高分子物理共90张PPT

合集下载

13西安交大——高分子物理PPT第三章聚合物的分子运动

13西安交大——高分子物理PPT第三章聚合物的分子运动
例2:在倾倒高聚物熔体时,若用一根棍子快速敲打流体,则熔体液流 也会脆性碎掉。 这是高聚物熔体呈现固体力学行为的例子。
3.1.3 分子运动的温度依赖性
温度对高分子运动的两个作用: 1. 使运动单元动能增加,令其活化(使运动 单元活化所需要的能量
称为活化能)。当达到某一运动单元运动所需的能量时,就激发 这一运动单元的运动。 2. 温度升高,体积膨胀,提供了运动单元可以活动的自由空间(自 由体积)。当自由空间增加到某种运动单元所需的大小时,这一 运动单元便可自由运动。
模量-温度曲线
两种转变和三种力学状态
玻璃态转变为高弹态的转变称为玻璃化转变,转变温度,即链 段开始运动或冻结的温度称为玻璃化温度Tg。
高聚物由高弹态向粘流态的转变称为粘流转变,这个转变温度称 为粘流温度,用Tf表示。
为什么非晶态高聚物随温度变化出现三种力学状态和二个转变? 我们来看表,了解一下内部分子处于不同运动状态时的宏观表现
玻璃态 高弹态 粘流态
温度 运动单元
力学性质
Tg
以下
Tgf ~ T f
Tg ~ Tf
链段仍处于冻结状态,侧基、 受力变形很小(0.1~1%),
支链、链节等能够做局部运 去力后立即恢复(可逆),
动及键长、键角发生变化, 弹性(普弹性)模量:
而不能实现构象的。
109~1010Pa。
链段运动,不断改变构象, 但是整个分子链还仍处于被 “冻结”的状态。
●饱和主链
CH3 Si O
n CH3
硅橡胶 Tg = -123℃
CH2 O n
聚甲醛 Tg = -83℃
CH2
CH2 n
PE Tg=-68 ℃
●主链上有芳环、芳杂环:
CH3 O

高分子物理化学全套课件

高分子物理化学全套课件
• 蛋白质在生命体内担当着物质输送、代谢、光 合成、运动和信息传递等重要功能。例如由于 肌肉中肌动朊和肌球朊两种蛋白质的特殊的配 臵,它们的相互作用实现了肌肉的收缩机能。
2.3 蛋白质
• 蛋白质的结构从小到大可以分为一次结 构、二次结构、三次结构等。 • 一次结构:分子内氨基酸的排列,每一 种蛋白质分子中不同氨基酸有严格相同 的序列。分子有均一的长度,例如胰岛 素的所有分子有相同的分子量或链长。
2.3 蛋白质
• 二次结构:由于分子内或分子间的氢键 而形成的分子在近程的空间的规则结构。 其中α型结构是由于分子内NH基和CO基 间的氢键形成的螺旋结构(右旋);而β 型结构是由于分子间的氢键而产生的平 行或反平行两种片状结构。图2-11是蛋 白质α型和β型结构的示意图。
α螺旋的四种表示方法
2.4 核酸
表2-4 核酸 类型 DNA、RNA的核苷酸的三种构成物质 糖 碱基 磷酸
DNA
腺嘌呤(A)、鸟嘌 脱氧核糖 呤(G)胞嘧啶(C) 、胸腺嘧啶(T)
磷酸
RNA
核糖
腺嘌呤(A)、鸟嘌 呤(G)胞嘧啶(C) 、脲嘧啶(U)
磷酸
2.4 核酸
NH2 N N N CH N H H2N N 鸟嘌呤 G O H3C N N H 胞嘧啶C O N H 尿嘧啶U RNA特有 NH O N H NH O O N H
蛋白质
动物的皮 可制成皮 革,是鞋 和衣服的 原料
明胶,而驴皮 熬制的胶是一 种药材—阿胶
明胶的来源和用途
水溶性蛋白质混合物,皮肤、韧带、肌 腱中的胶原经酸或碱部分水解或在水中煮 沸而产生,在35~40℃水中溶胀形成凝胶, 广泛用于食品、医药、黏合剂、感光底片、 滤光片等。
明胶
蛋白泡沫迫降跑道

高分子物理——第四章 非晶态高聚物ppt课件

高分子物理——第四章  非晶态高聚物ppt课件

(三)、高弹态(橡胶态)
力学特征:ε大,约100 ~1000%,且可逆,具有高 弹性,称为高弹态,为聚合物特有的力学状态。模量 E进一步降低—聚合物表现出橡胶行为
分子运动:链段运动
热运动 T↑,链段运动能力↑,ε↑
外力
蜷曲
伸长
T↑,大分子链柔性↑,回复力↑
高弹形变是链段运动使分子发生伸展

曲的宏观表现。回复力↑(抵抗形变)与流动性
主价力(键合力、化学键)
共价键:由原子的价电子自旋配对所形成的键。 C—C(键长、键角、键能) 特点:不离解、不导电、具饱和性和方向性 类型:σ键(电子云分布轴对称)、π键(对称面)
离子键:由正负离子间的静电相互作用形成的键。 金属键:由金属原子的价电子和金属离子晶格之间的相互作用
形成的
次价力(此作用力的大小决定了分子结构,特别是聚集态结构)
⑴ 静电力(取向力,偶极力) 极性分子、永久偶极间
其大小同
偶极矩
↑而↑
定向程度 有关 ↑而↑
T
↑而↓
它是极性分子间的主要作用力
12~21KJ/mol
⑵ 诱导力 永久偶极与由它引起的诱导偶极间 极性分子之间或极性分子与非极性分子间 6~12KJ/mol
⑶ 色散力 是分子瞬时偶极之间的相互作用力 存在于一切分子中(极性或非极性),具加和
4、晶区的分子运动:晶区缺陷的运动、 晶型转变、晶区的局部松驰、折叠链的“手 风琴式”运动。
2,3,4都是小尺寸运动,或者微布朗运动
在上述运动单元中,对聚合物的物理和力 学性能起决定性作用的、最基本的运动单元, 只有1、2两种,而整链运动是通过各链段协同 运动来实现的,因此链段运动最为重要,高分 子材料的许多性能都与链段运动有直接关系。

高分子物理课件精华版

高分子物理课件精华版

性塑料和橡胶的极限使用温度。
温度高于Tg时,材料不能作塑料用,因为已 经软化;低于Tg时,就不能当橡胶用,因为
已成为玻璃态。
30
Note:
非晶热塑性塑料(如PS,PMMA和硬质PVC等): Tg为使用温度的上限 非晶性橡胶(如天然橡胶, 丁苯橡胶等) : Tg为使用温度的下限
31
5.2.2 晶态聚合物的力学状态
形变
eg: 增塑型的 PVC,有Tg 也有Tm,软 PVC塑料地板
Tg
Tf(Tm)
温度
轻度结晶聚合物温度-形变曲线
33
2,结晶度高于40%的聚合物
微晶彼此衔接,形成贯穿材料的连续结晶相,材
料变硬,宏观上看不出明显的玻璃化转变,温度
-形变曲线在熔点以前不出现明显转折。 结晶高聚物的晶区熔融后是不是进入粘流态,要 看试样的分子量大小:
第五章 聚合物的分子运动和转变
13317163435
zxp
1
本章教学内容及学习重点
教学内容
聚合物分子运动的特点 聚合物的力学状态 玻璃化转变
结晶行为和结晶动力学
熔融热力学 链段运动的松弛过程
重点:
非晶态聚合物的主转变:玻璃-橡胶转变 半晶态聚合物的主转变:晶态-熔融态转变 分子链运动的热力学相变过程
x(0)
x0
x(0) x (t )
xt
t
t
t t
t0
x(t ) x(0)et /
τ-松弛时间
11
除去外力后t时间橡皮长度的增量
外力作用下橡皮长度的增量
τ-松弛时间
x(t ) x(0)et /
松弛时间就是Δx减少到
t
x( ) x(0) / e

高分子物理第四版_华幼卿主编 ppt课件

高分子物理第四版_华幼卿主编 ppt课件

选择题
1、WLF方程不能用于( B )
A)测黏度
B)测结晶度
C)测松弛时间
2、四元件模型用于模拟( B )
A)应力松弛
B)蠕变
C)内耗
3、以下哪种聚合物遵循boltzmann叠加原理( C )
A)PE
B)IPP
C)PS
4、3.4次方幂适用于( C )
A)缩聚物 B)低相对分子质量加聚物 C)高相对分子质量加聚物
内耗内耗聚合物的松弛行为包括损耗损耗串串线性线性应力松弛应力松弛蠕变蠕变滞后滞后1924判断题判断题判断题判断题1增加外力作用频率与缩短观察时间是等效的1增加外力作用频率与缩短观察时间是等效的2两种聚合物共混后共混物形态呈海岛结构这时共混物只有一个t个tgg2两种聚合物共混后共混物形态呈海岛结构这时共混物只有一3交联高聚物的应力松弛现象就是随时间的延长应力逐渐衰减到零的现象到零的现象4聚合物在橡胶态时黏弹性表现最为明显4聚合物在橡胶态时黏弹性表现最为明显5在室温下塑料的松弛时间比橡胶短5在室温下塑料的松弛时间比橡胶短6除去外力后线性聚合物的蠕变能完全恢复6除去外力后线性聚合物的蠕变能完全恢复7高聚物在室温下受到外力作用而变形当除去外力后形变没有7高聚物在室温下受到外力作用而变形当除去外力后形变没有完全复原这是因为整个分子链发生了相对移动的结完全复原这是因为整个分子链发生了相对移动的结3交联高聚物的应力松弛现象就是随时间的延长应力逐渐衰减19248同一力学松弛现象既可以在较高的温度较短的时间内观测到也可以在较低的温度较长的时间内观测到也可以在较低的温度较长的时间内观测到8同一力学松弛现象既可以在较高的温度较短的时间内观测到9高聚物在应力松弛过程中无论线性还是交联聚合物的应力都不能松弛到零能松弛到零高聚物在应力松弛过程中无论线性还是交联聚合物的应力都不10kelvin模型可以用来模拟非交联高聚物的蠕变过程模型可以用来模拟非交联高聚物的蠕变过程11应变随时间变化跟不上应力随时间变化的动态力学现象称为蠕变变12增加外力作用速率与降低温度对聚合物强度的影响是等效的12增加外力作用速率与降低温度对聚合物强度的影响是等效的13根据时温等效原理降低温度相当于延长时间所以外力作13根据时温等效原理降低温度相当于延长时间所以外力作用速率减慢用速率减慢聚合物的聚合物的tgtg就降低就降低用速率减慢用速率减慢聚合物的聚合物的tgtg就降低就降低11应变随时间变化跟不上应力随时间变化的动态力学现象称为蠕192414在应力松弛试验中胡克固体的应力为常数牛顿流体的应力随时间而逐步衰减随时间而逐步衰减14在应力松弛试验中胡克固体的应力为常数牛顿流体的应力问答题问答题问答题问答题例1讨论下述因素对蠕变实验的影响

高分子物理PPT课件

高分子物理PPT课件

0 常数; DE 松弛活化能
T
T
(时温等效原理)
对于链段运动,松弛时间与温度的关系遵循WLF方程
2021/3/7
CHENLI
11
5.2 聚合物的力学状态和热转变
➢ 1. 线形非晶态聚合物的力学状态 ➢ 2. 晶态聚合物的力学状态 ➢ 3. 交联聚合物的力学状态
2021/3/7
CHENLI
12
5.2.1 线形非晶态聚合物的力学状态
玻璃化转变区 粘弹转变区
形变

高弹态


橡胶态
流 “三态”

态 “两转变”
温度
Tg
Tf
线形非晶聚合物的形变-温度曲线(热-机械曲线)
2021/3/7
CHENLI
13
模量:指材料受力时应力与应变的比值,是材料抵抗 形变能力的大小。
E
玻璃态
高弹态
“三态” “两转变”
粘流态
Tg
Tf T
非晶高聚物的模量-温度曲线
2021/3/7
CHENLI
17
注意:
玻璃态,高弹态,粘流态属于力学状态。从相态看, 均属液相,差别在于形变能力不同。
玻璃化转变不是热力学相变,是一个非平衡状态。 Tg、Tf都不是热力学的相变温度,只是一个范围。
Tg是高聚物的特征温度之一,表征高聚物性能的指标。
塑料:室温处于玻璃态,Tg是最高使用温度, 如PS的 Tg为 100 ℃ ,PMMA的 Tg为 105 ℃。
8~10-10 秒,“瞬时过程”
→∞ :松弛过程很慢
τ与t同一数量级时,易观察到松弛现象,
高聚物: =10-1~10+4 s, 松弛过程,称为“松

高分子物理化学全套课件

高分子物理化学全套课件

21
贝克兰(1863-1944) 贝克兰用来合成酚醛树脂 的反应釜
22
电器元件
23
聚乙烯的发明

19世纪30年代,英国帝国化学公司(ICI)的福西特和吉布 森想让乙烯和苯甲醛在 140MPa 的高压和 170℃ 温度下进行 反应。未发生预期反应,却发现器壁上有一层白色蜡状的固 体薄膜——乙烯的聚合物。之后的爆炸事故使实验不得不终 止下来。 1935年,ICI的另几位研究人员帕林、巴顿和威廉姆斯决定 重复上述试验。经分析,它与两年前被福西特发现的蜡状 薄膜是同一种物质——聚乙烯。
聚合物合成和反应 功能高分子 高分子物理
聚合物的表征、结构和性 能的关系
高分子材料
高分子工程
聚合物合成工艺和加工成型工艺
综 合 研 究 领 域
高分子化学
制备
结构
加工
性能
应用
4
高分子物理
目录
第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 第9章 概论 天然高分子 链式聚合反应 逐步聚合反应 聚合物的化学反应 聚合物的结构 聚合物的性质 合成材料 聚合物的加工成型 高分子化学 高分子化学 高分子化学 高分子物理 高分子物理 高分子材料 高分子加工
36
氯丁橡胶的出现
美国也大力研究合成橡胶。1931年首先合成了氯丁橡胶,
氯原子使氯丁橡胶具有天然橡胶所不具备的一些抗腐蚀性 能。例如,它对于汽油之类的有机溶剂具有较高的抗腐蚀 性能,远不像天然橡胶那样容易软化和膨胀。因此,像导 油软管这样的用场,氯丁橡胶实际上比天然橡胶更为适宜。 氯丁橡胶首次清楚地表明,正如在许多其他领域一样,在 合成橡胶领域,实验室的产物并不一定只能充当天然物质 的代用品,它的某些性能能够比天然物质更好。

《高分子物理与化学》PPT课件

《高分子物理与化学》PPT课件

维呢纶 6~7.5 顺丁烯胶 25~3
2. 分子量具有多分散性
▪ 什么是分子量的多分散性?
▪ 高分子〔除少数天然高分子如蛋白质、 DNA等外〕不是由单一分子量的化合物所组 成
▪ 即使是一种“纯粹〞的高分子,也是由化学 组成一样、分子量不等、构造不同的同系聚 合物的混合物所组成
这种高分子的分子量不均一(即分子量大小不一、 参差不齐〕的特性,就称为分子量的多分散性
1.分子量大
分子量大是高分子的根本性质 高分子的许多特殊性质都与分子量大有关,如: 高分子的溶液性质: 难溶,甚至不溶,溶解过程往往要经过溶胀阶段 溶液粘度比同浓度的小分子高得多 分子之间的作用力大,只有液态和固态,不能汽化 固体聚合物具有一定的力学强度,可抽丝、能制膜
▪ 分子量多大才算是高分子?
《高分子物理与化学》 PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
1. 根底知识
▪ 高分子科学是当代开展最迅速 的学科之一
式中,Wi,Ni,Mi分别为i-聚体的重量、分子数、分子量 i = 1-∞
数均分子量是通过依数性方法(冰点降低法、沸点升高法、 渗透压法、蒸汽压法) 和端基滴定法测定
重均分子量 是按照聚合物的质量进展统计平均的分子量
i-聚体的分子量乘以其重量分数的加和
构造单元
构造单元
重复构造单元
此时 ,两种构造单元构成一个重复构造单元
▪ 单体在形成高分子的过程中要失掉一些原子
构造单元 重复单元 单体单元
但, 重复单元=链节
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子物理共90张PPT
第一部分:高分子物理基础知识
1. 高分子物理概述
高分子物理是研究高分子材料的构造、力学性质及其在热、电、光等方面的行为规律的一门学科。

高分子物理的主要研究对象是具有大分子结构的聚合物和高聚物。

2. 高分子材料的结构
高分子材料的分子结构可以分为线性、支化和交联三种。

其中,线性结构的高分子链是单纯的直线结构,支化结构则是在链上引入支链结构,交联结构则是在高分子链上形成水晶点,使高分子链之间发生交联作用。

3. 高分子材料的物理性质
高分子材料的物理性质包括力学性质、热性质、电性质、光学性质和磁性质等。

其中,力学性质是高分子材料最基本的性质之一,包括拉伸、压缩、弯曲、挤压、剪切等方面的力学性能;热性质则包括高分子材料的热干扰系数、热导率、热膨胀系数等;电性质则包括高分子材料的电导率、介电常数、介质损耗等;光学性质包括吸收、散射、透射、反射等方面的反映;磁性质则包括磁导率、磁化率等。

4. 高分子材料的分子运动
高分子材料的分子运动是高分子物理学研究的一个重要
方面。

高分子分子的运动可分为平动、转动、振动三种类型,其中振动运动通常与分子中的化学键振动相关联。

第二部分:高分子材料的物理加工工艺
1. 高分子材料的成型加工
高分子材料的成型加工包括挤出、注塑、吹塑、压缩成型、旋压成型等多种技术,其中挤出、注塑和吹塑等工艺技术是广泛应用的成型技术,具有高效、经济绿色等优点。

2. 高分子材料的复合加工
高分子材料的复合加工是目前最为关注的技术之一,它
将高分子材料与其他材料进行有效的综合利用,并在性能上得到了显著的提高。

高分子复合材料广泛应用于航空航天、汽车、电子、建筑等领域。

3. 高分子材料的改性加工
高分子材料的改性加工是指通过添加改性剂来改变高分
子材料的属性,以得到更好的性能。

常见的改性剂包括增强剂、塑化剂、光稳定剂、抗氧化剂等。

4. 高分子材料的表面处理
高分子材料的表面处理是一种重要的加工技术,它可以
提高高分子材料的表面性能和增强其附着力,同时也可以达到美化、防腐蚀等目的。

目前常用的表面处理技术包括物理方法和化学方法等。

第三部分:高分子材料的应用
1. 高分子材料在汽车行业的应用
高分子材料在汽车行业的应用越来越广泛,主要应用于
车身、底盘、发动机等部位。

例如,聚丙烯材料广泛应用于汽车底盘的制造,聚碳酸酯(PC)材料则广泛应用于汽车的大灯罩、面板等。

2. 高分子材料在电子行业的应用
高分子材料在电子行业中得到广泛应用,主要应用于手机、电脑、平板等电子产品上。

例如,聚酰亚胺(PA)材料广泛
应用于手机、平板电脑的电路板上。

3. 高分子材料在医疗行业的应用
高分子材料在医疗行业中得到广泛应用,主要应用于医
用器械、医药包装、医用耗材等领域。

例如,聚丙烯材料广泛应用于医用器械的制造,聚乳酸材料则广泛应用于医药包装。

4. 高分子材料在环保行业的应用
高分子材料在环保行业中得到广泛应用,主要应用于废
水处理、废气处理、废弃物处理等方面。

例如,聚丙烯材料广泛应用于废水处理中的滤料、聚苯乙烯材料则广泛应用于废弃物的焚烧。

5. 高分子材料在建筑行业的应用
高分子材料在建筑行业中得到广泛应用,主要应用于保
温材料、建筑隔热和防水、建筑贴面等领域。

例如,聚氨酯材料广泛应用于建筑隔热和防水,聚苯乙烯材料则广泛应用于建筑贴面。

第四部分:高分子材料的前沿研究
1. 生物可降解高分子材料的研究
生物可降解高分子材料是近年来发展的一种新型材料,
它具有可塑性和优异的生物可降解性,不会对环境造成污染。

生物可降解高分子材料已经被广泛应用于包装材料、医用材料、农业材料等领域。

2. 纳米高分子材料的研究
纳米高分子材料是利用纳米技术对高分子材料进行改性
后的新型材料。

纳米高分子材料具有优异的光学、电学、磁学、力学等性质,是一种具有潜在应用前景的高新材料。

3. 高分子材料的自修复性能研究
高分子材料的自修复性能是近年来被广泛关注的一种前
沿研究方向。

在自修复高分子材料中,聚合物链的受损部位可以重新连接起来,从而重新恢复其原有的功能性。

4. 高分子材料的智能自适应性研究
高分子材料的智能自适应性研究是近年来发展的一种新
型研究方向。

在智能自适应高分子材料中,高分子材料可以根据环境变化自动进行不同的响应,并实现一种自适应性的效果。

结语
高分子物理作为一门新兴学科,一直在不断地发展和进步。

本文简要介绍了高分子物理的基础知识、物理加工工艺、应用及前沿研究等方面,对于深入了解高分子物理有一定的帮助和参考作用。

随着科技不断进步,高分子物理的应用前景必将更加广阔,为人们的生活和工作带来更多的便捷和创新。

相关文档
最新文档