2018年高考数学(理)总复习高考达标检测(十八)三角恒等变换的3个考查点——化简、求值和应用
2018年全国各地高考数学模拟试题《三角恒等变换》试题汇编(含答案解析)

2018年全国各地高考数学模拟试题《三角恒等变换》试题汇编(含答案解析)1.(2018•玉溪模拟)已知tan(α+)=﹣3,α∈(0,).(1)求tanα的值;(2)求sin(2α﹣)的值.2.(2018春•岳阳楼区校级期末)在△ABC中,内角A,B,C的对边分别为a,b,c,且a=3,b=2,B=2A.(Ⅰ)求cosA及边c的值;(Ⅱ)求cos(B﹣)的值.3.(2018•玉溪模拟)已知α∈(0,π)且cos(α﹣)=.求cosα4.(2018•北京模拟)已知函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函数的最小正周期为.(Ⅰ)求a的值;(Ⅱ)求f(x)在[0,]上的最大值和最小值.5.(2018•铁东区校级二模)已知函数.(1)求函数f(x)的最小正周期和图象的对称轴方程;(2)求函数f(x)在区间上的最值.6.(2018•江苏模拟)已知三点A(3,0),B(0,3),C(cosα,sinα),α∈(0,π).若,求(1)cosα+sinα的值;(2)的值.7.(2018•河南一模)△ABC的内角A,B,C对应的边分别为a,b,c.已知:(1﹣tanA)(1﹣tanB)=2.(1)求角C;(2)若b=2,c=4,求△ABC的面积S.△ABC8.(2018•通州区三模)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求证:当时,﹣1≤f(x)≤2.9.(2018•昌平区二模)已知函数.(I)求函数f(x)的最小正周期;(II)求函数f(x)在区间上的最值及相应的x值.10.(2018•亭湖区校级模拟)在平面直角坐标系xOy中,以ox轴为始边作角α,角的终边经过点P(﹣2,1).(I)求cosα的值;(Ⅱ)求的值.11.(2018•河西区校级模拟)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(Ⅱ)讨论f(x)在区间[0,]上的单调性.12.(2018•商丘二模)在△ABC中,内角A,B,C所对一对的边分别为a,b,c,若sin(A+C)=2sinAcos(A+B),且C=.(Ⅰ)求证:a,b,2a成等比数列;(Ⅱ)若△ABC的面积是2,求c边的长.13.(2018•长安区二模)已知向量=(sinx,3cosx),=(3cosx,cosx),设函数f(x)=+.(Ⅰ)求函数f(x)的最小正周期和最值;(Ⅱ)求函数f(x)的单调递减区间.14.(2018•兰州模拟)已知向量,函数.(1)求函数y=f(x)的图象对称轴的方程;(2)求函数f(x)在上的最大值和最小值.15.(2018•全国模拟)已知函数f(x)=sin(x+φ)+cos(x+φ)(0<|φ|<π)在[0,]上单调递增,且满足f(x)=f(﹣x).(Ⅰ)求φ的值;(Ⅱ)若f(x0)=1,求sin(2x0﹣)的值.16.(2018•浉河区校级三模)已知向量=(,=(cosx,cosx),x∈R,设f(x)=.(1)求函数f(x)的解析式及单调递增区间;(2)在△ABC中,a,b,c分别为内角A,B,C的对边,且a=1,b+c=2.f(A)=1,求△ABC的面积.17.(2018•江苏模拟)已知函数.(1)求f(x)的最小正周期和对称轴的方程;(2)求f(x)在区间上的最小值.18.(2018•南开区一模)在△ABC中,a,b,c分别为角A,B,C所对的边,且2bcosC=2a+c.(Ⅰ)求角B的大小;(Ⅱ)若sin()cos()﹣sin2()=,求cosC的值.19.(2018•大兴区一模)已知函数f(x)=sinx(cosx+sinx)﹣.(I)求f(x)的单调递增区间;(Ⅱ)令g(x)=af(x)+b,x∈[,],其中a>0.若g(x)的值域为[2,5],求a和b的值.20.(2018•杭州二模)已知函数f(x)=sin(x)+cos(x﹣).(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)求函数y=f(﹣x)的单调减区间.21.(2018•海淀区校级模拟)已知函数(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在上的值域.22.(2018•上海模拟)已知y=cosx(1)若,且α∈[0,π],求的值(2)求函数y=f(2x)﹣2f(x)的最小值23.(2018•铁东区校级一模)已知f(x)=sinx,,,,.(1)求的值.(2),求g(x)的值域.24.(2018•天津二模)在△ABC中,角A,B,C所对的边分别是a,b,c,且b ﹣c=1,cosA=,△ABC的面积为2.(Ⅰ)求a的值;(Ⅱ)求cos(2A﹣)的值.25.(2018•浦江县模拟)已知函数f(x)=cos2x﹣2sin2(x﹣α),其中0且f()=﹣.(Ⅰ)求α的值;(Ⅱ)求f(x)的最小正周期和单调递减区间.26.(2018•四平模拟)已知函数.(1)求函数f(x)的最小正周期和单调递增区间;(2)若存在满足[f(t)]2﹣2f(t)﹣m>0,求实数m的取值范围.27.(2018•河西区三模)已知函数f(x)=2cos2x﹣cos(2x+)﹣1.(Ⅰ)求函数f(x)的最小正周期和对称轴方程;(Ⅱ)讨论函数f(x)在[]上的单调性.28.(2018•天津一模)设△ABC的内角A,B,C所对的边分别为a,b,c,且a=3,sinB=2sinA,cosC=.(Ⅰ)求c和sinA的值;(Ⅱ)求cos(2A)的值.29.(2018•红桥区一模)已知函数f(x)=2sin(x+)cos(x+)+2cos2(x﹣)﹣1,x∈R.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间[0,]上的最大值和最小值及相应的x的值.30.(2018•丰台区一模)己知函数.(Ⅰ)求f(x)的定义域及最小正周期;(Ⅱ)求f(x)的单调递减区间.31.(2018•北辰区模拟)在△ABC中,内角A,B,C对应的边分别为a,b,c,已知.(Ⅰ)求的值;(Ⅱ)若,a=3,求△ABC的面积.32.(2018•江苏二模)在平面直角坐标系xOy中,设向量,sinα),,cosβ),,.(1)若,求sin(α﹣β)的值;(2)设,0<β<π,且∥,求β的值.33.(2018•石景山区一模)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最小值和最大值.34.(2018•虹口区一模)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.35.(2018•北京模拟)已知函数f(x)=1﹣2sin2x(1)=;(2)求函数f(x)在区间上的最大值和最小值.36.(2018•道里区校级一模)已知函数f(x)=sin2x+sinxcosx.(1)当x∈[0,]时,求f(x)的值域;(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f()=,a=4,b+c=5,求△ABC的面积.37.(2018•海淀区一模)已知.(I)求的值;(Ⅱ)求f(x)的单调递增区间.38.(2018•南京三模)在平面直角坐标系xOy中,锐角α,β的顶点为坐标原点O,始边为x轴的正半轴,终边与单位圆O的交点分别为P,Q.已知点P的横坐标为,点Q的纵坐标为.(1)求cos2α的值;(2)求2α﹣β的值.39.(2018•顺义区一模)已知函数.(I)求f(x)的最小正周期;(II)求f(x)在区间上的最大值.40.(2018•海淀区二模)已知函数f(x)=(Ⅰ)写y=f(x)的相邻两条对称轴的距离;(Ⅱ)若函数f(x)在区间[0,a]上单调递增,求a的最大值.参考答案与试题解析1.【分析】(1)由题意利用两角和的正切公式求得tanα的值.(2)由题意利用同角三角函数的基本关系,两角差的正弦公式,求得sin(2α﹣)的值.【解答】解:(1)∵tan(α+)=﹣3,α∈(0,),∴tanα>0,且=﹣3,求得tanα=2.(2)∵sin2α===,cos2α===﹣,∴sin(2α﹣)=sin2α•﹣cos2α•=+=.【点评】本题主要考查同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题.2.【分析】(Ⅰ)根据正弦定理与二倍角公式求得cosA,再利用余弦定理求得边长c的值;(Ⅱ)由二倍角公式求得cosB,再利用三角恒等变换求得cos(B﹣)的值.【解答】解:(Ⅰ)△ABC中,a=3,b=2,∴=,又B=2A,∴=,=,解得cosA=;又a2=b2+c2﹣2bccosA,9=24+c2﹣2•2•c•,c2﹣8c+15=0,解得c=3或c=5;(Ⅱ)∵B=2A,∴cosB=cos2A=2cos2A﹣1=,∴sinB=;∴cos(B﹣)=cosBcos+sinBsin=×+×=.【点评】本题考查了三角恒等变换与解三角形的应用问题,是基础题.3.【分析】利用同角三角函数的基本关系求得sin(α﹣)的值,再利用两角差的余弦公式,求得cosα的值.【解答】解:∵α∈(0,π),∴,又,∴,∴=.【点评】本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.4.【分析】(Ⅰ)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求a的值.(Ⅱ)x∈[0,]时,求出内层函数的取值范围,结合三角函数的图象和性质求,可求f(x)最大值和最小值.【解答】解:(Ⅰ)函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),化简可得:f(x)=sin(2ax﹣)+cos(2ax﹣)+1=﹣cos2ax+sin2ax+1=2sin(2ax﹣)+1∵函数的最小正周期为.即T=由T=,可得a=2.∴a的值为2.故f(x)=2sin(4x﹣)+1;(Ⅱ)x∈[0,]时,4x﹣∈[,].当4x﹣=时,函数f(x)取得最小值为1﹣.当4x﹣=时,函数f(x)取得最大值为2×1+1=3∴f(x)在[0,]上的最大值为3,最小值为1.【点评】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题5.【分析】(1)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期和对称轴方程.(2)直接利用单调性求出结果.【解答】解:(1)∵函数=sin (2x﹣)﹣2sin(x﹣)cos(x﹣)=sin(2x﹣)﹣sin(2x﹣)=sin(2x﹣)+cos2x=sin2x•﹣cos2x•+cos2x=sin2x﹣cos2x=sin(2x﹣).∴,令:,解得:.函数f(x)的最小正周期为π,对称轴方程为:.(2)∵,∴.因为在区间上单调递增,在区间上单调递减,所以,当时,f(x)取最大值1.又∵,当时,f(x)取最小值.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用.6.【分析】(1)根据平面向量的坐标表示与数量积运算求得cosα+sinα的值;(2)由三角函数的平方关系求得sinα、cosα的值,再计算的值.【解答】解:(1)A(3,0),B(0,3),C(cosα,sinα),又,∴(cosα﹣3,sinα)•(cosα,sinα﹣3)=cosα(cosα﹣3)+sinα(si nα﹣3)=1﹣3(cosα+sinα)=,∴cosα+sinα=;(2)∵cosα+cosα=,∴1+2sinαcosα=,∴sinαcosα=﹣,又α∈(0,π),∴sinα>0,cosα<0;由sin2α+cos2α=1,解得sinα=,cosα=﹣;∴=sinαcos+cosαsin=×+(﹣)×=.【点评】本题考查了平面向量的数量积与同角的三角函数计算问题,是基础题.7.【分析】(1)由已知整理可得:tanAtanB﹣1=tanA+tanB,利用三角形内角和定理,诱导公式,两角和的正切函数公式可求tanC=1,结合范围C∈(0,π)可求C=.(2)由已知,利用正弦定理可得sinB=,利用大边对大角可求B,利用三角形内角和定理可求A,进而利用三角形面积公式即可计算得解.【解答】解:(1)∵(1﹣tanA)(1﹣tanB)=2,整理可得:tanAtanB﹣1=tanA+tanB,∴tanC=tan[π﹣(A+B)]=﹣=﹣=1,∵C∈(0,π)∴C=.(2)∵b=2,c=4,由(1)可得C=,∴由正弦定理,可得:sinB===,∵b<c,可得:B=,A=π﹣B﹣C,=bcsinA=sin(+)=.∴△ABC的面积S△ABC【点评】本题主要考查了三角形内角和定理,诱导公式,两角和的正切函数公式,正弦定理,大边对大角,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.8.【分析】(Ⅰ)利用诱导公式、倍角公式及辅助角公式化简,再由周期公式求周期;(Ⅱ)由x的范围求得相位的范围,则f(x)的范围可求,结论得证.【解答】(I)解:∵=sinxcosx+cos2x==,∴f(x)的最小正周期为π;(II)证明:∵,∴.∴.则.故﹣1≤f(x)≤2.【点评】本题考查三角函数中的恒等变换应用,考查y=Asin(ωx+φ)型函数的图象和性质,是基础题.9.【分析】(I)直接利用二倍角公式变形,再由辅助角公式化积即可求函数f(x)的最小正周期;(II)结合已知条件求出,进而可求出函数f(x)在区间上的最值及相应的x值.【解答】解:(Ⅰ)==,∴f(x)的最小正周期是π;(Ⅱ)∵,∴0≤2x≤π,∴,当时,f(x)max=2.当时,f(x)min=﹣1.【点评】本题考查三角函数的恒等变换及化简求值,考查y=Asin(ωx+φ)型函数的图象和性质,是基础题.10.【分析】(I)利用任意角的三角函数的定义,求得α+的正弦值和余弦值,再利用两角和差的三角公式求得cosα的值.(Ⅱ)利用同角三角函数的基本关系求得sinα的值,再利用两角和差的三角公式求得的值.【解答】解:(I)由于角其终边经过点P(﹣2,1),则x=﹣2,y=1,r=|OP|=.故cos(α+)==﹣,sin(α+)==.∴=.(Ⅱ)∵=.则sin2α=2sinαcosα=﹣,cos2α=2cos2α﹣1=﹣,∴.【点评】本题主要考查任意角的三角函数的定义,两角和差的三角公式的应用,属于基础题.11.【分析】(1)首先通过三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出结果.(Ⅱ)利用正弦型函数的性质求出函数的单调区间.【解答】解:(1)函数f(x)=4cosωx•sin(ωx+),=,由于函数的最小正周期为π,故ω==1,(Ⅱ)所以:f(x)=,令:(k∈Z),解得:(k∈Z),由于x在区间[0,]上,所以:函数的单调递增区间为:[].函数的单调递减区间为:[].【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用.12.【分析】(1)由已知结合三角形内角和定理可得sinB=﹣2sinAcosC,进一步得到b=﹣2acosC,再由C的值可得b=a,两边平方后可得a,b,2a成等比数列;(2)由已知及三角形面积公式可得ab=,结合b=,联立两式解得a,b,再由余弦定理求得c.【解答】(1)证明:∵A+B+C=π,sin(A+C)=2sinAcos(A+C),∴sinB=﹣2sinAcosC,在△ABC中,由正弦定理得,b=﹣2acosC,∵,∴b=a,则b2=2a2=a•2a,∴a,b,2a成等比数列;(2)解:S=absinC=ab=2,则ab=,由(1)知,b=,联立两式解得a=2,b=2,由余弦定理得,×.∴c=.【点评】本题考查三角形的解法,考查正弦定理及余弦定理的应用,是中档题.13.【分析】(Ⅰ)由平面向量的数量积的坐标运算写出f(x),降幂后利用辅助角公式化积,可得函数f(x)的最小正周期和最值;(Ⅱ)直接利用复合函数的单调性求函数f(x)的单调递减区间.【解答】解:(Ⅰ)∵=(sinx,3cosx),=(3cosx,cosx),∴f(x)=+===.∴f(x)的最小正周期为π,最大值为7,最小值为1;(Ⅱ)由(Ⅰ)知,,k∈Z.∴k,k∈Z.∴函数f(x)的单调递减区间为[kπ+,kπ+](k∈Z).【点评】本题考查平面向量的数量积的坐标运算,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.14.【分析】(1)根据函数.利用向量的坐标运算即可得到解析式,化简可求解图象对称轴的方程;(2)根据x在上,求解内层函数的范围,结合三角函数的性质可得最值.【解答】解:(1)由已知=,对称轴的方程为,即.(2)因为,则,所以,所以.【点评】本题主要考查三角函数的图象和性质,向量的乘积运算,利用三角函数公式将函数进行化简是解决本题的关键.15.【分析】(Ⅰ)直接利用三角函数关系式的恒等变换求出函数的关系式.(Ⅱ)利用函数的关系式的变换和函数的性质求出结果.【解答】解:(Ⅰ)由函数满足满足f(x)=f(﹣x).得知函数f(x)关于对称,又函数f(x)在上单调递增,所以f(x)在取得最大值.又,=,所以,故(k∈Z),由于0<|φ|<π,所以:.(Ⅱ)由f(x0)=1,知,所以:,=sin[2()﹣],=﹣cos2(),=,=﹣.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用及函数的求值.16.【分析】(1)直接利用向量共线的充要条件,把三角函数关系式通过恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的单调递增区间.(2)利用(1)的解析式,首先确定A的值,进一步利用余弦定理和三角形的面积公式求得结果.【解答】解:(1)向量=(,=(cosx,cosx),x∈R,f(x)=.=,=,=,令:(k∈Z),解得:(k∈Z),故函数的单调递增区间为:(k∈Z).(2)在△ABC中,a,b,c分别为内角A,B,C的对边,f(A)=1,则:(0<A<π),解得:A=,利用余弦定理:,a2=b2+c2﹣2bccosA,且a=1,b+c=2.解得:bc=1所以△ABC的面积为:.【点评】本题考查的知识要点:三角函数的关系式的恒等变换,向量共线的充要条件的应用,正弦型函数的性质单调性的应用,余弦定理及三角形面积公式的应用,属于基础题型.17.【分析】(1)利用三角恒等变换化简函数f(x)的解析式,再利用正弦函数的周期性、图象的对称性,求出正f(x)的最小正周期和对称轴的方程.(2)利用弦函数的定义域和值域,求得f(x)在区间上的最小值.【解答】解:(1)∵函数=sin2x•cos(2π﹣)﹣cos2x•sin(2π﹣)=sin2x•cos+cos2x•sin=sin(2x+),故它的最小正周期为=π.令2x+=kπ+,求得x=+,k∈Z.(2)在区间上,2x+∈[,],故当2x+=时,函数f(x)取得最小值为sin=﹣.【点评】本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,正弦函数的定义域和值域,属于中档题.18.【分析】(Ⅰ)由正弦定理,得2sinBcosC=2sinA+sinC,再由两角和的正弦函数公式化简,求出cosB的值,进而求出角B;(Ⅱ)利用三角函数的诱导公式化简求出cosA,sinA的值,再由两角差的余弦函数公式计算得答案.【解答】解:(Ⅰ)由正弦定理,得2sinBcosC=2sinA+sinC,在△ABC中,sinA=sin(B+C)=sinBcosC+cosBsinC,∴2cosBsinC=﹣sinC,又∵C是三角形的内角,可得sinC>0,∴2cosB=﹣1,可得cosB=,∵B是三角形的内角,B∈(0,π),∴B=;(Ⅱ)∵sin()cos()﹣sin2()=,∴,∴,即,∴.∵B=,∴cosC====.【点评】本题考查了正弦定理的应用,考查了三角函数的诱导公式的运用,是中档题.19.【分析】(Ⅰ)利用倍角公式降幂,再由辅助角公式化积,结合复合函数的单调性求得函数的增区间;(Ⅱ)g(x)=af(x)+b=.由x的范围求得相位的范围,进一步得到关于a,b的方程,求解得答案.【解答】解:(Ⅰ)f(x)=sinx(cosx+sinx)﹣====.由,k∈Z,得,k∈Z.∴f(x)的单调递增区间为[,],k∈Z;(Ⅱ)g(x)=af(x)+b=.当x∈[,]时,2x﹣∈[,],∴,解得a=6,b=﹣1.【点评】本题考查三角函数中的恒等变换应用,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.20.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值,求得f(x)的最小正周期和最大值.(Ⅱ)利用正弦函数的单调区间,求得函数y=f(﹣x)的单调减区间.【解答】解:(Ⅰ)∵sin(x+)=cos(x﹣),∴f (x)=2sin(x+)=﹣2sin(x+).所以函数f (x)的最小正周期是2π,最大值是2.(Ⅱ)因为 f (﹣x)=2sin(x﹣),令2kπ+≤x﹣≤2kπ+,求得+2kπ≤x≤+2kπ,所以单调递减区间为[+2kπ,+2kπ](k∈Z).【点评】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调区间,属于中档题.21.【分析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅱ)利用正弦型函数的性质求出结果.【解答】解:(Ⅰ),=+1,=2sin(2x+)+1,所以函数的最小正周期T=.(Ⅱ)由于,则:,所以,即,所以函数的值域为f(x).【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用.22.【分析】(1)根据两角和差的余弦公式进行计算即可(2)利用一元二次函数的性质利用配方法进行转化求解即可.【解答】解:(1)若,且α∈[0,π],则cosα=,则sinα===,则=cos(α﹣)=cosαcos+sinαsin==+.(2)函数y=f(2x)﹣2f(x)=cos2x﹣2cosx=2cos2x﹣2cosx﹣1=2(cosx﹣)2﹣,∵﹣1≤cosx≤1,∴当cosx=时,函数取得最小值,最小值为﹣.【点评】本题主要考查三角函数值的计算,利用两角和差的余弦公式以及转化一元二次函数求最值是解决本题的关键.23.【分析】(1)由题意,可得,即可求解求的值.(2),利用同角三角函数关系式化简,即可求解值域.【解答】解:(1)∵,∴,∵,∴,∴,,又,∴,∴∴=.(2)令,则∴g(x)的值域为.【点评】本题考查了知识点是两角和与差的公式的应用,构造思想和计算能力,计算难度大,属于中档题.24.【分析】(Ⅰ)由已知求得sinA,结合三角形的面积公式求得bc,再由余弦定理求解a;(Ⅱ)由(Ⅰ)求得sin2A,cos2A的值,然后展开两角差的余弦求解cos(2A﹣)的值.【解答】解:(Ⅰ)由cosA=,0<A<π,得sinA=,∴S=,即bc=6.又,解得a=3;(Ⅱ)由(Ⅰ)得,cos2A=,sin2A=2sinAcosA=,故cos(2A﹣)=cos2Acos+sin2Asin=.【点评】本题考查三角函数的恒等变换及化简求值,考查三角形的解法,是中档题.25.【分析】(Ⅰ)根据函数的解析式以及f()=﹣,求得α的值.(Ⅱ)由(Ⅰ)可得f(x)的解析式,再利用正弦函数的周期性和单调性,得出结论.【解答】解:(Ⅰ)由已可得,f()=cosπ﹣2sin2(﹣α)=﹣﹣2cos2α=﹣.其中0,∴cosα=,∴α=.(Ⅱ)由(Ⅰ)可得,函数f(x)=cos2x﹣2sin2(x﹣α)=cos2x﹣2sin2(x ﹣)=cos2x﹣2•=cos2x+sin2x﹣1=2sin(2x+)﹣1,∴函数f(x)最小正周期为=π.令2kπ+≤2x+≤2kπ+,求得kπ+≤x≤kπ+,可得函数的减区间为[kπ+,kπ+],k∈Z.【点评】本题主要考查三角恒等变换,正弦函数的周期性和单调性,属于中档题.26.【分析】(1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x ﹣)+,由周期公式可求函数f(x)的最小正周期,由(k∈Z),即可解得单调递增区间.(2)当时,可得:,解得:,利用二次函数的性质即可得解.【解答】解:(1)∵=,∴函数f(x)的最小正周期T=π.∵由(k∈Z),得(k∈Z),∴单调递增区间为(k∈Z).(2)当时,可得:,解得:.存在,满足F(t)﹣m>0的实数m的取值范围为(﹣∞,﹣1).【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,考查了二次函数的图象和性质,属于基本知识的考查.27.【分析】(Ⅰ)利用三角函数恒等变换的应用可得f(x)=sin(2x+).利用周期公式可求f(x)的最小正周期.令2x+=kπ+,k∈Z,解得对称轴方程.(Ⅱ)结合x的范围利用正弦函数的图象和性质即可得解.【解答】(本题满分为14分)解:(Ⅰ)f(x)=2cos2x﹣cos(2x+)﹣1=cos2x﹣cos2x+sin2x=sin(2x+) (3)分∵ω=2,∴函数f(x)的最小正周期T==π,…5分令2x+=kπ+,k∈Z,解得:x=+,k∈Z,∴对称轴方程为:x=+,k∈Z…7分(Ⅱ)令2kπ﹣≤2x+≤2kπ+,k∈Z,解得:﹣+kπ≤x≤+kπ,k∈Z,设A=[],B={x|﹣+kπ≤x≤+kπ,k∈Z},可得:A∩B=[﹣,],…9分∴当x∈[]时,f(x)在区间[﹣,]上单调递增;在区间[,]上单调递减…14分【点评】本题主要考查了三角函数恒等变换的应用以及正弦函数的图象和性质的综合应用,考查了转化思想和数形结合思想,属于中档题.28.【分析】(Ⅰ)由已知利用余弦定理求得c,再由正弦定理求得sinA;(Ⅱ)结合(Ⅰ)求得cosA,进一步得到sin2A,cos2A,然后展开两角和的余弦可得cos(2A)的值.【解答】解:(Ⅰ)由a=3,sinB=2sinA,得b=2a=6,又cosC=,∴=36.∴c=6.由cosC=,得sinC=,由正弦定理可得:,即,得sinA=;(Ⅱ)由(Ⅰ)得,sinA=,∵a<c,∴cosA=.则sin2A=2sinAcosA=,cos2A=.∴cos(2A)=cos2Acos﹣sin2Asin=.【点评】本题考查三角形的解法,考查两角和的余弦,是中档题.29.【分析】(Ⅰ)化简解析式可得f(x)=2sin(2x+),由周期公式即可求T的值.(Ⅱ)由x∈,可求.从而可求最大值和最小值及相应的x的值.【解答】解:(Ⅰ)f(x)=2sin(x+)cos(x+)+2cos2(x﹣)﹣1=sin(2x+)+cos(2x﹣)=cos2x+sin2x=2sin(2x+)T==π.…7 分(Ⅱ)因为x∈,所以.所以当2x=,即x=时,y max=2;当2x=,即x=时,.…(13分)所以当x=时,函数有最大值是2;当x=时,函数有最小值是﹣.【点评】本题主要考察了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数的图象与性质,属于中档题.30.【分析】(Ⅰ)根据分式中分母不能为0,可得定义域,利用二倍角公式化简即可f(x)的最小正周期;(Ⅱ)根据三角函数的单调性即可求解f(x)的单调递减区间.【解答】解:(Ⅰ)由cosx≠0,即x≠,∴f(x)的定义域为{x|x≠,k∈Z}.函数=2sinxcosx+2cos2x﹣1=sin2x+cos2x=sin (2x+).∴f(x)的最小正周期T=.由(Ⅰ)知f(x)=sin(2x+).由≤2x+,k∈Z.可得:≤x≤∴f(x)的单调递减区间为[,],k∈Z.【点评】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.31.【分析】(Ⅰ)由已知展开两角和的正切求得tanA,结合同角三角函数的基本关系式求得sinA,cosA的值,再由倍角公式求出sin2A,cos2A的值,代入两角和的余弦求得cos(2A+)的值;(Ⅱ)由已知与正弦定理求得b,再由两角和的正弦求得sinC,代入三角形面积公式得答案.【解答】解:(Ⅰ)∵,∴,即.且A为三角形内角,∴A∈(0,),由,解得,,∴,,∴;(Ⅱ)由正弦定理可知,,∴.∵sinC=sin(A+B)=sinAcosB.∴.【点评】本题考查两角和与差的正弦、余弦和正切,考查同角三角函数基本关系式及倍角公式的应用,是中档题.32.【分析】(1)利用向量的数量积转化求解两角差的三角函数即可.(2)通过向量平行,转化求解角的大小即可.【解答】解:(1)因为=(cosα,sinα),=(﹣sinβ,cosβ),,.所以||=||=||=1,且•=﹣cosαsinβ+sinαcosβ=sin(α﹣β).……(3分)因为|+|=||,所以|+|2=2,即2+2•+2=1,所以1+2sin(α﹣β)+1=1,即.……(6分)(2)因为,所以.故=(,cos).……(8分)因为∥,所以.化简得,,所以.…(12分)因为0<β<π,所以.所以,即.……(14分)【点评】本题考查向量的数量积与三角函数的化简求值考查计算能力.33.【分析】(Ⅰ)利用二倍角公式以及两角和与差的三角函数化简函数的解析式,然后求函数f(x)的最小正周期;(Ⅱ)通过角的范围求解相位的范围,利用正弦函数的单调性求解函数的最值即可.【解答】(本小题满分13分)解:(Ⅰ)===………………(5分)所以周期为.………………(6分)(Ⅱ)因为,所以.………………(7分)所以当时,即x=π时f(x)max=1.当时,即时f(x)min=﹣2.…………(13分)【点评】本题考查两角和与差的三角函数,正弦函数的单调性以及函数的周期的求法,考查转化思想以及计算能力.34.【分析】(1)利用诱导公式和辅助角化简,根据函数的最小正周期等于π.即可求解ω的值和单调递增区间;(2)根据,求解内层函数的范围,结合三角函数的性质即可求解最值.【解答】解:函数=sinωx+cosωx=2sin (ωx),(1)∵函数的最小正周期等于π.即∴ω=2.可得f(x)=2sin(2x),由2x,k∈Z得:≤x≤故得函数的单调递增区间为[,],k∈Z(2)∵f(x)=2sin(2x),当,(2x)∈[]∴当2x=时,函数f(x)取得最大值为2.当2x=时,函数f(x)取得最小值为﹣1.【点评】本题考查了三角函数的图象及性质的应用,化简能力.属于基础题.35.【分析】利用二倍角公式化简函数f(x),再计算的值和x∈[﹣,]时f(x)的最大与最小值.【解答】解:函数f(x)=1﹣2sin2x=cos2x,(1)=cos(2×)=;故答案为:;(2)x∈[﹣,],∴2x∈[﹣,],∴cos2x∈[0,1],∴当x=﹣时,f(x)取得最小值0,x=0时,f(x)取得最大值1,∴函数f(x)在区间上的最大值为1,最小值为0.【点评】本题考查了二倍角公式的应用问题,也考查了三角函数的图象与性质,是基础题.36.【分析】(1)利用倍角公式降幂,再由两角差的正弦变形,结合x的范围即可求得f(x)的值域;(2)由f()=求得A,结合余弦定理及已知求得bc,代入面积公式求得△ABC的面积.【解答】解:(1)f(x)=sin2x+sinxcosx===.∵x∈[0,],∴2x﹣∈[],∴sin(2x﹣)∈[﹣],则f(x)∈[0,];(2)由f()=,得sin(A﹣)+,∴sin(A﹣)=0,∵A﹣∈(﹣,),则A﹣=0,即A=.由a=4,b+c=5,a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣2bc•cosA,得16=25﹣2bc﹣2bc×,即bc=3.∴.【点评】本题考查三角函数中的恒等变换应用,考查了余弦定理在求解三角形中的应用,是中档题.37.【分析】(I)直接将x=带入计算即可.(Ⅱ)利用二倍角和辅助角公司化简,即可求f(x)的单调递增区间.【解答】解:(Ⅰ)直接将x=带入,可得:==2.(Ⅱ)由=因为函数y=sinx的单调递增区间为(k∈Z),令(k∈Z),解得(k∈Z),故f(x)的单调递增区间为(k∈Z).【点评】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.38.【分析】(1)利用三角函数的定义,求出cosα,然后利用二倍角公式求解即可.(2)利用三角函数的定义,通过两角和与差的三角函数化简求解即可.【解答】(本小题满分14分)解:(1)因为点P的横坐标为,P在单位圆上,α为锐角,所以cosα=,………………………………(2分)所以cos2α=2cos2α﹣1=.………………………………(4分)(2)因为点Q的纵坐标为,所以sinβ=.………………………………(6分)又因为β为锐角,所以cosβ=.………………………………(8分)因为cosα=,且α为锐角,所以sinα=,因此sin2α=2sinαcosα=,……………………………(10分)所以sin(2α﹣β)=×﹣×=.……………………………(12分)因为α为锐角,所以0<2α<π.又cos2α>0,所以0<2α<,又β为锐角,所以﹣<2α﹣β<,所以2α﹣β=.…………………………………(14分)【点评】本题考查二倍角公式以及三角函数的定义的应用,考查计算能力.39.【分析】(I)利用和与差的公式和二倍角,辅助角公式化简,即可求f(x)的最小正周期.(II)根据x在上,求解内层函数的范围,结合三角函数的性质可得最大值.【解答】解:(1)函数=sin2xcos+cos2xsin﹣cos2x ﹣1=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1∴f(x)的最小正周期T=.(2)由x∈上,∴(2x﹣)∈[,]故得当2x﹣=时,即x=时,函数f(x)取得最大值为:sin()﹣1=.【点评】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.40.【分析】(Ⅰ)展开两角差的正弦,降幂后再由辅助角公式化积,求得函数周期,则y=f(x)的相邻两条对称轴的距离可求;(Ⅱ)由x的范围求出相位的范围,再由集合思想方法列式求解.【解答】解:(Ⅰ)∵===.∴函数f(x)的最小正周期.则曲线y=f(x)的相邻两条对称轴的距离为=;(Ⅱ)由(Ⅰ)可知.当x∈[0,a]时,∈.∵y=sinx在上单调递增,且f(x)在[0,a]上单调递增,∴⊆,即,解得0.故a的最大值为.【点评】本题考查三角函数的恒等变换应用,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.。
三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。
在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。
本文将对三角恒等变换中的关键知识点进行总结。
一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。
通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。
2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。
3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。
二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。
1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。
三角恒等变换-高考数学一题多解

三角恒等变换-高考数学一题多解三角式的恒等变形是一种基本的数学技能,它的依据是三角变换公式和代数中代数式的恒等变换的一般方法,三角变换公式如:同角三角函数的基本关系式、两角和与差的公式、二倍角与半角公式、万能公式.积化和差与和差化积公式等,公式的数量较多,学习时要通过理解角的关系以及三角函数的关系揭示公式之间的内在联系、掌握公式的推导线索.要理解公式,注意公式的适用范围和符号的取舍,三角变换贵在灵活运用公式,掌握公式的逆用和各种变形的运用,以达到熟练、恰到好处地运用公式解决具体问题的目的.不同角的三角函数关系式使用起来与同角三角函数关系式最大的不同点是必须根据题目的题设条件与结论去确定所应用的公式,而选定公式的能力靠观察角度关系、熟悉公式特征来培养.已知条件和所要求的角之间不相同时,常看它们的和、差、倍的情况,定能找出角之间的关系.角的变换是三角变换技巧之一,转化思想是实施三角变换的主导思想,变换包括:函数名称变换、角的变换、“1”的代换、和积变换、幂的升降变换等,变换时必须熟悉公式,分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件.“恒等”这个词始终是三角变换的重点.三角恒等变换中的方法与技巧是必须掌握的解题能力.在三角恒等变换中较为重要的变换技巧如下.(1)函数名称的差异变换:①切割化弦,弦化切割;②异名化同名.(2)角的差异变换:①异角化同角;②拆角、配角技巧.(3)运算结构的差异变换:①升次降次;②分式通分;③无理化有理;④和(差)积互化.(4)常数的处理:特别注意“1”的代换.(5)引入辅助角的变换、角的分析与三角式的配凑.在解题过程中,不论运用什么变换技巧,基本原则是:把握方向,活用公式,注意目标,贵在“恒等”.真可谓:三角变换贵在活,变角变式变函数,恒等始终是重点,公式繁多方法多.【典例】(2022·新高考Ⅱ卷T6)角,αβ满足sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则()A.tan()1αβ+=B.tan()1αβ+=-C.tan()1αβ-= D.tan()1αβ-=-(一)直接法——由条件推结果【答案】D【解析】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-,即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=,所以()tan 1αβ-=-,故选:D(二)整体构造法——观察角与角的关系找共同点【答案】D【解析】根据sin()cos()αβαβ+++以及4πα+,可以利用辅助角公式,将4πα+当做一个整体,再进行合并,于是有如下解法:sin()cos()]44cos sin sin 444ππαβαβαβαβπππαβαβαβ+++=++++=++=+(()(()()cos sin 44ππαβαβ+=+()()sin cos cos sin =044ππαβαβ+-+(()即sin=04παβ+-()sin =sin cos cos sin ==0444πππαβαβαβαβαβ∴-+-+--+-()()()()()sin =cos αβαβαβ∴----()()即tan()=-1,故选D【点评】解题的关键当然是如何沟通条件和结论,一种思考是变形条件使之朝结论的目标靠拢,而条件的变形又是多种多样,但应始终抓住是恒等变形,条件式直接变形要始终抓住“恒等”,引进新元更要注意“恒等”.另一种思考是构造法,构造法也不是凭空而得,务必考虑与条件之间的等价关系.(三)特殊值排除法——做选择题的快速解法解法:设β=0则sinα+cosα=0,取=2πα,排除A ,C ;再取α=0则sinβ+cosβ=2sinβ,取β=4π,排除B ;选D.【点评】排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论.具体操作起来,我们可以灵活应用,合理选取相应选项进行快速排除,【针对训练】(2022·浙江卷T13)1.若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.(2022·全国)2.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.3.化简:44661cos sin 1cos sin αααα----.4.求证:cos 1sin 1sin cos αααα+=-.5.设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=6.22sin 10cos 40sin10cos 40︒+︒+︒︒=_____________.7.已知π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,求2sin 22sin 1tan x x x+-的值.8.在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________.9.cos15sin15cos15sin15︒-︒︒+︒的值是()A .-B .0C .D .310.在ABC 中,=4A π∠,边,,a b c 满足22212b a c -=,求tan C 的值.参考答案:1.1045【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β.【详解】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos αα-=1010αα⎫-=⎪⎪⎭,令sin θ=cos 10θ=,()αθ-=22k k Z παθπ-=+∈,,即22k παθπ=++,∴sin sin 2cos 2k παθπθ⎛⎫=++= ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45.[方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos αα-=又22sin cos 1αα+=,将cos 3sin αα=210sin 90αα-+=,解得sin α=,则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45.2.(I )3B π=;(II )13,22⎛⎤ ⎥ ⎝⎦【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I )[方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc+-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=,即444222222220a b c a c a b b c +++--=,即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->,∴222a c b ac +-=,所以2221cos 22a cb B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤.由临界状态(不妨取2A π=)可知a cb+=而ABC 为锐角三角形,所以a cb+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++,222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin ,162A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,113sin ,6222A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.3.23.【分析】方法一:灵活利用平方关系及乘方公式化简即可.【详解】[方法一]:【最优解】“1”的代换化齐次式原式2224422366(cos sin )cos sin (cos sin )cos sin a ααααααα+--=+--2222222cos sin 23cos sin (cos sin )3αααααα⋅==+.[方法二]:公式降幂原式44661(cos sin )1(cos sin )a ααα-+=-+222222242241(cos sin )2cos sin 1(cos sin )(cos cos sin sin )αααααααααα⎡⎤-+-⋅⎣⎦=-+-⋅+2222222112cos sin 1(cos sin )3cos sin αααααα-+=⎡⎤-+-⋅⎣⎦22222cos sin 23cos sin 3a ααα⋅==⋅.[方法三]:降幂原式2242246(1cos )(1cos )sin (1cos )(1cos cos )sin ααααααα-+-=-++-2222244sin (1cos sin )sin (1cos cos sin )ααααααα+-=++-2222222cos 1cos (cos sin )(cos sin )αααααα=+++-22222cos 1cos cos sin a ααα=++-222cos 23cos 3αα==.【整体点评】方法一:根据22cos +sin =1αα化齐次式,简洁易算,是该题的最优解;方法二:根据22cos +sin =1αα以及平方和.立方和公式降幂,是化简求值的常用处理方法;方法三:根据平方差.立方差公式化简降幂,变形难度稍大.4.证明见解析【分析】方法一:式子左边分子分母同乘以cos α,再利用平方关系,变形分子即可得证.【详解】[方法一]:【最优解】左边=2cos cos (1sin )ααα-=21sin cos (1sin )ααα--=(1sin )(1sin )cos (1sin )αααα+--=1sin cos a α+=右边,等式成立.[方法二]:右边=(1sin )(1sin )cos (1sin )αααα+--=21sin cos (1sin )ααα--=2cos cos (1sin )ααα-=cos 1sin αα-=左边,等式成立.[方法三]:左边=2cos (1sin )cos ααα-,右边=(1sin )(1sin )(1sin )cos αααα+--=21sin (1sin )cos ααα--=2cos (1sin )cos ααα-,∴左边=右边,∴等式成立.[方法四]:∵cos 1sin αα--1sin cos a α+=2cos (1sin )(1sin )(1sin )cos ααααα-+--=22cos cos (1sin )cos αααα--=0.∴等式成立.[方法五]:左边=cos 1sin αα-=cos (1sin )(1sin )(1sin )αααα+-+=2cos (1sin )1sin ααα+-=1sin cos a α+=右边.[方法六]:∵(1-sin α)(1+sin α)=1-sin 2α=cos 2α,∴cos 1sin αα-=1sin cos aα+.[方法七]:若证cos 1sin αα-=1sin cos aα+成立,只需证cos α·cos α=(1-sin α)(1+sin α),即证cos 2α=1-sin 2α,此式成立,∴原等式cos 1sin αα-=1sin cos aα+成立.【整体点评】方法一:利用平方关系,从左边证到右边,是证明题的通性通法;方法二:利用平方关系,从右边证到左边;方法三:利用左边=中间,右边=中间证出;方法四:利用作差法证出;方法五:利用平方关系,从左边证到右边;方法六:根据平方关系变形证出;方法七:根据分析法证出.5.C【详解】[方法一]:sin 1sin ,sin cos cos cos sin cos cos αβαβααβαβ+=∴=+()sin sin 2παβα⎛⎫∴-= ⎪⎝⎭,,0,2222ππππαβα⎛⎫⎛⎫-∈--∈ ⎪ ⎪⎝⎭⎝⎭ ,222ππαβααβ∴-=-∴-=.故选:C.[方法二]:222cos sin cos sin 1sin 2222tan tan cos 24cos sin cos sin 2222ββββββπαβββββ⎛⎫++ ⎪+⎛⎫⎝⎭====+ ⎪⎝⎭- 又,,,22442242βπππβππααβ⎛⎫+∈∴=+∴-= ⎪⎝⎭.故选:C.[方法三]:由已知得,sin 1sin tan cos cos αβααβ+==,去分母得,sin cos cos cos sin αβααβ=+,所以sin cos cos sin cos ,sin()cos sin()2παβαβααβαα-=-==-,又因为22ππαβ-<-<,022ππα<-<,所以2παβα-=-,即22παβ-=,故选:C.考点:同角间的三角函数关系,两角和与差的正弦公式.6.34【分析】根据两角和的正弦余弦公式及同角三角函数的基本关系计算可得;【详解】[方法一]:因为40°=30°+10°,所以原式=22sin 10cos (3010)sin10cos(3010)++++22211sin 10sin10)sin10cos10sin 102222=+-+⋅- 2233(sin 10cos 10)44=+= .[方法二]:原式=1cos 201cos80sin10cos 4022-+++cos(5030)cos(5030)1sin10cos 402+--=++cos50cos30sin 50sin 30cos50cos30sin 50sin 301sin10cos 402---=++1sin 50sin 30sin10cos 40=-+ 1cos 40(sin 30sin10)=-- 1cos 40[sin(2010)sin(2010)]=-+-- 12cos 40cos 20sin10=-2cos 40cos 20sin10cos101cos10=-sin8013114cos1044=-=-= .[方法三]:换元法令10,40,sin a b cos a b ⎧=+⎨=-⎩得()()()()()11110401050302020,2221110401050302020,22a sin cos sin sin sin cos cos b sin cos sin sin cos sin sin ⎧=+=+==⎪⎪⎨⎪=-=-=-=⎪⎩则原式=222222333()()()()3cos 20sin 20444a b a b a b a b a b ++-++-=+=+=.[方法四]:设2222sin 10cos 40sin10cos 40,cos 10sin 40cos10sin 40x y =++=++ ,则1110401040250240,11180205040.222x y sin cos cos sin sin cos x y cos cos sin cos ⎧+=+++=+=+⎪⎨-=--=--=--⎪⎩所以322x =,故34x =.[方法五]:余弦定理由余弦定理,得2222cos a b ab C c +-=,又由正弦定理,得2sin sin sin a b cR A B C===,于是2222224sin 4sin 22sin 2sin cos 4sin R A R B R A R B C R C +-⋅⋅⋅=,得222sin sin 2sin sin cos sin A B A B C C +-=故22sin 10cos 40sin10cos 40++22sin 10sin 50sin10sin 50=++22sin 10sin 502sin10sin 50cos120=+-223sin 120)24=== .[方法六]:22sin 10cos 40sin10cos 40︒+︒+︒︒()()22sin 10cos 1030sin10cos 1030=︒+︒+︒+︒︒+︒2211sin 10sin10sin10cos10sin102222⎛⎫⎛⎫=︒+︒-︒+︒⨯︒-︒ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22223113sin 10cos 10sin 10sin 104424=︒+︒+︒-︒=故答案为:34.【点睛】本题考查同角三角函数的基本关系及两角和的正弦余弦公式的应用,属于中档题.7.2875-【分析】方法一:利用倍角公式和和差公式可得2π2sin cos sin sin 22sin 4π1tan cos 4x x x x x x x ⎛⎫+ ⎪+⎝⎭=-⎛⎫+ ⎪⎝⎭,然后利用条件可求出答案.【详解】[方法一]:根据已知角化简 22sin 22sin 2sin cos 2sin 1tan 1cos x x x x sin x x x x++=--2sin cos (cos sin )cos sin x x x x x x +=-π2sin cos sin()4πcos()4x x x x +=+π3cos()45x += ,177ππ124x <<,π4sin()45x ∴+=-,72sin cos 25x x ∴=.∴π2sin cos sin()284π75cos()4x x x x +=-+,∴2sin 22sin 281tan 75x x x +=--.[方法二]:直接展开求sin cos ,sin cos x x x x±()π3cos cos sin 425x x x ⎛⎫+=-= ⎪⎝⎭,得cos sin x x -=平方得2sin cos x x =725,()2732cos sin 12525x x +=+=, 177,124x ππ<<∴cos sin 0,cos sin x x x x +<+=,∴原式=cos sin 2sin cos cos sin x x x x x x +-=-2875.[方法三]:【最优解】逆用两角和的正切公式和二倍角公式因为π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,所以4sin 45x π⎛⎫+=- ⎪⎝⎭,即π4tan(43x +=-)原式=cos sin 1tan 2sin cos sin 2cos sin 1tan x x x x x x x x x ++=--=πsin2tan 4x x ⎛⎫+ ⎪⎝⎭,7sin2cos 212cos 2425x x x ππ⎛⎫⎛⎫=-+=-+= ⎪ ⎪⎝⎭⎝⎭,∴原式=2875-.[方法四]:整体法求cos x 因为π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,所以4sin 45x π⎛⎫+=- ⎪⎝⎭,cos cos cos cos sin sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,又 177124x ππ<<,所以sin x =,tan x =7,∴原式=-2875.【整体点评】方法一:将所求式化简成已知角的三角函数形式,整体代换求出;方法二:直接根据两角和的余弦公式展开以及平方关系求sin cos ,sin cos x x x x ±,化切为弦求出;方法三:逆用两角和的正切公式和二倍角公式求解最为简洁,是该题的最优解;方法四:利用整体思想以及同角三角函数基本关系求出sin ,cos ,tan x x x ,是该题的通性通法.8.等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】[方法一]:由余弦定理,222222cos 2cos 2b c a A b bc a c b B aac+-==+-,化简得22222()()0a b c a b ---=,∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.[方法二]:由cos cos A b B a =可知cos 0A >,cos 0B >,即0,2A π⎛⎫∈ ⎪⎝⎭,0,2B π⎛⎫∈ ⎪⎝⎭,由正弦定理结合题意可得cos sin cos sin A B B A =,即11sin cos sin cos ,sin 2sin 222A AB B A B =∴=,据此有22A B =或22A B π+=,即A B =或2A B π+=.∴△ABC 为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.9.D【详解】[方法一]:()()15453045304530122224154530453045301222cos cos cos cos sin sin sin sin sin cos cos sin =-=++=+==-=-==则原式44=[方法二]:()1tan15tan45tan15tan4515tan301tan151tan45tan15--===-==++原式[方法三]:cos15sin150>>,令cos15sin15(0)cos15sin15t t-=>+,22222cos152sin15cos15sin151sin301cos152sin15cos15sin151sin3033t t-+-===∴=+++则.[方法四]:()()222cos15cos15sin15cos15sin15cos15sin152cos15cos15sin1512cos152sin15cos15cos301sin3022cos152sin15cos15cos301sin30--=++-+-===+++[方法五]:22222cos15sin15cos15sin15cos15sin15cos15sin15cos15sin15cos15sin15cos30cos15sin152sin15cos151sin303-+-=++-===+++()()()[方法六]:cos15sin15sin15cos15cos15sin15sin15cos151sin30sin302sin60sin602--=-=-++--==()故选D.10.tan2C=.【分析】方法一:由余弦定理及已知可得3c=,再根据正弦定理的边角关系、三角形内角性质及差角正弦公式得3sin2cos2sinC C C=+,即可求tan C.【详解】[方法一]:【最优解】利用正、余弦定理边化角因为22212b a c-=,2222cosb c a bc A+-=,所以232c=,即3c=,所以33sin sin()2cos 2sin 4C B C C C π==-=+,即tan 2C =.[方法二]:和差化积公式的应用由22212b a c -=得,2221sin sin sin 2B AC -=,即212sincos 2cos sin sin 22222B A B A B A B AC +-+-⨯=,即()21sin sin sin 2C B A C -=,因为0sin 1C <≤,所以()()2sin sin sin B A C A B -==+,即sin cos 3sin cos B A A B =,所以tan 3tan 3B A ==.()tan tan 13tan tan 21tan tan 13A B C A B A B ++=-+=-=-=--.【整体点评】方法一:利用正、余弦定理边化角,再根据消元思想即可解出,是该题的最优解;方法二:利用和差化积公式转化求值,需要较强的运算能力.。
(全国通用)2018年高考数学 考点一遍过 专题16 三角恒等变换(含解析)理

考点16 三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).一、两角和与差的三角函数公式 1.两角和与差的正弦、余弦、正切公式(1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ- (5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z2.二倍角公式(1)2S α:sin2α=2sin cos αα(2)2C α:cos2α=2222cos sin 12sin 2cos 1αααα-=-=-(3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且3.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=±;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==tan baϕ=二、简单的三角恒等变换 1.半角公式(1)sin2α=(2)cos2α=(3)tan2α=sin 1cos 1cos sin αααα-==+【注】此公式不用死记硬背,可由二倍角公式推导而来,如下图:2.公式的常见变形(和差化积、积化和差公式) (1)积化和差公式:1cos cos [cos()cos()]2αβαβαβ=++-;1sin sin [cos()cos()]2αβαβαβ=-+--;1sin cos [sin()sin()]2αβαβαβ=++-;1cos sin [sin()sin()]2αβαβαβ=+--.(2)和差化积公式:sin sin 2sincos22αβαβαβ+-+=;sin sin 2cos sin22αβαβαβ+--=; cos cos 2cos cos22αβαβαβ+-+=; cos cos 2sin sin22αβαβαβ+--=-.考向一 三角函数式的化简1.化简原则(1)一看角之间的差别与联系,把角进行合理的拆分,正确使用公式; (2)二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;(3)三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等. 2.化简要求(1)使三角函数式的项数最少、次数最低、角与函数名称的种类最少;(2)式子中的分母尽量不含根号.3.化简方法(1)切化弦;(2)异名化同名;(3)异角化同角;(4)降幂或升幂.典例1 化简:ππsin sin33ππcos cos33αααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭=.【答案】【方法技巧】(1)三角化简的常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.学.(2)三角化简的标准:三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.(3)在化简时要注意角的取值范围.1________.考向二三角函数的求值问题1.给角求值给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解. 2.给值求值已知三角函数值,求其他三角函数式的值的一般思路: (1)先化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手). (3)将已知条件代入所求式子,化简求值. 3.给值求角通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是π(0,)2,则选正、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为ππ(,)22-,则选正弦较好. 4.常见的角的变换 (1)已知角表示未知角 例如:()()ααββ=+-=,()()()()2,2ααβαββαβαβ=++-=+--,(2)αβαβα+=++,(2)αβαβα-=-+,22αβαβα+-=+,22αβαββ+-=-.(2)互余与互补关系 例如:π3π()()π44αα++-=,πππ()()362αα++-=. (3)非特殊角转化为特殊角例如:15°=45°−30°,75°=45°+30°.典例2 cos15cos30cos105sin30︒︒+︒︒的值是A B C .12D .1【答案】A【名师点睛】把所求式子中的角105°变为90°+15°,利用诱导公式cos (90°+α)=−sin α化简后,再利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可求出值.“给角求值”,一般给出的角都是非特殊角,观察发现题中的角与特殊角都有着一定的关系,如和或差为特殊角,必要时运用诱导公式.2A .1-B .2C .12D .1典例3 已知tan(α−β)=,tan β=−,且α,β∈(0,π),则2α−β=A .π4B .π4- C .3π4-D .π4或3π4- 【答案】C又α∈(0,π),所以0<α<.又<β<π,所以−π<2α−β<0,所以2α−β=−.故选C.【名师点睛】在解决给值求角问题时,不仅要注意已经明确给出的有关角的范围,还要结合有关角的三角函数值尽可能地缩小角的范围.302βαπ<<<. (1)求α2tan 的值. (2)求β的值.典例4 已知324βαπ<<<π,12cos()13αβ-=,3sin(),5αβ+=-则sin 2α=A BC D【答案】B【名师点睛】解给值求值型问题的一般思路是:先看公式中的量,哪些是已知的,哪些是待求的,再利用已知条件结合同角三角函数的基本关系求出待求值,注意根据角的象限确定符号. 这类求值问题关键在于结合条件和结论中的角,合理拆、配角.4.已知角α,β均为锐角,且3cos5α=,tan(α−β)=,则tanβ=A. B.C. D.3考向三三角恒等变换的综合应用1.与三角函数的图象及性质相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的形式.(2)利用公式2π(0)Tωω=>求周期.(3)根据自变量的范围确定ωx+φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的单调区间.2.与向量相结合的综合问题三角恒等变换与向量的综合问题是高考经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,a∥b⇔x1y2=x2y1,a⊥b⇔x1x2+y1y2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.3.与解三角形相结合的综合问题(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正、余弦定理把边的关系化成角的关系再用三角恒等变换化简求解.【注】此类题中的角是在三角形中,每个角范围限制在(0,π)内,如果是锐角三角形,则需要限制各个角均在π(0,)2内.角的范围在解题中至关重要,做题时要特别注意.典例5 设函数f(x)=sin2ωx−sin ωx cosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.(1)求ω的值;(2)求f(x)在区间π,]上的最大值和最小值.【答案】(1)1;(2)f(x)在区间π,]上的最大值和最小值分别为,−1.【解析】(1)f (x )=sin 2ωx −sin ωx cos ωx =·sin 2ωx =cos2ωx −sin 2ωx =−sin(2ωx −).因为图象的一个对称中心到最近的对称轴的距离为,且ω>0,所以=4×,因此ω=1.(2)由(1)知f (x )=−sin(2x −).当π≤x ≤时,≤2x −≤.所以−≤sin(2x −)≤1.因此−1≤f (x )≤.故f (x )在区间π,]上的最大值和最小值分别为,−1.5.已知向量a =1cos ,2x ⎛⎫-⎪⎝⎭,b x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.1.cos9π·cos 29π ·cos 23()9π-= A .−18B .−116 C .116D .182.已知1sin cos 5αα-=-,则的值为A .1225B .2425-C .2425D .1225-3.已知锐角,αβ满足,则αβ+的值为ACD 4.设,,且,则A .B .C .D .5.已知向量a =(sin(),1)6απ+,b =(4,4cos α),若a ⊥b ,则sin 4()3απ+=A .4-B .14-C .4D .146,则sin β= A .0C7A B CD 8.已知α为锐角,若,则sin α=ABC D 9.若()()sin 603cos 90θθ+︒=︒-,则tan θ=__________.10.在斜三角形ABC 中,tan tan tan tan 1A B A B ++=,则C ∠=_____________.11.已知函数,若为函数()f x 的一个零点,则0cos2x =__________.12(1)求sin2β的值;(213.已知函数.(1)求的最小正周期和最值;(2)设是第一象限角,且求的值.1.(2016年高考新课标Ⅱ卷)若cos(4π−α)=53,则sin 2α= A .725B .15C .−15D .−7252.(2016年高考新课标Ⅲ卷)若3tan 4α=,则2cos 2sin 2αα+= A .6425B .4825C .1D .16253.(2017年高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 4.(2017年高考江苏卷)若π1tan(),46α-=则tan α=___________.5.(2016年高考四川卷)cos 2π8–sin 2π8= . 6.(2016年高考浙江卷)已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =______,b =________.1.【答案】−2sin42.【答案】C【解析】由()sin47sin 3017sin30cos17sin17cos30︒=︒+︒=︒︒+︒︒知,原式3.【答案】(1(2【解析】(1)由1cos ,072ααπ=<<(2)由0βαπ<<<,得0.2αβπ<-<由)(βααβ--=得)](cos[cos βααβ--=.3βπ∴=4.【答案】D5.【答案】(1)π;(2)f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.【解析】f (x )=1cos ,2x ⎛⎫-⎪⎝⎭x ,cos 2x )cos x sin x −12cos 2x=2sin 2x −12cos 2x =ππcossin 2sin cos 266x x -=πsin 26x ⎛⎫-⎪⎝⎭. (1)f (x )的最小正周期为2π2ππ2T ω===,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴ππ5π2666x -≤-≤.由正弦函数的性质,当ππ262x -=,即π3x =时,f (x )取得最大值1. 当ππ266x -=-,即x =0时,f (0)=12-,当π52π66x -=,即π2x =时,π122f ⎛⎫= ⎪⎝⎭, ∴f (x )的最小值为12-. 因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.1.【答案】A2.【答案】C 【解析】由题意得,两边同时平方得故选C. 3.【答案】B【解析】因为锐角,αβ,所以因为()0,παβ+∈,所以 B. 4.【答案】B【解析】根据三角函数的基本关系可 得,,因为,,所以,所以(舍)或,得,故选B.5.【答案】B6.【答案】B,0⨯=,不合题意,舍去;,525=,应选B. 7.【答案】DD. 8.【答案】C【解析】∵α为锐角且 则,故本题选C.9.10.【解析】在ABC△ 中,tan tan tan tan 1A B A B ++⋅=,则t a n t a n 1A B A B+=-⋅0πC <<11.【答案】3512.【答案】(1(2【解析】(1(2【名师点睛】在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的方法是配凑角:即将要求的式子通过配凑,得到与已知角的关系,进而用两角和与差的公式展开求值即可.13.【答案】(1)的最小正周期是,最大值为,最小值为;(2).【解析】(1).的最小正周期是,最大值为,最小值为. (2),则,即,又为第一象限的角,则,.1.【答案】D【解析】2237cos22cos12144525αα⎡π⎤π⎛⎫⎛⎫⎛⎫-=--=⨯-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又cos2cos2sin242ααα⎡π⎤π⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,所以7sin225α=-,故选D.【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.2.【答案】A【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.3.【答案】79- 【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,cos cos αβ=-=(或cos cos βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .4.【答案】75【解析】11tan()tan 7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角.5.【答案】2【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值转化为特殊角的三角函数求值而得解.6.,1【解析】22cos sin 2)14x x x π+=++,所以 1.A b ==【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos2sin 21x x ++,进而对照()sin Αx b ωϕ++可得Α和b 的值.。
2018年全国各地高考数学试题及解答分类大全(三角函数 三角恒等变换)

2018年全国各地高考数学试题及解答分类大全 (三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦, 则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( )A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15B C D .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan 5α=±;当tan 5α=时,可得15a =,25b =,即5a =,5b =,此时5a b -=;当tan 5α=-时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案: 解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________.5.【答案】32【解析】5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+(1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=,求方程12f x =()ππ-[,]上的解。
2018高考数学文理一轮复习检测:第三章 三角函数、三角恒等变换、解三角形 第6讲 含答案 精品

第三章 第六讲A 组基础巩固一、选择题1.(2017·浙江省杭州市期末数学试题)计算:1-cos 210°cos80°·1-cos20°=导学号 30071087( A )A .22 B .12C .32D .-22[解析] 利用诱导公式,倍角公式,同角三角函数关系式将所求式子转化为10°角的正弦函数值,即可得解.解:1-cos 210°cos80°·1-cos20°=sin 210°sin10°·1-(1-2sin 210°)=sin 210°sin 210°·2=22.故选A . [点拨] 本题主要考查了诱导公式,倍角公式,同角三角函数关系式的应用,属于基础题.2.(2016·全国Ⅱ)函数f (x )=cos2x +6cos(π2-x )的最大值为导学号 30071088( B )A .4B .5C .6D .7[解析] f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112(|sin x |≤1)∴当sin x =1时,f max (x )=5.故选B . 3.(2017·新疆石河子二中期末数学试题)若cos2αsin (α-π4)=-22,则cos α+sin α的值为导学号 30071089( C )A .-72B .-12C .12D .72[解析] 题目的条件和结论都是三角函数式,第一感觉是先整理条件,用二倍角公式和两角差的正弦公式,约分后恰好是要求的结论.解:∵cos2αsin (α-π4)=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-22,∴cos α+sin α=12,故选C .[点拨] 本题解法巧妙,能解的原因是要密切注意各公式间的内在联系,熟练地掌握这些公式的正用、逆用以及某些公式变形后的应用.4.(2017·内蒙古集宁一中高三上学期期中数学试题)已知2sin2α=1+cos2α,则tan2α=导学号 30071090( C )A .-43B .43C .43或0D .-43或0[解析] 把已知等式两边平方,利用同角三角函数间的基本关系化简,整理求出cos2α的值,进而求出sin2α的值,即可求出tan2α的值.解:把2sin2α=1+cos2α两边平方得:4sin 22α=(1+cos2α)2,整理得:4-4cos 22α=1+2cos2α+cos 22α,即5cos 22α+2cos2α-3=0, ∴(5cos2α-3)(cos2α+1)=0, 解得:cos2α=35或cos2α=-1,当cos2α=35时,sin2α=1+cos2α2=45,tan 2α=43;当cos2α=-1时,sin2α=1+cos2α2=0,tan2α=0,则tan2α=43或0.故选C .5.(2016·湖北八校联考)已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f (π12)的值为导学号 30071091( D )A .4 3B .833C .4D .8[解析] 因为f (x )=2×(tan x +cos x sin x )=2×(sin x cos x +cos x sin x )=2×1cos x ·sin x =4sin2x ,所以f (π12)=4sin π6=8.故选D .6.(2016·河南洛阳统考)函数f (x )=2sin 2(π4+x )-3cos2x (π4≤x ≤π2)的最大值为导学号 30071092( B )A .2B .3C .2+ 3D .2- 3[解析] 依题意,f (x )=1-cos2(π4+x )-3cos2x =sin2x -3cos2x +1=2sin(2x -π3)+1.当π4≤x ≤π2时,π6≤2x -π3≤2π3,12≤sin(2x -π3)≤1,此时f (x )的最大值是3.故选B . 7.(2016·吉安模拟)已知θ为第二象限角,25sin 2θ+sin θ-24=0,则sin θ2的值为导学号 30071093( D )A .-35B .±35C .45D .±45[解析] ∵θ为第二象限角,∴sin θ>0, θ2为第一或第三象限, ∵25sin 2θ+sin θ-24=0, ∴sin θ=-1(舍去)或sin θ=2425, ∴cos θ=-725,∴sin θ2=±1-cos θ2=±1625=±45,故选D . 8.(2017·安徽省六安一中高三上学期月考(三)数学试题)在△ABC 中,若3(tan B +tan C )=tan B tan C -1,则cos2A =导学号 30071094( A )A .12B .-12C .32D .-32[解析] 由3(tan B +tan C )=tan B tan C -1可得,tan(B +C )=tan B +tan C 1-tan B tan C =-33,故tan A=33⇒A =30°,则cos2A =cos60°=12,故应选A . 二、填空题9.(2016·九江模拟)化简sin 235°-12cos10°cos80°=-1.导学号 30071095[解析] sin 235°-12cos10°cos80°=1-cos70°2-12cos10°sin10°=-12cos70°12sin20°=-1.10.(2017·湖南省衡阳市八中高三第三次(10月)月考数学试题)已知sin x +2cos x =0,则sin 2x +1=95.导学号 30071096[解析] sin x +2cos x =0等价于sin x =-2cos x ,∵cos x ≠0,∴tan x =-2,∴sin x =±255即sin 2x +1=95,故填95.11.(2016·西安模拟)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=-5导学号 30071097 [解析] f (x )=sin x -2cos x =5sin(x +φ), 其中sin φ=-255,cos φ=55,当x +φ=2k π+π2时,函数f (x )取得最大值,即θ=2k π+π2-φ.所以cos θ=cos(π2-φ)=sin φ=-255.三、解答题12.(2016·山东济南模拟)已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π.导学号 30071098(1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值.[答案] (1)f (x )=4cos ωx sin(ωx -π6)+1=23sin ωx cos ωx -2cos 2ωx +1 =3sin2ωx -cos2ωx =2sin(2ωx -π6).最小正周期T =2π2ω=π, 所以ω=1,所以f (x )=2sin(2x -π6).令-π2+2k π≤2x -π6≤π2+2k π .解得-π6+k π≤x ≤π3+k π.所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ).(2)当x ∈[π8,3π8]时,(2x -π6)∈[π12,7π12].当2x -π6=π12时,f (x )取得最小值,f (x )=2sinπ12=2sin(π4-π6)=6-22; 当2x -π6=π2时,f (x )取得最大值,f (x )=2sin π2=2.所以f (x )在[π8,3π8]上的最大值为2,最小值为6-22.13.(教材改编题)已知函数f (x )=2cos x sin(x +π4)-12.导学号 30071099(1)求函数f (x )图象的对称轴方程及最小值; (2)已知f (α-π8)=225,α∈(0,π4),求f (α2)的值.[解析] (1)f (x )=2cos x sin(x +π4)-12=2cos x (22sin x +22cos x )-12=12sin2x +12cos2x =22sin(2x +π4). 令2x +π4=π2+k π,得x =π8+k π2(k ∈Z ),所以函数f (x )的图象的对称轴方程为x =π8+k π2(k ∈Z ),最小值为-22.(2)因为f (α-π8)=22sin2α=225,所以sin2α=45.所以cos(π2+2α)=-sin2α=-45=1-2sin 2(α+π4),所以sin 2(α+π4)=910.因为α∈(0,π4),所以sin(α+π4)=31010,所以f (α2)=22sin(α+π4)=3510.B 组能力提升1.(2016·全国卷Ⅲ)若tan α=34,则cos 2α+2sin2α=导学号 30071100( A )A .6425B .4825C .1D .1625[解析] 通性通法 由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎨⎧sin α=35cos α=45或⎩⎨⎧sin α=-35cos α=-45,则sin2α=2sin αcos α=2425,则cos 2α+2sin2α=1625+4825=6425.光速解法 cos 2α+2sin2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425.2.(2016·武昌模拟)化简sin4α4sin 2(π4+α)tan (π4-α)=导学号 30071101( A )A .sin2αB .cos2αC .sin αD .cos α[解析]sin4α4sin 2(π4+α)tan (π4-α)=sin4α4cos 2(π4-α)·tan (π4-α)=sin4α4sin (π4-α)cos (π4-α)=2sin2αcos2α2sin (π2-2α)=sin2α,故选A .3.(2017·安徽省黄山市上学期期末数学试题)若cos α+sin α=23,则2sin (2α-π4)+11+tan α的值为导学号 30071102( D )A .59B .0C .-518D .-59[解析] 由cos α+sin α=23,两边平方可得:2sin αcos α=-59.再利用和差公式、同角三角函数基本关系式即可得出2sin (2α-π4)+11+tan α.解:∵cos α+sin α=23,∴1+2sin αcos α=49,∴2sin αcos α=-59.∴2sin (2α-π4)+11+tan α=2×22(sin2α-cos2α)+11+tan α=2sin αcos α+2sin 2α1+sin αcos α=2sin αcos α=-59.故选D .[点拨] 本题考查了和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.4.化简sin 2(α-π6)+sin 2(α+π6)-sin 2α的结果是12.导学号 30071103[解析] 法一:原式=1-cos (2α-π3)2+1-cos (2α+π3)2-sin 2α=1-12[cos(2α-π3)+cos(2α+π3)]-sin 2α=1-cos2α·cos π3-sin 2α=1-cos2α2-1-cos2α2=12. 法二:令α=0,则原式=14+14=12.5.(2016·沈阳模拟)已知函数f (x )=sin x -3cos x +2,记函数f (x )的最小正周期为β,向量a =(2,cos α),b =(1,tan(α+β2))(0<α<π4),且a·b =73.导学号 30071104(1)求f (x )在区间[2π3,4π3]上的最值;(2)求2cos 2α-sin2(α+β)cos α-sin α的值.[解析] (1)f (x )=sin x -3cos x +2=2sin(x -π3)+2,∵x ∈[2π3,4π3],∴x -π3∈[π3,π],∴f (x )的最大值是4,最小值是2. (2)∵β=2π,∴a·b =2+cos αtan(α+π)=2+sin α=73,∴sin α=13,又0<α<π4.∴2cos 2α-sin2(α+β)cos α-sin α=2cos 2α-sin2αcos α-sin α=2cos α=21-sin 2α=423.。
2018届高中数学新人教b版(理科数学)三角函数图象与性质、三角恒等变换单元测试版含答案

专题三三角函数及解三角形第1讲三角函数图象与性质、三角恒等变换(限时:45分钟)【选题明细表】知识点、方法题号同角三角函数关系式、诱导公式1,7三角恒等变换2,6,9三角函数图象与性质3,5,8,11综合应用4,10一、选择题1.(2017·河南天一大联考)若cos(-α)=,则cos(π-2α)等于( B )(A)(B)-(C)(D)-解析:cos(π-2α)=2cos2(-α)-1=-.故选B.2.(2017·云南民族中学三模)已知sin 2α=,则tan α+等于( A )(A)(B) (C) (D)4解析:由sin 2α=2sin αcos α=,可得sin αcos α=,所以tan α+=+==.故选A.3.(2017·成都实验外国语学校二诊)已知函数f(x)=sin2x+cos2x-,若将其图象向左平移(>0)个单位后所得的图象关于原点对称,则的最小值为( C )(A) (B) (C) (D)解析:函数f(x)=sin 2x+cos2x-=sin 2x+cos 2x=sin(2x+),将其图象向左平移(>0)个单位后,可得y=sin(2x+2+)的图象,若该函数图象关于原点对称,则2+=kπ,k∈Z,故的最小值为.故选C.4.(2017·云南昆明一模)已知常数ω>0,f(x)=-1+2sin ωx cos ωx+2cos2ωx图象的对称中心到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos 2x0等于( D )(A)(B)(C)(D)解析:f(x)=-1+2sin ωxcos ωx+2cos2ωx,sin 2ωx+cos 2ωx=2sin(2ωx+)因为对称中心到对称轴的距离的最小值为,所以T=π.由T==π,可得ω=1.f(x0)=,即2sin(2x0+)=,因为≤x0≤,所以≤2x0+≤,又sin(2x0+)=>0,所以cos(2x0+)=-.那么cos 2x0=cos(2x0+-)=cos(2x0+)cos+sin(2x0+)sin=. 故选D.5. (2017·青海西宁二模)函数y=cos(ωx+)(ω>0,0<<π)为奇函数,其部分图象如图所示,A,B分别为最高点与最低点,且|AB|=2,则该函数图象的一条对称轴方程为( D )(A)x= (B)x=。
2018年高考理科数学考纲解读与题型示例 (6)三角恒等变换与解三角形

2018年高考理科数学考纲解读与题型示例 (6) 三角恒等变换与解三角形【2018年高考考纲解读】 高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切是C 级要求,二倍角的正弦、余弦及正切是B 级要求,应用时要适当选择公式,灵活应用.(2)正弦定理、余弦定理及其应用,要求是B 级,能够应用定理实现三角形中边和角的转化,以及应用定理解决实际问题.试题类型一般是填空题,同时在解答题中与三角函数、向量等综合考查,构成中档题. 【重点、难点剖析】1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.3.正弦定理a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R.a ∶b ∶c =sin A ∶sin B ∶sin C .4.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.5.三角形面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .6.三角恒等变换的基本思路(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧.如1=cos 2θ+sin 2θ=tan 45°等.“化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”.(2)角的变换是三角变换的核心,如β=(α+β)-α,2α=(α+β)+(α-β),α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β等.7.解三角形的四种类型及求解方法 (1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 8.利用解三角形的知识解决实际问题的思路把实际问题中的要素归入到一个或几个相互关联的三角形中,通过解这样的三角形即可求出实际问题的答案.注意要检验解出的结果是否具有实际意义,对结果进行取舍,从而得出正确结果. 【题型示例】题型1、三角变换及应用【例1】【2017山东,理9】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是 (A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【变式探究】(1)(2016²高考全国乙卷)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析:基本法:将θ-π4转化为⎝ ⎛⎭⎪⎫θ+π4-π2.由题意知sin ⎝ ⎛⎭⎪⎫θ+π4=35,θ是第四象限角,所以cos ⎝ ⎛⎭⎪⎫θ+π4>0,所以cos ⎝⎛⎭⎪⎫θ+π4=1-sin 2⎝⎛⎭⎪⎫θ+π4=45.tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-cos ⎝⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-4535=-43.答案:-43∴∠B =π2-α,∴tan B =43,∴tan B =-43.答案:-43(2)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0解析:基本法:由tan α>0得α是第一或第三象限角,若α是第三象限角,则A ,B 错;由sin 2α=2sin αcos α知sin 2α>0,C 正确;α取π3时,cos 2α=2cos 2α-1=2³⎝ ⎛⎭⎪⎫122-1=-12<0,D 错.故选C.速解法:∵tan α=sin αcos α>0,即sin αcos α>0,∴sin 2α=2sin αcos α>0,故选C. 答案:C【举一反三】 (2015²新课标全国Ⅰ,2)sin 20°cos 10°-cos 160°sin 10°=( )A .-32B.32C .-12D.12解析 sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12. 答案 D【变式探究】(2015²四川,12)sin 15°+sin 75°的值是________.解析 sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62. 答案62【举一反三】(2015²江苏,8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.解析 ∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.答案 3【变式探究】(1)(2014²新课标全国卷Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2(2)(2014²山西)若锐角α满足2sin α+23cos α=3,则tan ⎝ ⎛⎭⎪⎫2α+2π3的值是( )A .-37B .-377C .37D.377【解析】(1)解法一:由tan α=1+sin βcos β,得sin αcos α=1+sin βcos β, 即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝⎛⎭⎪⎫0,π2,∴由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α, ∴2α-β=π2,故选B.解法二:tan α=1+sin βcos β=1+cos ⎝⎛⎭⎪⎫π2-βsin ⎝ ⎛⎭⎪⎫π2-β=2cos 2⎝⎛⎭⎪⎫π4-β22sin ⎝ ⎛⎭⎪⎫π4-β2cos ⎝ ⎛⎭⎪⎫π4-β2=cot ⎝ ⎛⎭⎪⎫π4-β2=tan ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-β2=tan ⎝ ⎛⎭⎪⎫π4+β2,∴α=k π+⎝ ⎛⎭⎪⎫π4+β2,k ∈Z .∴2α-β=2k π+π2,k ∈Z .当k =0时,满足2α-β=π2,故选B.【感悟提升】(1)此类问题的着眼点是“一角、二名、三结构”,即一看角的差异,二看名称的差异,三看结构形式的差异,然后多角度使用三角公式求解.(2)对于三角函数中角的求值问题,关键在于“变角”,将“目标角”变换成“已知角”.若角所在象限没有确定,则应分情况讨论,要注意三角公式的正用、逆用、变形运用,掌握其结构特征,还要注意拆角、拼角等技巧的运用.(3)求三角函数的化简求值问题的一般思路:“五遇六想一引”,即遇正切,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.【变式探究】(2015²广东,11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________.解析 因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=bsinπ6,解得b =1. 答案 1考点2、正、余弦定理的应用【例2】【2017课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2BA C +=, (1)求cosB ;(2)若6a c +=,ABC ∆的面积为2,求b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考达标检测(十八)三角恒等变换的3个考查点——化简、求值和应用 一、选择题1.(2016·全国丙卷)若tan θ=-13,则cos 2θ=( )A .-45B .-15C 、15D 、45解析:选D ∵cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ, 又∵tan θ=-13,∴cos 2θ=1-191+19=45、2.已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4等于( ) A .-255 B .-3510C .-31010D 、255解析:选A 由tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=12, 得tan α=-13、又-π2<α<0,所以sin α=-1010、 故2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin αα+cos α22α+cos α=22sin α=-255、 3.(2017·温州测试)已知sin x +3cos x =65,则cos ⎝ ⎛⎭⎪⎫π6-x =( ) A .-35B 、35C .-45D 、45解析:选B ∵sin x +3cos x =2⎝ ⎛⎭⎪⎫12sin x +32cos x=2⎝⎛⎭⎪⎫sin π6sin x +cos π6cos x =2cos ⎝ ⎛⎭⎪⎫π6-x =65, ∴cos ⎝ ⎛⎭⎪⎫π6-x =35、4.(2017·东北三省模拟)已知sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α,则cos 2α=( )A .1B .-1C 、12D .0解析:选D ∵sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α, 即⎝ ⎛⎭⎪⎫12-32sin α=-⎝ ⎛⎭⎪⎫12-32cos α, ∴tan α=sin αcos α=-1,∴cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0、 5.(2017·南宁调研)若θ∈[0,π],cos θ=34,则tan θ2=( )A 、7B 、17C .7D 、77解析:选D 法一:因为θ∈[0,π],所以θ2∈⎣⎢⎡⎦⎥⎤0,π2,所以cosθ2= cos θ+12=144, 所以sinθ2=24,所以tan θ2=77,故选D 、 法二:由题意得sin θ=74,所以tan θ=73、因为θ∈[0,π],所以θ2∈⎣⎢⎡⎦⎥⎤0,π2,所以由tan θ=2tanθ21-tan 2θ2=73,解得tan θ2=77或tan θ2=-7(舍去),故选D 、6.(2017·吉林大学附中检测)若α∈⎝ ⎛⎭⎪⎫π2,π,且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin2α的值为( )A .-356 B .-16C .-3518D .-1718解析:选D ∵3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α, ∴3(cos 2α-sin 2α)=22(sin α-cos α), 易知sin α≠cos α,故cos α+sin α=-26, 两边平方得1+sin 2α=118,解得sin 2α=-1718,故选D 、7.(2017·贵阳监测)已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( )A .-235B 、235C 、45D .-45解析:选D sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45、8.(2016·长沙模拟)在△ABC 中,若3(tan B +tan C )=tan B ·tan C -1,则sin 2A =( )A .-12B 、12C .-32D 、32解析:选D 由两角和的正切公式知tan B +tan C =tan(B +C )(1-tan B ·tan C ),所以3(tan B +tan C )=tan B ·tan C -1=3tan(B +C )(1-tan B ·tan C ),所以tan(B +C )=-33,所以tan A =33,又A ∈(0,π),所以A =π6,所以sin 2A =32,故选D 、 二、填空题9.化简:sin 50°(1+3tan 10°)=________、 解析:sin 50°(1+3tan 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°·cos 10°+3sin 10°cos 10°=sin 50°·2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1、答案:110.(2016·浙江高考)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________、解析:∵2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎪⎫2x +π4, ∴1+2sin ⎝⎛⎭⎪⎫2x +π4=A sin(ωx +φ)+b , ∴A =2,b =1、 答案: 2 111.(2017·东北三省四市联考)已知tan(3π-x )=2,则2cos 2x2-sin x -1sin x +cos x =________、解析:由诱导公式得tan(3π-x )=-tan x =2, 即tan x =-2,故2cos 2x2-sin x -1sin x +cos x =cos x -sin x sin x +cos x =1-tan xtan x +1=-3、答案:-312.(2017·珠海六校联考)已知tan(α+β)=25,tan β=13,则tan ⎝ ⎛⎭⎪⎫α+π4的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β] =α+β-tan β1+α+ββ=25-131+25×13=117,tan ⎝⎛⎭⎪⎫α+π4=1+tan α1-tan α=1+1171-117=98、答案:98三、解答题13.已知函数f (x )=sin x -3cos x +2,记函数f (x )的最小正周期为β,向量a =(2, cos α),b =⎝⎛⎭⎪⎫1,tan ⎝⎛⎭⎪⎫α+β2,0<α<π4,且a·b =73、 (1)求f (x )在区间⎣⎢⎡⎦⎥⎤2π3,4π3上的最值;(2)求2cos 2α-α+βcos α-sin α的值.解:(1)f (x )=sin x -3cos x +2=2sin ⎝⎛⎭⎪⎫x -π3+2, ∵x ∈⎣⎢⎡⎦⎥⎤2π3,4π3,∴x -π3∈⎣⎢⎡⎦⎥⎤π3,π,∴f (x )的最大值是4,最小值是2、 (2)由题意知β=2π,∴a·b =2+cos αtan(α+π)=2+sin α=73,∴sin α=13,∴2cos 2α-α+βcos α-sin α=2cos 2α-sin 2αcos α-sin α =2cos α=21-sin 2α=423、14.(2017·台州模拟)已知实数x 0,x 0+π2是函数f (x )=2cos 2ωx +sin ⎝⎛⎭⎪⎫2ωx -π6(ω>0)的相邻的两个零点.(1)求ω的值;(2)设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若f (A )=32且b tan B +ctan C =2atan A,试判断△ABC 的形状,并说明理由. 解:(1)f (x )=1+cos 2ωx +32sin 2ωx -12cos 2ωx =32sin 2ωx +12cos 2ωx +1 =sin ⎝⎛⎭⎪⎫2ωx +π6+1, 由题意得T =π, ∴2π2ω=π,即ω=1、 (2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+1, ∴f (A )=sin ⎝⎛⎭⎪⎫2A +π6+1=32, 即sin ⎝⎛⎭⎪⎫2A +π6=12、 ∵0<A <π,∴π6<2A +π6<13π6, ∴2A +π6=5π6,即A =π3、 由b tan B+ctan C=2a tan A ,得b cos B sin B +c cos C sin C =2a cos Asin A, 所以cos B +cos C =2cos A =1, 又因为B +C =2π3,所以cos B +cos ⎝ ⎛⎭⎪⎫2π3-B =cos B -12cos B +32sin B =sin ⎝⎛⎭⎪⎫B +π6=1,所以B =C =π3、综上,△ABC 是等边三角形.高考达标检测(一) 集 合一、选择题1.(2017·郑州质量预测)设全集U ={x ∈N *|x ≤4},集合A ={1,4},B ={2,4},则∁U (A ∩B )=( )A .{1,2,3}B .{1,2,4}C .{1,3,4}D .{2,3,4}解析:选A 因为U ={1,2,3,4},A ∩B ={4},所以∁U (A ∩B )={1,2,3},故选A 、 2.(2017·福州模拟)集合A ={-3,-1,2,4},B ={x |2x<8},则A ∩B =( ) A .{-3} B .{-1,2} C .{-3,-1,2}D .{-3,-1,2,4}解析:选C 由题意知,集合A ={-3,-1,2,4},B ={x |2x <8}={x |x <3},则A ∩B = {-3,-1,2},故选C 、3.(2017·重庆适应性测试)设全集U =R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -1x -2>0,B ={x ∈R|0<x <2},则(∁U A )∩B =( )A .(1,2]B .[1,2)C .(1,2)D .[1,2]解析:选B 依题意得∁U A ={x |1≤x ≤2},(∁U A )∩B ={x |1≤x <2}=[1,2),选B 、 4.(2017·武汉调研)已知集合A ={x |-2≤x ≤3},B ={x |x 2+2x -8>0},则A ∪B =( )A .(-∞,-4)∪[-2,+∞)B .(2,3]C .(-∞,3]∪(4,+∞)D .[-2,2)解析:选A 因为B ={x |x >2或x <-4},所以A ∪B ={x |x <-4或x ≥-2},故选A 、 5.(2016·浙江高考)已知集合P ={x ∈R|1≤x ≤3},Q ={x ∈R|x 2≥4},则P ∪(∁R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)解析:选B ∵Q ={x ∈R|x 2≥4},∴∁R Q={x∈R|x2<4}={x∈R|-2<x<2}.∵P={x∈R|1≤x≤3},∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].6.设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是( )A.7 B.10C.25 D.52解析:选B 因为A={-1,0,1},B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3}.由x∈A∩B,可知x可取0,1;由y∈A∪B,可知y可取-1,0,1,2,3、所以元素(x,y)的所有结果如下表所示:所以A*B中的元素共有10个.7.(2017·吉林一模)设集合A={0,1},集合B={x|x>a},若A∩B中只有一个元素,则实数a的取值范围是( )A.{a|a<1} B.{a|0≤a<1}C.{a|a≥1} D.{a|a≤1}解析:选B 由题意知,集合A={0,1},集合B={x|x>a},画出数轴(图略).若A∩B 中只有一个元素,则0≤a<1,故选B、8.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=( )A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:选B 由log2x<1,得0<x<2,所以P={x|0<x<2}.由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.二、填空题9.(2017·辽宁师大附中调研)若集合A ={x |(a -1)·x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18、综上可知,实数a 的值为1或-18、答案:1或-1810.(2017·湖南岳阳一中调研)已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是________.解析:由∁R B ={x |x ≤1或x ≥2}, 且A ∪(∁R B )=R , 可得a ≥2、 答案:[2,+∞)11.(2017·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A 、则集合A =________、(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种; ②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种). ②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14、所以(43-y )min =43-14=29、 答案:①16 ②29 三、解答题13.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}. (1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}. 易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略),易知2<a <a +1<4,解得2<a <3、故实数a 的取值范围是(2,3).14.(2017·青岛模拟)若集合M ={x |-3≤x ≤4},集合P ={x |2m -1≤x ≤m +1}. (1)证明M 与P 不可能相等;(2)若集合M 与P 中有一个集合是另一个集合的真子集,求实数m 的取值范围. 解:(1)证明:若M =P ,则-3=2m -1且4=m +1,即m =-1且m =3,不成立. 故M 与P 不可能相等.(2)若P M ,当P ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1<4,m +1≥2m -1或⎩⎪⎨⎪⎧-3<2m -1,m +1≤4,m +1≥2m -1,解得-1≤m ≤2;当P =∅时,有2m -1>m +1,解得m >2,即m ≥-1; 若M P ,则⎩⎪⎨⎪⎧-3≥2m -1,4<m +1,m +1≥2m -1或⎩⎪⎨⎪⎧-3>2m -1,4≤m +1,m +1≥m -1,无解.综上可知,当有一个集合是另一个集合的真子集时,只能是P M ,此时必有m ≥-1,即实数m 的取值范围为[-1,+∞).。