电磁场与电磁波论文

合集下载

哈工大 电磁场与电磁波 大作业 小论文

哈工大 电磁场与电磁波 大作业 小论文

关于孕妇防辐射服作用的探究班级:学号:姓名:易近年来,随着人们对于健康关注度的不断提高,孕妇防辐射服的市场蓬勃发展,款式价格层次不齐的孕妇防辐射服玲琅满目,已然成为了准妈妈们的标配之一。

然而对于孕妇防辐射服的效果很多人也提出了质疑,引起了人们的关注。

通过查阅各类相关的资料,我将在本文就孕妇防辐射服功效以及是否有必要穿着等方面谈谈自己的认识,并给出自己的一些建议。

首先,我将结合学到的相关知识以及查阅到的相关资料介绍一些关于孕妇防辐射服的背景知识,然后再进行接下来的探究。

辐射相关背景知识辐射辐射指的是能量以波或是次原子粒子移动的型态传送。

辐射之能量从辐射源向外所有方向直线放射。

一般可依其能量的高低及电离物质的能力分类为电离辐射或非电离辐射。

一般普遍将这个名词用在电离辐射。

电离辐射具有足够的能量可以将原子或分子电离化,非电离辐射则否。

辐射活性物质是指可放射出电离辐射之物质。

电离辐射主要有三种:α、β及γ辐射(或称射线)。

电离辐射或非电离辐射皆对生物有害,而且可影响自然环境。

电离辐射拥有足够高能量的辐射可以把原子电离。

一般而言,电离是指电子被电离辐射从电子壳层中击出,使原子带正电。

由于细胞由原子组成,电离作用可以引致癌症。

一个细胞大约由数万亿个原子组成。

电离辐射引致癌症的机率取决于辐射剂量率及接受辐射生物之感应性。

α、β、γ辐射及中子辐射均可以加速至足够高能量电离原子。

通过查阅资料知道,生活中所能接触到的一些电离辐射主要有医院里用的X光、CT,实验用的放射性同位素,居家中用的某些石材或者地面有氡气泄漏等。

显然,我们在日常生活中能够接触到的电离辐射的种类和机会是非常少的。

电磁辐射电磁辐射是非电离辐射的一种。

非电磁辐射主要有中子辐射,电磁辐射和黑体辐射等。

其中,我们日常生活中接触最多的同时也是我们主要担心的就是电磁辐射。

因此重点讨论电磁辐射。

电磁辐射对人体有所危害,主要表现为热效应和非热效应两大方面。

其中热效应是由于人体70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到体内器官的正常工作。

电磁场与电磁波结课论文---无线电在实际中的应用

电磁场与电磁波结课论文---无线电在实际中的应用

电磁场与电磁波结课论文----无线电在实际中的应用一、概述无线电波是电磁波的一种,是指在自由空间(包括空气和真空)传播的射频频段的电磁波(波长大于1mm,频率小于300GHz的电磁波)。

无线电技术是通过无线电波传播声音或其他信号的技术。

无线电技术的原理在于,导体中电流强弱的改变会产生无线电波。

利用这一现象,通过调制可将信息加载于无线电波之上。

当电波通过空间传播到达收信端,电波引起的电磁波变化又会在导体中产生电流。

通过解调将信息从电流变化中提取出来,就达到了信息传递的目的。

利用无线电的手段,将由电厂制造出来的电力转换成为无线电波发送出去,在通过特定的接收装置将无线电波收集起来并转换为电力,供人们使用,这就是无线电力传输。

二、应用无线电的最早应用于航海中,使用摩尔斯电报在船与陆地间传递信息。

现在,无线电有着多种应用形式,包括无线数据网,各种移动通信以及无线电广播等。

而利用共振实现的无线电力传输的这些应用能让我们眼前一亮。

共振是一种非常高效的传输能量方式。

两个振动频率相同的物体之间可以高效传输能量,而对不同振动频率的物体几乎没有影响。

将发送端和接收端的线圈调校成了一个磁共振系统,当发送端产生的振荡磁场频率和接收端的固有频率相同时,接收端就产生共振,从而实现了能量的传输。

根据共振的特性,能量传输都是在这样一个共振系统内部进行,对这个共振系统之外的物体不会产生什么影响。

最妙的就是这一点了。

当发射端通电时,它并不会向外发射电磁波,而只是在周围形成一个非辐射的磁场。

这个磁场用来和接收端联络,激发接收端的共振,从而以很小的消耗为代价来传输能量。

对于在空间实现无线电力传输或供电的形式,总起来看大致有三类:第一类是通过电磁感应“磁耦合”进行短程传输;第二类是将电能第三类是将电能以微波或激光形式远程传输——发射到远端的接收天线,然后通过整流、调制等处理后使用。

以电磁波“射频”或非辐射性谐振“磁耦合”等形式中程传输。

查阅资料可知,2007年3月“Business 2.0”等媒体报道,美国宾夕法尼亚州的Powercast公司开发无线充电技术,可为各种耗电量相对较低的电子产品充电或供电,诸如手机、MP3、随身听、温度传感器、助听器、汽车零部件,甚至体内植入式医疗装置等。

电磁场与电磁波的历史发展与典型应用论文

电磁场与电磁波的历史发展与典型应用论文

电磁场与电磁波理论的发展与应用论文电磁理论如今已经拥有十分完备的体系,并且广泛应用于我们的生活中,大大提高了我们的生活质量。

这并不是某一位科学家的功劳,而是靠着一代代科学家前赴后继,后人站在前人的肩膀上不断探索发现,不断发展的结果。

公元前6,7世纪,人们发现了磁石吸铁,磁石指南以及摩擦生电现象,从此人们对“磁"有了概念,但是也仅仅停留于经验阶段,并没有理论研究。

并且,19世纪以前,人们还是认为,“电"与“磁"是两个不相关的概念。

18实际末期,德国科学家谢林认为,宇宙是由活力的,而不是僵死的。

他认为电就是宇宙的活力,是宇宙的灵魂,磁、光、热是相互联系的。

1777年,法国物理学家库仑发明了能够以非常高的精度测出非常小的力的扭秤,利用扭秤可以算出磁力或者静电力的大小。

1785年,库仑利用自己的扭秤建立了库仑定理,即两个电荷之间的力与两电荷的乘积成正比,与他们之间的距离平方成反比。

库伦定理是电学史上第一个定量规律,他使电学研究从定性阶段进入到了定量阶段,在电学史上是一块重要的里程碑。

1789年,生物学家迦伐尼发现了动物电。

1800年,迦伐尼的好朋友伏打用锌片与铜片夹以盐水浸湿的纸片叠成电堆产生了电流,这个装置后来称为伏打电堆,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放多这样的小杯子中联起来,组成电池。

他指出这种电池"具有取之不尽,用之不完的电”,“不预先充电也能给出电击"。

伏打电堆(电池)的发明,提供了产生恒定电流的电源――化学电源,使人们有可能从各个方面研究电流的各种效应。

从此,电学进入了一个飞速发展的时期――电流和电磁效应的新时期。

直到现在,我们用的干电池就是经过改时后的伏打电池。

干电池中用氯化铵的糊状物代替了盐水,用石墨棒代替了铜板作为电池的正极,而外壳仍然用锌皮作为电池的负极。

人们为了纪念他们的功绩,就把这种电池称为伽伐尼电池或伏打电池,并把电压的单位用"伏特"来命名。

电磁场与电磁波揭示电磁场与电磁波的本质与关系

电磁场与电磁波揭示电磁场与电磁波的本质与关系

电磁场与电磁波揭示电磁场与电磁波的本质与关系电磁场和电磁波是描述电磁现象的两个重要概念。

电磁场是由电荷所构成的空间区域周围存在的物理场,它的存在和变化可以对其他电荷产生力的作用。

而电磁波则是电磁场在空间中的传播,具有波动性质,可以传递能量和信息。

本文将探讨电磁场与电磁波的本质以及它们之间的密切关系。

一、电磁场的本质电磁场是由电荷所激发产生的一种物理场。

根据库伦定律,电荷间的相互作用是通过电磁场传递的,这种传递是瞬时的,即时的。

电磁场存在于电荷周围的空间中,不仅与电荷的性质相关,也与电荷的运动状态有关。

电磁场的本质是一种信息媒介,它可以将电荷的信息传递给其他电荷,从而实现信息的传递和相互作用。

电磁场的强弱和方向是通过电场和磁场来描述的。

电场是由电荷产生的一种力场,它的本质是描述电荷对其他电荷产生力的作用。

磁场是由电流或者称为移动电荷的磁矩产生的一种力场,它的本质是描述电流对其他电荷产生力的作用。

电场和磁场相互垂直,并且彼此相互依赖、相互影响,共同构成了电磁场。

二、电磁波的本质电磁波是电磁场在空间中的传播。

当电荷发生变化时,电磁场会随之变化,产生扰动。

这种扰动以波的形式传播出去,形成电磁波。

电磁波是一种横波,具有电场和磁场相互垂直的振动分量。

电磁波的传播速度是光速,也是任何物质能传播的最大速度。

电磁波具有电磁场的性质,它们都是由电荷产生和激发的,并且都遵循麦克斯韦方程组来描述。

电磁波有三个基本特征:振幅、波长和频率。

振幅表示电场和磁场的最大值,波长表示波的周期性特征,频率表示波的振动次数。

这些特征决定了电磁波在空间中的传播性质,如波速、传播方向等。

三、电磁场与电磁波的关系电磁场和电磁波之间存在着密切的关系。

首先,电磁波是电磁场的传播形式,它是电磁场的集体运动状态,承载着电磁场的能量和信息。

电磁波的产生需要电场和磁场相互作用,并满足一定条件才能形成稳定的电磁波。

其次,电磁波可以通过电磁场的相互作用和传递来影响其他物体和介质。

电磁场与电磁波论文

电磁场与电磁波论文

电磁场与电磁波—电能的无线传输姓名:***班级:电科1101班学号:********引言电能的传输长期以来主要是由导线直接接触进行传输,随着用电设备对供电品质、可靠性、方便性等要求的不断提高,还有特殊场合、殊地理环境的供电,使得接触式电能传输方式,越来越不能满足实际需要;便携式电子设备和家电对快捷方便地获取电能的需求越来越强烈。

因此,无线电能传输越来越受到人们的关注,并被美国《技术评论》杂志评选为未来十大科研方向之一。

无线电能传输技术最早由著名电气工程师(物理学家)尼古拉·特斯拉提出,就是借助于电磁场或电磁波进行能量传递的一种技术。

按照电能传输原理的不同,无线电能传输分为:电磁感应式、电磁共振式和电磁辐射式。

通过该项技术可以实现以探讨将远程无线功率传输系统做成电子式互感器,研究其在高压测量方面的应用,还可以探讨更远的距离使将来室内电器实现无线化,所有室内电器设备都装有无接触功率传输系统,电气设备通过无接触功率接收装置远距离高效率的接收电能工作,而电能发射装置是可以装在墙壁内或者地板下的,使电气设备摆脱电线插座的束缚。

此外,无线输电技术在特殊的场合也具有广阔的应用前景。

例如可以给一些难以架设线路或危险的地区供电;可以解决地面太阳能电站、风力电站、原子能电站的电能输送问题。

深入了解其无线传输电能的意义和方向,具有十分积极的意义。

一、电能无线传输技术的简介1.1电能无线传输的现状1.1.1电能无线传输的研究现状一、国外研究现状国外对无线电能传输技术的研究较早,早在20 世纪70 年代中期就出现了无线电动牙刷,随后发布了几项有关这类设备的美国专利。

20世纪90 年代初期,新西兰奥克兰大学对感应耦合功率传输技术(ICPT)进行研究,经过十多年的努力,该技术在理论和实践上已经获得重大突破。

研究主要集中在给移动设备,特别是在恶劣环境下工作的设备的供电问题,如电动汽车、起重机、手提充电器、电梯、传送带、运货行车,以及水下、井下设备。

电磁场与电磁波论文

电磁场与电磁波论文

电磁场与电磁波论文电磁场与电磁波论文院系:电子信息学院班级:电气11003班学号:201005792序号:33姓名:张友强电磁场与电磁波的应用摘要:磁是人类生存的要素之一。

地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。

外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。

所以,现在地球的磁场强度只有500年前的50%了,许多人出现种种缺磁症状。

科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’’就是因缺磁而造成的。

由此可见磁对于生命的重要性。

磁场疗法,又称“磁疗法”、“磁穴疗法”,是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。

磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。

关键词:磁疗、电磁生物体、生物磁场、磁疗保健电磁场与电磁波简介:电磁波是电磁场的一种运动形态。

电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。

变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。

电磁场与电磁波在实的电流进行控制,达到控制运行目的。

“常导型”磁悬浮列车的构想由德国工程师赫尔曼·肯佩尔于1922年提出。

“常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。

只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。

通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。

我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。

当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。

2.电磁泵利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,从而推动流体运动的一种装置。

电磁场与电磁波在现代技术和社会中的应用

电磁场与电磁波在现代技术和社会中的应用

电磁场与电磁波在现代技术和社会中的应用篇一《电磁场与电磁波在现代技术和社会中的应用》在一个阳光明媚的周末,我和朋友小明一起去商场逛街。

刚走进商场,小明就兴奋地拉着我直奔手机专卖店。

他可是个十足的手机迷,总是关注着最新款手机的各种性能。

我们走进店里,店员热情地迎了上来。

小明迫不及待地拿起一款新手机,开始研究它的参数。

“你看,这个5G网络超厉害的!”小明眼睛放光地对我说。

我疑惑地问:“5G网络到底是啥呀?感觉很神秘呢。

”店员笑着走过来,就像一个知识渊博的魔法师要揭开神秘面纱一样,他说:“5G 网络啊,这可全靠电磁场与电磁波的神奇应用呢。

简单来说,电磁波就像是一个个小小的信使,在空气中快速地传递信息。

电磁场呢,就像是为这些信使搭建的高速公路。

有了它们,5G网络才能实现超高速的数据传输,你下载东西就像闪电一样快,看高清视频也不会卡顿。

”我和小明听得入神,这时候,我突然想到家里的微波炉。

我对店员说:“那微波炉是不是也和电磁场与电磁波有关系呀?”店员点头如捣蒜,说道:“那当然啦。

微波炉里面有个装置会产生一种特定频率的电磁波,这种电磁波就像一个个调皮的小鼓手,它们的振动频率刚好能让食物里的水分子兴奋地跳起舞来。

水分子这么一折腾,就产生了热量,于是食物就被加热啦。

你想啊,如果没有电磁场与电磁波,咱们可就没法这么方便地加热食物了,总不能每次都用火慢慢烤吧,那多麻烦呀。

”接着,我们又走到了电视专柜。

超大屏幕的智能电视正在播放着绚丽的画面。

小明指着电视说:“这个电视的信号接收肯定也和电磁场与电磁波有关吧?”店员笑着说:“没错。

电视信号就是通过电磁波在空中传播的,然后电视里的接收装置就像一个忠诚的小卫士,捕捉到这些电磁波信号,再把它们转化成我们能看到的精彩节目。

要是没有电磁场与电磁波,那电视可就成了一个摆设啦,我们就只能对着一块黑屏发呆咯。

”从商场出来后,我不禁感叹,电磁场与电磁波就像隐藏在现代生活背后的超级英雄。

它们无处不在,默默地为我们的生活提供着便利。

中国地质大学——电磁场与电磁波结课论文

中国地质大学——电磁场与电磁波结课论文

中国地质大学(武汉)电磁场与电磁波结课论文姓名:班级:学号:指导老师:严彬一、电磁波应用 (3)1. 电磁学在医疗上的应用 (3)2.电磁波在生产、生活上的应用 (4)3. 电磁波在军事上的应用 (5)二、电磁波实验 (6)实验一双缝干涉实验 (6)实验二迈克尔逊干涉实验 (8)实验三偏振实验 (10)实验四布拉格衍射实验 (11)三、平面电磁波理解 (13)1. 均匀平面电磁波 (13)2.正弦均匀平面波在无限大均匀媒质中的传播 (15)无耗介质中: (15)导电媒质中: (16)3.电磁波的极化 (20)一、电磁波应用1.电磁学在医疗上的应用生物电磁学在医疗上的应用,简称磁疗。

是 20 世纪九十年代才广泛兴起的一种自然疗法,用磁能作用于人体,通过磁的一系列生物与生物电磁学效应达到调整人体生理活动、实现身体保健和治疗疾病的目的。

确切地说,磁疗是一种物理能量疗法。

由于磁疗安全、方便、简捷、省时、无毒副作用、疗效肯定受到人们的认可和喜爱,被世界卫生组织推荐为最有前途的绿色疗法。

从严格意义上说,磁疗还未真正地走进现代生命科学的殿堂,尚处于研究、探索、试用阶段,属于生命科学中一门崭新的边缘学科。

本文所述的磁生物与生物电磁生理学效应是对近十年来人们使用磁性保健产品临床效果的总结和理性思考,也是第一次提出“磁生物与生物电磁生理学效应”这一概念,有关人体这一弱电磁生物体与磁场相互作用的具体细节及其量化表述有待进一步实验结果的充实。

在科学上,称超过人体承受或仪器设备容许的电磁辐射为电磁污染。

电磁辐射分二大类,一类是天然电磁辐射,如雷电、火山喷发、地震和太阳黑子活动引起的磁暴等,除对电气设备、飞机、建筑物等可能造成直接破坏外,还会在广大地区产生严重电磁干扰。

另一类是人工电磁辐射,主要是微波设备产生的辐射,微波辐射能使人体组织温度升高,严重时造成植物神经功能紊乱。

但是对电磁辐射,要正确认识,而且要科学防护。

事实上,电磁波也如同大气和水资源一样,只有当人们规划、使用不当时才会造成危害。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波论文
电磁场与电磁波
摘要:电磁场与电磁波理论是近代自然科学中,理论相对最完整、应用最广泛的支柱学科之一。

电磁场与电磁波技术已遍及人类的科学技术、政治、经济、军事、文化以及日常生活的各个领域。

电磁场与电磁波课程更是电子科学与技术专业的主干课程。

关键词:电磁场与电磁波;电子科学与技术;应用
电磁场与电磁波是客观存在的一种物质,具有物质的两种重要属性:能量和质量。

但是,电磁场与电磁波的质量极其微小,因此,通常只研究电磁场与电磁波的能量特性。

人类对电磁现象的认识源远流长,但其知识与应用开始形成系统化及理论化则始于18世纪,卡文迪许、高斯、库伦等著名科学家对电磁现象所做的卓有成效的研究启动了电磁世界这一巨轮的运转。

而19世纪则是电磁研究蓬勃开展的时代,法拉第、欧姆、傅立叶、基尔霍夫、安培、麦克斯韦、赫兹、楞次,单单从这些名字和科学家的阵容,你就可以感受到这一时期电磁科学取得了多么辉煌的成就。

库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。

库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。

安培在假设了两个电流元之间的相互作用力着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。

基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。

但是当时对这些量仅
是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。

直到法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。

他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。

1846年,法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。

麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电磁场的基本定律归结为4个微分方程,人们称之为麦克斯韦方程组。

在方程中麦克斯韦对安培环路定律补充了位移电流的作用,他认为位移电流也能产生磁场。

根据这组方程,麦克斯韦还导出了场的传播是需要时间的,其传播速度为有限数值并等于光速,从而断定电磁波与光波有共同属性,预见到存在电磁辐射现象。

静电场、恒定磁场及导体中的恒定电流的电场,也包括在麦克斯韦方程中,只是作为不随时间变化的特例。

麦克斯韦全面地总结了电磁学研究的全部成果,并在此基础上提出了“感生电场”和“位移电流”的假说,建立了完整的电磁场理论体系,不仅科学地预言了电磁波的存在,而且揭示了光、电、磁现象的内在联系及统一性,完成了物理学的又一次大综合。

他的理论成果为现代无线电电子工业奠定了理论基础。

1873年,麦克斯韦出版《电磁学通论》,他不仅用数学理论发展了法拉第的思想,还创造性的建立了电磁场理论的完整体系。

在这本书中,他的思想得到更完善的发展和更系统的陈述。

他把以前的电磁场理论都综合在一组方程式中,得到了电磁场的数学方程-----麦克斯韦电磁方程组。

以简洁的数学结构,揭示了电场和磁场内在的完美对称。

《电磁学通论》是人类第一个有关经典场论的不朽之作。

最初,在《电磁学通论》书中,麦克斯韦共列出了20个分量方程,如果采用矢量方程,则仅有8个。

后来简化成四个。

1890年前后,德国物理学家赫兹和英国物理学家亥维赛,又两次简化麦克斯韦方程组,才得到人
们通用的微分形式。

1905年,爱因斯坦建立的狭义相对论,否定了以太参考系,使得麦克斯韦方程组和洛伦兹力公式在所有惯性参考系中都成立。

由于物质的电结构是物质的基本组成形式,电磁场是物质世界的重要组成部分,电磁作用是物质的基本相互作用之一,电磁过程是自然界的基本过程,因此,电磁学不仅是物理学各个领域的基础,也是化学、生物学等基础学科以及许多交叉、边缘学科的基础。

电磁场理论的发展经历了很长时间,从发现到证实,从现象到理论,这一过程需要几代物理学家的努力付出。

电磁场理论在现代科技中有着广泛的应用。

现代电子技术如通讯、广播、导航、雷达、遥感、测控、电子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。

不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。

由此看来,在任何意义上,我们都不能轻视两个多世纪来电磁场与电磁波理论对对科学技术及人类社会所做出的巨大贡献。

可以毫不夸张地说,没有电磁场与电磁波理论的发展,就不可能有现代信息化社会的出现。

从电磁场理论的发展历史到电磁场理论在现代科技中的应用,我们了解到的是电磁场理论的发展经历了很长时间,从初步的认识到完善,几代物理学家为之付出了很多的努力,然而它的发展还没有停止,还有很多被隐藏的真理等待我们去探索,电磁场理论应用的领域应该还可以被扩展,这些都等待我们去发掘。

电磁场与电磁波课程是高等学校电子信息类及电气信息类专业本科生的一门技术基础课,具有非常重要的专业基础课程公共平台的作用和地位。

是我们学习微波技术、光技术、雷达技术、电气技术、电子对抗等技术的基础。

电子类各专业主要课程的核心内容都是电磁现象在特定范围、条件下的体现,分析电磁现象的定性过程和定量方法是电类各专业学生掌握专业知识和技能的基础之一,因
而电磁场与电磁波课程所涉及的内容,是合格的电子类专业本科学生所应具备的知识结构的必要组成部分。

近代科学的发展表明,电磁场与电磁波基本理论又是一些交叉学科的生长点和新兴边缘学科发展的基础,而且对完善自身素质,增强适应能力长远地发挥作用。

电子科学与技术对于国家经济发展、科技进步和国防建设都具有重要的战略意义。

面对电子科学与技术的迅猛发展,世界上许多发达国家,像美国、德国、日本、英国、法国等,都竞相将微电子技术和光电子技术引入国家发展计划。

为了中国电子科学与技术事业的可持续发展和抢占该领域中高新技术的制高点,就必须统筹教育、科研、开发、人才、资金和市场等各种资源和要素,其中人才培养是极其重要的一个环节。

在新的历史条件下,开展电子科学与技术专业发展战略研究是非常必要的,这对于建立学科专业规范,培养出具有知识、能力、素质协调发展的,适合中国电子科学与技术领域不同层次发展要求的有用人才具有重要指导意义和战略意义。

电子科学与技术专业以电子器件及其系统应用为核心,重视器件与系统的交叉与融合,面向微电子、光电子、光通信、高清晰度显示产业等国民经济发展需求,培养在通信、电子系统、计算机、自动控制、电子材料与器件等领域具有宽广的适应能力、扎实的理论基础、系统的专业知识、较强的实践能力、具备创新意识的高级技术人才和管理人才,并掌握一定的人文社会科学及经济管理方面的基础知识,能从事这些领域的科学研究、工程设计及技术开发等方面工作。

要学好电子科学与技术专业,就必须学好电磁场与电磁波课程。

电磁场与电磁波理论又是进一步学习一些后续课程的基础,如微波技术、天线、电波传播、光纤通信、电磁兼容技术等。

在基础课和专业课之间起到承上启下的桥梁作用。

参考文献
[1]百度百科电子科学与技术
[2]百度文库。

相关文档
最新文档