画出十字架表示方位.9.钟表上有关夹角的问题:钟表中有12个大格,把周角12等分,每个大格对应30°的角,分针1分钟转6°,时针每小时旋转30°,时针1分钟旋转0.5°。

考点04 相交线与平行线一、相交线1.相交线的概念:有唯一公共点的两条直线叫作相交线。

2.对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角互为对顶角。

对顶角成对出现, 两条直线相交所构成的四个角中,有2对对顶角。

3.对顶角的特征:(1)两个角有公共顶点.(2)两个角的边互为反向延长线.4.邻补角:如果两个角有一条公共边,并且他们的另一边互为反向延长线,这两个角称为互为邻补角。

邻补角是成对出现的,而且是互为邻补角。

5.邻补角满足的条件:(1)有公共顶点.(2)有一条公共边,另一边互为反向延长线.6.邻补角和补角的区别:邻补角是具有特殊位置关系的两个角,是两角互补的特殊情况,补角主要从数量关系上来看两个角的,而邻补角不仅从数量关系上满足两角之和为180°,还必须具备位置上的关系.如果两个角互为邻补角,那么这两个角一定互为补角.如果两个角互为补角,这两个角不一定互为邻补角.一个角的补角可以画出很多个,但邻补角只有两个。

二、垂线1.垂线的概念:两条直线相交形成的四个角中,有一个角是直角时,就称这两条直线互相垂直.例如直线AB 垂直于直线CD ,可写成:CD AB ⊥.其中一条直线叫作另一条直线的垂线,它们的交点称为垂足。

2.垂线的性质:平面内过一点有且只有一条直线与已知直线垂直。

3.垂线段:过直线外一点作这条直线的垂线,这个点与垂足之间的线段叫作垂线段。

4.垂线段的性质:在连接直线外一点与直线上各点的线段中垂线段最短,简称:垂线段最短。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫作点到直线的距离。

6.垂线的画法:用量角器画垂线:①经过直线上一点画已知直线的垂线:先让量角器的底线落在已知直线上,并使量角器底边的中心点与直线上已知点重合,再在量角器90°所对的位置处标出一点,拿走量角器,连接即可。

②经过直线外一点画已知直线的垂线:先让量角器的底线落在已知直线上,并使量角器90°的垂线经过直线外的该点,再在量角器90°所对的位置出标出一点,连接这两点即可。

三、同位角、内错角、同旁内角1.像1∠与3∠这样位于两条被截直线的同侧,且位于截线的同旁的两个角叫作同位角。

2.像1∠与5∠这样位于两条被截直线的两侧,且位于截线的两旁的两个角叫作内错角。

3.像1∠与2∠这样位于两条被截直线的内侧,且位于截线的同旁的两个角叫作同旁内角。

4.对三线八角的理解:(1)同位角:位置相同即2个角都在截线的同旁和被截线的同方向,即同上或同下,同左或同右.(2)内错角夹在被截直线之内和位于截线两旁.(3)同旁内角则夹在被截两直线之内和截线同旁.四、平行线1.平行线的概念:在同一平面内,不相交的两条直线叫作平行线。

2.平行公理及其推论:(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行。

(即:b//,// )a//cbac3.判断同一平面内两条直线的位置关系:(1)有且只有一个公共点,两直线相交.(2)无公共点,两直线平行.(3)有两个及以上公共点,则两直线重合。

考点05 平行线的判定与性质一、平行线的判定1.判定方法1:两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.即同位角相等,两直线平行。

2.判定方法2:两直线被第三条直线所截,如果内错角相等,那么这两条直线平行.即内错角相等,两直线平行。

3.判定方法3:两直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.即同旁内角互补,两直线平行。

相关文档
最新文档