双三氟甲基磺酰亚胺锂的合成
双三氟甲烷磺酰亚胺锂 固态电池

双三氟甲烷磺酰亚胺锂(简称为LiTFSI)是一种在固态电池中被广泛应用的锂盐。
它具有很高的锂离子传导率和化学稳定性,因此成为固态电池领域的研究热点。
本文将介绍LiTFSI在固态电池中的应用及其相关研究进展。
一、 LiTFSI的物理化学性质LiTFSI是一种无色晶体固体,其化学式为LiN(SO2CF3)2。
它具有很强的溶解性,可以在众多有机溶剂中溶解。
在固态电池中,LiTFSI可以与聚合物电解质或氧化物固体电解质结合,形成能够导电的复合材料。
二、 LiTFSI在固态电池中的应用1. 作为聚合物电解质的添加剂LiTFSI可以作为聚合物电解质的添加剂,提高固态电池的离子传导率。
研究表明,将LiTFSI掺杂进聚合物电解质中,可以显著提高固态电池的性能,例如提高电池的充放电速率和循环寿命。
2. 作为固态电解质的组成部分LiTFSI也可以与氧化物固态电解质相结合,形成具有良好离子传导性能的固态电解质。
这种固态电解质不仅具有高离子传导率,还具有较高的化学稳定性和热稳定性,能够应用在高温或高压条件下。
三、 LiTFSI在固态电池中的研究进展近年来,固态电池技术取得了长足的进步,LiTFSI作为重要的固态电池材料也得到了广泛的研究。
研究人员不断优化LiTFSI的合成方法和应用技术,以提高固态电池的性能。
通过控制LiTFSI的晶体结构和形貌,可以提高其离子传导率和溶解度,从而提高固态电池的能量密度和循环寿命。
另外,一些研究还探索了将LiTFSI与其他功能材料(如导电聚合物、复合氧化物)相结合,以构建具有优异性能的固态电池体系。
这些研究为固态电池的应用提供了新的思路和技术支持。
四、结语作为固态电池中重要的电解质材料,LiTFSI具有优异的物理化学性质和应用潜力。
随着固态电池技术的不断发展和成熟,LiTFSI的应用前景将会更加广阔。
相信通过不断深入的研究,固态电池技术将在能源存储领域发挥越来越重要的作用。
五、LiTFSI在固态电池中的挑战与发展方向尽管LiTFSI在固态电池中具有诸多优异的性能和应用前景,但在实际应用过程中仍然存在一些挑战。
双氟磺酰亚胺锂的合成及应用研究进展

研究与开发化 工 设 计 通 讯Research and DevelopmentChemical Engineering Design Communications·140·第46卷第1期2020年1月锂离子电池因为具有大的能量密度、高的工作电压、长的循环寿命等优点,而被广泛地应用于手机、笔记本电脑、小型充电系统、电动汽车等众多领域,并且其应用领域随着社会的不断发展仍在持续扩展。
现有锂离子电池中的电解质为六氟磷酸锂产品,该产品具有电导率高等优点,但是,同时也存着热稳定差、制备过程苛刻、高低温性能不好等缺点。
因此,研究者也在持续开发新型锂离子电池用新型电解质,以提高锂离子电池的综合性能。
其中,双三氟甲基磺酰亚胺锂(LiTFSI )具有较大的阴离子半径,容易解离出锂离子,进而可提高电导率;而且,该产品具有良好的热稳定性;但是,该产品在3.7V (Li +/Li )的电位下会对正极集流体铝片造成腐蚀,进而影响该电解质在锂离子电池中的应用。
有研究表面,含有F —P 键阴离子的锂离子电池电解质可以显著降低电解质对集流体的腐蚀。
因此,双氟磺酰亚胺锂(LiFSI )因其良好结构稳定性和电化学性能等优异性能,在学术界和产业界都受到了研究者的广泛青睐。
1 LiFSI 的特点和六氟磷酸锂相比,LiFSI 具有以下优点:1)LiFSI 的阴离子半径更大,更易于解离出锂离子,进而提高锂离子电池的电导率;2)当温度大于200℃时,LiFSI 仍然能够稳定存在,不发生分解,热稳定性好,进而提高锂离子电池的安全性能;3)以LiFSI 为电解质的电解液,与正负极材料之间保持着良好的相容性,可以显著提高锂离子电池的高低温性能。
2 LiFSI 的制备工艺研究LiFSI 的制备通常包括三个过程:1)双氯磺酰亚胺的合成;2)双氯磺酰亚胺氟化反应制备双氟磺酰亚胺;3)LiFSI 的制备。
在研究过程中,有不同的研究者分别对不同的反应过程进行了优化,以达到提高LiFSI 产品纯度以及产品收率的目的。
一种二(三氟甲基磺酰)亚胺锂盐的制备方法[发明专利]
![一种二(三氟甲基磺酰)亚胺锂盐的制备方法[发明专利]](https://img.taocdn.com/s3/m/8cc418cec9d376eeaeaad1f34693daef5ff71374.png)
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201811635245.6(22)申请日 2018.12.29(71)申请人 江苏长园华盛新能源材料有限公司地址 215635 江苏省苏州市张家港市江苏扬子江国际化学工业园青海路28号江苏长园华盛新能源材料有限公司(72)发明人 吴国栋 李伟锋 陆海媛 曹娜 杨建新 孙秋婷 杨志勇 张先林 (74)专利代理机构 无锡中瑞知识产权代理有限公司 32259代理人 王建军(51)Int.Cl.C07C 303/40(2006.01)C07C 311/48(2006.01)(54)发明名称一种二(三氟甲基磺酰)亚胺锂盐的制备方法(57)摘要本发明提供一种二(三氟甲基磺酰)亚胺锂盐的制备方法,其特点是在无水、氮气保护、低温条件下将三氟甲烷气体通入到烷基锂的非极性溶剂溶液中反应制备三氟甲基锂,反应完毕后在低温条件下向三氟甲基锂溶液中缓慢滴加双氟磺酰亚胺锂溶液,滴加过程会有白色固体析出,滴加结束后过滤反应液,滤液减压蒸干后得到白色固体湿盐,真空干燥后得到二(三氟甲基磺酰)亚胺锂盐。
本发明的优点是实现一锅法合成二(三氟甲基磺酰)亚胺锂,相对于传统方法极大的简化了工艺路线,降低反应过程中产品与副产物分离难度,提升产品纯度,从而进一步降低生产成本,提升产品性能和成本竞争力,为大规模工业化生产提供了可行的技术支持。
权利要求书1页 说明书4页CN 109369474 A 2019.02.22C N 109369474A1.一种二(三氟甲基磺酰)亚胺锂盐的制备方法,其特征在于:包括以下步骤:步骤(1)制备三氟甲基锂,在低温条件下将三氟甲烷气体通入到烷基锂的非极性溶剂溶液中反应制备三氟甲基锂,反应完毕后,待用;步骤(2)配制双氟磺酰亚胺锂非极性溶剂溶液;步骤(3)制备二(三氟甲基磺酰)亚胺锂盐,将步骤(2)得到的双氟磺酰亚胺锂溶液在低温条件下向步骤(1)得到的三氟甲基锂溶液中缓慢滴加双氟磺酰亚胺锂溶液,滴加过程有白色固体析出,滴加结束,待反应完毕得反应液;步骤(4)后处理,将步骤(3)的反应液进行过滤,将滤液减压蒸干后得白色固体湿盐,真空干燥后得二(三氟甲基磺酰)亚胺锂盐。
二(三氟甲基磺酰)亚胺锂研发技术报告

二(三氟甲基磺酰)亚胺锂研发技术报告二(三氟甲基磺酰)亚胺锂研发技术报告1 二(三氟甲基磺酰)亚胺锂性能简介二(三氟甲基磺酰)亚胺锂是二(全氟甲基磺酰)亚胺盐化合物系列的第1个成员,又名三氟甲基磺酰亚胺锂、二(三氟甲基磺酰)酰亚胺锂,CAS号:90076-65-6,分子式:LiN(CF3SO2)2,英文名称:bistrifluoromethanesulfonimide lithium salt,相对分子量为287,熔点236~237℃,具有良好的热稳定性,加热到360℃才开始分解。
电化学稳定性较高。
作为锂离子二次电池的电解质,其稳定电压约为5 V。
它属于有机阴离子锂盐,从N(CF3SO2 )2的化学结构看,电负性中心的氮原子和2个硫原子同时具有强烈的吸电子能力的-CF3官能团并存。
其阴离子电荷分散程度高,阴离子半径在目前所见的电解质锂盐中最大,因此较易电离。
它在有机溶剂中易溶解,其溶液呈路易斯酸性,在溶液中的解离度大,离子迁移率高,电导率高。
它是目前稳定性最好的有机电解质锂盐。
2 二(三氟甲基磺酰)亚胺锂的应用2.1 作锂电次有机电解质锂盐LiN(CF3SO2)2用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率,而且在较高的电压下对铝集液体没有腐蚀作用。
用EC/DMC配成1mol/L 电解质溶液,电导率可达1.0×10-2S/cm。
在-30℃下电导率仍然可达到1.0×10-3S/cm 以上,在军事上有着重要的使用价值。
2.2 作反应催化剂LiN(CF3SO2)2和其他同系物化合物MN(R f SO2)2(其中,M为+1价阳离子,如H+,Li+,Na+,K+等;R f为CF3,C2F5,C3F7,C4F9等全氟烷基),是用于催化裂化、加氢裂化、催化重整、异构化、烯烃水合、甲苯歧化、酯类脱水以及酰基化反应等过程的路易斯酸催化剂。
这种酸催化剂和过去传统的氯化铝和氯化锡以及已知的氧化铝、沸石等固体酸性催化剂相比,显示出其活性高、用量少、可再生、不给环境造成污染等优点。
双(氟磺酰)亚胺锂制备和应用研究进展

双(氟磺酰)亚胺锂制备和应用研究进展薛峰峰;王建萍;王鹏杰;马广辉;耿梦湍【摘要】双(氟磺酰)亚胺锂作为一种新型锂电池电解质,由于其优异的性能受到广泛关注.总结了双(氟磺酰)亚胺锂应用于新型锂电池中的性能,并对当前双(氟磺酰)亚胺锂合成工艺进行了归纳整理,对其今后的发展方向和前景进行了展望.【期刊名称】《河南化工》【年(卷),期】2016(033)009【总页数】5页(P11-15)【关键词】双(氟磺酰)亚胺锂;合成;应用【作者】薛峰峰;王建萍;王鹏杰;马广辉;耿梦湍【作者单位】多氟多化工股份有限公司,河南焦作454191;多氟多化工股份有限公司,河南焦作454191;多氟多化工股份有限公司,河南焦作454191;多氟多化工股份有限公司,河南焦作454191;多氟多化工股份有限公司,河南焦作454191【正文语种】中文【中图分类】TQ226.32锂离子电池因工作电压高、能量密度大、循环寿命长、可快速充放电的优良特性已广泛应用于移动电话、笔记本电脑、小型电动工具等领域,并且迅速向新能源电动汽车和大型储能电站拓展。
当前锂离子电池中应用最为广泛的电解质锂盐为六氟磷酸锂。
六氟磷酸锂中氟原子半径小,半径适当,具有良好的离子电导率和电化学稳定性,但其缺点是抗热性弱和遇水敏感,60~80 ℃即开始分解产生HF。
全氟烷基磺酰亚胺锂盐具有良好的热稳定性和化学稳定性被认为是有可能取代LiPF6的新一代锂离子电池电解质。
目前研究较多的是双(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2,LiTFSI),LiTFSI电解液在3.7 V Li+/Li)的电位下开始对Al正极集流体表现出严重的腐蚀性,限定了其在锂离子电池体系中的应用。
部分研究表明增长氟碳链有利于改善全氟烷基磺酰亚胺锂电解液/Al箔界面的电化学稳定性,例如Li[N(CF3SO2)(C4F9SO2)]对A1箔的腐蚀电位提高到4.5 V和4.6 V(vs.Li+/Li)。
二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2)应用及合成分析

二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2)应用和合成分析引言二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2)是二(全氟甲基磺酰)亚胺盐化合物系列的第1个成员。
相对分子质量为287.1,熔点236~237℃,具有良好的热稳定性,加热到360℃才开始分解[1]。
一方面,在强拉电子效应的三氟甲基协同参与下,二(三氟甲磺酰)亚胺锂阴离子中N原子上的负电荷可通过共振作用分散到整个O-S-N骨架上而高度离域化,从而大大增强了离子的稳定性。
另一方面,电化学稳定性较高,作为锂离子二次电池的电解质,其稳定电压约为5 V。
它属于有机阴离子锂盐,从N(CF3SO2)2-的化学结构看,电负性中心的氮原子和2个硫原子同具有强烈的吸电子能力的—CF3官能团并存。
其阴离子电荷分散程度高,阴离子半径在目前所见的电解质锂盐中最大[2],因此较易电离。
最后,两个大体积三氟甲基的空间位阻,使该类离子的配位能力大大削弱,使它展现出潜在的强的化学亲电性、高Lewis酸酸性及优良的固体表面特征,从而使得该类物质在众多领域具有广泛的用途,如制锂离子二次电池电解质、离子液体、选择性氟化试剂和环境友好的高效Lewis酸催化剂。
1应用1.1做为电解质盐使用目前,研究应用于锂离子二次电池的导电锂盐主要有含CF3SO2的甲基锂盐及亚甲基胺锂盐、硼酸锂盐、磷酸锂盐,无机锂盐水溶液作电解质应用于锂离子二次电池,其平均电压较低。
若以(LiN(CF3SO2)2)为锂盐溶于有机溶剂中,应用于锂离子二次电池中,电池电压可大大提高。
其中,含有LiPF6的有机电解液显示出导电率高、稳定好的电化学性能等优点。
LiPF6成为目前商业化的主要电解液的导电锂盐,但其价格较贵,且P-F键易水解断裂使其抗热和抗水解性能不够理想。
(CF3SO2)2NLi用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率,而且在较高的电压下对铝集液体没有腐蚀作用。
用EC/DMC配制成1mol/L电解质溶液,电导率可达 1.0×10-2 S/cm。
双三氟甲磺酰亚胺的生产应用研究进展

双三氟甲磺酰亚胺的生产应用研究进展贾炜冬;王少波;罗建志【摘要】双三氟甲基磺酰亚胺是一种新型超酸,由于其阴离子部分的独特结构,被大量应用于有机催化,制备离子液体及高效电池电解液等方面.介绍了其作为催化剂参与的几种有机反应,以及其锂盐在电池电解液方面的优势与不足.介绍了几种当前双三氟甲基磺酰亚胺的制备方法,其工业化生产工艺相对成熟,但产品纯度有待提高.对双三氟甲基磺酰亚胺的应用前景及纯化工艺进行了展望.【期刊名称】《电源技术》【年(卷),期】2016(040)004【总页数】3页(P918-920)【关键词】双三氟甲基磺酰亚胺;超酸;电池电解液;制备;纯化【作者】贾炜冬;王少波;罗建志【作者单位】中国船舶重工集团公司第七一八研究所,河北邯郸056000;中国船舶重工集团公司第七一八研究所,河北邯郸056000;中国船舶重工集团公司第七一八研究所,河北邯郸056000【正文语种】中文【中图分类】TM91双三氟甲基磺酰亚胺常温下为无色针状结晶,易吸水且易溶于水、醇类、丙酮、醚类,不溶于正己烷、苯等,其在空气中发烟,易升华,具有强酸性和一定的毒性,在合成与使用时需要做好防护工作。
双三氟甲基磺酰亚胺是全氟烷基磺酰亚胺(PFSI)中最基础的一种物质。
全氟烷基磺酰亚胺俗称“全氟氮超酸”,是一种新型超酸,也是较强的Bronsted酸。
双三氟甲基磺酰亚胺的主要功能绝大部分是由其作为“超酸”的性质[1](如在气相或水溶液中的强酸性)所决定的,该性质又与其阴离子部分(CF3SO2)2N-的结构特点密不可分:首先,在具有强拉电子效应的全氟烷基协同作用下,N原子上的负电荷会通过共振作用分散到整个O-S-N骨架上而产生高度离域化,进而大大增强该阴离子的稳定性[2];其次,两个大体积的全氟烷基具有较大的空间位阻效应和强拉电子效应,从而使该离子的配位能力也大大削弱。
S.H.Strauss和K.Seppelt等称其为“弱配位”或“非配位”阴离子,并用从量子化学的角度对其结论进行了证明[3]。
二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2)应用和合成分析

二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2)应用和合成分析引言二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2)是二(全氟甲基磺酰)亚胺盐化合物系列的第1个成员。
相对分子质量为287.1,熔点236~237℃,具有良好的热稳定性,加热到360℃才开始分解[1]。
一方面,在强拉电子效应的三氟甲基协同参与下,二(三氟甲磺酰)亚胺锂阴离子中N原子上的负电荷可通过共振作用分散到整个O-S-N骨架上而高度离域化,从而大大增强了离子的稳定性。
另一方面,电化学稳定性较高,作为锂离子二次电池的电解质,其稳定电压约为5 V。
它属于有机阴离子锂盐,从N(CF3SO2)2-的化学结构看,电负性中心的氮原子和2个硫原子同具有强烈的吸电子能力的—CF3官能团并存。
其阴离子电荷分散程度高,阴离子半径在目前所见的电解质锂盐中最大[2],因此较易电离。
最后,两个大体积三氟甲基的空间位阻,使该类离子的配位能力大大削弱,使它展现出潜在的强的化学亲电性、高Lewis酸酸性及优良的固体表面特征,从而使得该类物质在众多领域具有广泛的用途,如制锂离子二次电池电解质、离子液体、选择性氟化试剂和环境友好的高效Lewis酸催化剂。
1应用1.1做为电解质盐使用目前,研究应用于锂离子二次电池的导电锂盐主要有含CF3SO2的甲基锂盐及亚甲基胺锂盐、硼酸锂盐、磷酸锂盐,无机锂盐水溶液作电解质应用于锂离子二次电池,其平均电压较低。
若以(LiN(CF3SO2)2)为锂盐溶于有机溶剂中,应用于锂离子二次电池中,电池电压可大大提高。
其中,含有LiPF6的有机电解液显示出导电率高、稳定好的电化学性能等优点。
LiPF6成为目前商业化的主要电解液的导电锂盐,但其价格较贵,且P-F键易水解断裂使其抗热和抗水解性能不够理想。
(CF3SO2)2NLi用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率,而且在较高的电压下对铝集液体没有腐蚀作用。
用EC/DMC配制成1mol/L电解质溶液,电导率可达1.0×10-2 S/cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双三氟甲基磺酰亚胺锂的合成
双三氟甲基磺酰亚胺锂的合成
简介:
双三氟甲基磺酰亚胺锂(LiTFSI)是一种重要的锂盐,广泛应用于锂离子电池、超级电容器以及与锂离子相关的研究和应用中。
本文将介绍双三氟甲基磺酰亚胺锂的合成方法以及制备工艺。
一、原料准备:
1. 三氟甲磺酰亚胺(FSI):FSI是一种重要的中间体,用于合成LiTFSI。
2. 溴乙烷:用于制备溴代乙烷基化试剂。
3. 氢氧化锂(LiOH):用于锂盐的制备。
4. 三氟甲磺酸(TFSI):用于与氢氧化锂反应,合成LiTFSI。
二、合成步骤:
1. 合成溴代乙烷基化试剂:
将溴乙烷与三氟甲磺酰亚胺反应,生成溴代乙烷基化试剂。
这是合成LiTFSI的关键步骤之一。
2. 制备锂盐前驱体:
将溴代乙烷基化试剂与氢氧化锂反应,在水热条件下进行反应,制备出锂盐前驱体。
该反应需要一定的时间和温度控制,保证反应的充分进行。
3. 合成双三氟甲基磺酰亚胺锂:
将锂盐前驱体与三氟甲磺酸反应,生成目标产物双三氟甲基磺酰亚胺锂。
该反应需要精确控制温度和反应时间,保证高产率和纯度的合成。
三、工艺优化:
1. 温度控制:
在合成的过程中,严格控制反应的温度,避免过高的温度导致副反应
的发生,同时也要保证反应温度足够高,以促进反应的进行。
2. 选择溶剂:
选择合适的溶剂进行反应,在反应中起到催化剂和溶剂的双重作用,
提高反应的速率和产率。
3. 精确的反应时间:
反应时间的控制对产物的纯度和产率有着重要的影响。
因此,需要有
合适的手段对反应时间进行精确控制,使反应充分进行和结束。
四、结论:
双三氟甲基磺酰亚胺锂是一种重要的锂盐,在锂离子电池等领域有广
泛应用。
其合成工艺需要注意温度、溶剂选择以及反应时间的控制等
因素,以确保高产率和纯度的合成。
进一步研究和优化合成方法,将
能够满足不同领域对锂盐的需求,并推动相关技术的发展和应用突破。