瓦斯抽采的必要性及抽采方法

合集下载

矿井瓦斯抽采系统设计(专题)

矿井瓦斯抽采系统设计(专题)
矿井瓦斯等级鉴定结果 矿井瓦斯涌出量 百米钻孔流量 其它
5
矿井瓦斯抽采 第二章 必要性及可行性
6
2、矿井瓦斯抽采的必要性及可行性
2.1 瓦斯抽采设计的依据
(1)国家安全生产监督管理总局、国家发展和改革委员 会、国家能源局、国家煤矿安全监察局.煤矿瓦斯抽采达标 暂行规定,(安监总煤装〔2011〕163号) (2)国家安全监督管理总局,国家煤矿安全监察局.防治 煤与瓦斯突出规定,2009年 (3)国家安全生产监督管理总局,国家煤矿安全监察局. 煤矿安全规程,2011年
22
矿井瓦斯抽采 第三章 方法及参数选择
23
3、矿井瓦斯抽采方法及参数选择
煤与瓦斯突出矿井预抽方法及抽采参数 突出矿井的突出煤层,采前必须抽采煤层瓦斯,以区域 性消除煤层的突出危险性。
突出煤层采前井下常用的抽采瓦斯方法及参数建议值
24
3、矿井瓦斯抽采方法及参数选择
穿层钻孔预抽瓦斯方法
每隔 30m 掘一的钻场,
29
矿井瓦斯抽采 第四章 管网设计
30
5、矿井瓦斯抽采管网设计
4.1 选择原则
(1)若煤层赋存较浅(<800m),煤层较厚,或煤
层层数较多,层间距较近,且首采层以为中、下部煤层,
地面又较平坦,可采用地面钻孔抽采系统。 (2)若煤层透气性较低,地面地形条件复杂,不适 宜采用地面钻孔抽采,则应设立矿井集中抽采系统。 (3)不具备建立全矿井抽采瓦斯系统的矿井,个别
q0 0.0260.0004 (V r ) 2 0.16 X 0
QS q 4
q3 Q T


•Vz—煤中挥发分含量,%; •X0—煤层原始瓦斯含量,m3/t 。
15
2、矿井瓦斯抽采的必要性及可行性

煤矿专业基础第1章 煤层瓦斯抽采技术及方法

煤矿专业基础第1章  煤层瓦斯抽采技术及方法

13
图9.1.3 随掘随抽的钻孔布置 1—掘进巷道;2—钻窝;3—钻孔
14
图9.1.4 随采随抽钻孔布置
15
1.3 邻近层瓦斯抽采
邻近层瓦斯抽采技术在我国瓦斯矿井中已经得到广 泛的应用,从20世纪50年代起,先后在阳泉、天府、中 梁山等矿务局取得了较好的效果,但近距离的上、下邻 近层抽采仍沿用一般的邻近层抽采技术,不仅效果欠理 想,而且还会给生产带来一些麻烦。“八五”以来,学 者对近距离邻近层瓦斯抽采难题进行了研究,提出了不 同开采技术条件下的近距离邻近层瓦斯抽采方法,取得 了较好的效果。
12
(3)本煤层卸压抽采瓦斯 在受回采或掘进的采动影响下,引起煤层和围岩的 应力会重新分布,形成卸压区和应力集中区。在卸压区 内,煤层膨胀变形,透气性系数增加,在这个区域内打 钻抽采瓦斯,可以提高抽采量,并阻截瓦斯流向工作空 间。这类抽采方法现场称为随掘随抽和随采随抽。 1)边掘边抽 2)边采边抽
4
1.2 本煤层瓦斯抽采
本煤层瓦斯抽采,又称为开采层抽采,目的是为了 减少煤层中的瓦斯含量和降低回风流中的瓦斯浓度,以 确保矿井安全生产。 1.2.1 本煤层瓦斯抽采的原理 本煤层瓦斯抽采就是在煤层开采之前或采掘的同时, 用钻孔或巷道进行该煤层的抽采工作。煤层回采前的抽 采属于未卸压抽采,在受到采掘工作面影响范围内的抽 采,属于卸压抽采。
8
图9.1.1 穿层钻孔抽采瓦斯的示意图 1—煤层;2—钻孔;3—钻场;4—运输 大巷;5—封闭墙;6—瓦斯管路
9
图9.1.2 未卸压顺层钻孔抽采开采煤 层示意图 1—运输巷;2—回风巷;3—钻孔; 4—采煤工作面;5—采空区
10
(2)巷道预抽本煤层瓦斯(未卸压) 巷道预抽是20世纪50年代初,我国抚顺矿区成功试 验本煤层预抽瓦斯时最初采用的一种抽采瓦斯方式:在 采区回采之前,按照采区设计的巷道布置,提前把巷道 掘出来并构成系统,然后将所有入、排风口都加以密闭, 同时,在各排风口密闭处插管并铺设抽采瓦斯管路,将 煤层中的瓦斯预先抽采出来。经过一段时期的抽采,待 瓦斯浓度降低至规定的范围后,即可回采。抽采瓦斯巷 道的设计与布置,除必须完全适应将来开采需要外,还 要充分利用瓦斯流动的特性,既能抽采本采段的煤层瓦 斯,又能截抽下段煤层瓦斯。基于这一考虑,一般都将 瓦斯巷道布置在煤层顶分层和上、下段之间的阶段煤柱 中。

瓦斯抽采方法及钻场孔施工ppt课件

瓦斯抽采方法及钻场孔施工ppt课件
(b)
倾斜高抽巷抽采上邻近层瓦斯方法
进风巷


道 下
风 下
8108综放工作面
切 巷


回风巷
尾巷 (a)
裂隙带
倾向高抽巷
冒落带 (b)
回风巷 尾巷
下向孔抽采下邻近层瓦斯方法
3号层
尾巷
4号层
5号层
工作面回风巷
上向孔抽采下邻近层瓦斯方法
钻孔
A
A
2022 (4022)
8号煤层 9号煤层
12号煤层
A--A
8.顶煤专用巷与埋(插)管相结合抽采采空区瓦斯方法
9.钻孔抽采老空区瓦斯方法
10.密闭插管抽采老采空区瓦斯方法
11.上隅角工作面瓦斯抽采方法
从回风巷布孔抽采卸压带、冒落带瓦斯方法
钻孔
钻场
回风巷
工作面
进风巷
从回风巷抬高钻场布孔抽采卸压带、冒落带 瓦斯方法
A
B
B
A-A
A
B-B
密闭回风巷横贯插管抽采采空区积聚瓦斯方法
① 尽可能利用开采巷道抽采瓦斯,必要时可设专用抽采瓦斯巷道; ② 适应煤层的赋存条件及开采技术条件; ③ 有利于提高瓦斯抽采率; ④ 抽采效果好,抽采的瓦斯量和浓度尽可能满足利用要求; ⑤ 尽量采用综合抽采; ⑥ 抽采瓦斯工程系统简单,有利于维护和安全生产,建设投资省,抽采
成本低。
二 瓦斯抽采方法
目录
➢瓦斯基本知识 ➢瓦斯抽采方法 ➢钻场孔设计与施工 ➢瓦斯抽采新工艺新装备
一 瓦斯基本知识
瓦斯的性质
➢含气体义的:总井称下;以煤甲矿烷术(语C中H4可)专为指主甲的烷有。毒有害 ➢甲烷无色、无臭。 ➢瓦斯爆炸范围:4%≤CH4%≤16%。 ➢井下气体的成分:氧气、氮气、二氧化碳、

瓦斯抽采

瓦斯抽采

3.4 瓦斯抽采3.4.1 瓦斯储量 1、瓦斯储量计算范围矿井可采煤层及受采动影响的围岩。

2、瓦斯储量矿井瓦斯储量按下式计算:321w w w w ++=式中:W —矿井地质资源/储量,Mm 3; W 1—矿井可采煤层瓦斯储量,M m 3;∑=⨯=ni iiw Aw 1111式中:A 1i —矿井i 可采煤层的地质储量, M t; W 1i —矿井i 可采煤层的瓦斯含量, m 3 /t ;W 2—受采动影响后能够向开采空间排放的各不可采煤层的瓦斯储量,M m 3;∑=⨯=ni iiw Aw 1222式中:A 2i —受采动影响后能够向开采空间排放的i 不可采煤层的地质储量,M m 3; W 2i —受采动影响后能够向开采空间排放的i 不可采煤层的瓦斯储量, m 3/t; 因为地质报告没有提供不可采煤层的地质储量,因此受采动影响后能够向开采空间排放的各不可采煤层的瓦斯储量按可采煤层瓦斯储量10%计算。

W 3--受采动影响后能够向开采空间排放的岩层瓦斯储量,M m 3;)(213w w k w +=k —围岩瓦斯储量系数,一般取K=0.05—0.20,取K=0.1。

个煤层采用两个采区瓦斯含量的平均值计算矿井瓦斯储量和可抽采量。

经计算矿井区域内地质瓦斯储量为301.85Mm 3,计算结果见表3-4-1。

表3-4-1 矿井地质瓦斯储量计算表煤层 可采煤层 瓦斯含量(m 3/t) 可采煤层地质储量(万吨) 可采煤层地质储量(Mm 3) 不可采煤层 的瓦斯储量 (Mm 3) 受采动影响能向开采空间 排放的岩层瓦斯储量 (Mm 3) 矿井地质储量(Mm 3)3 12.29 192 23.64 12.8 171 21.89 912.75 167 21.3 10 13.05 276 36.02 12 15.01 230 34.52 17 15.34 306 46.94 18 15.42 263 40.55 19 15.5 159 24.64 总计249.4624.9527.44301.853、可抽放量 (1)瓦斯抽放率根据本章叙述,矿井瓦斯抽放率为61%。

亨元煤矿瓦斯抽采必要性与可行性分析

亨元煤矿瓦斯抽采必要性与可行性分析
拓 方式 , 矿井 采用 机 械抽 出式 通 风 , 主斜 井 和 副斜 井
煤层 透 气 性 系 数 为 3 74—1.5 。6煤 层 瓦 .3 948
斯 吸附 常数 a=3 .4 ( t , 0 6 5 MP ) 9 2 8 m / ) b= . 6 ( a ; 8煤 层 瓦斯 吸 附 常 数 a=3 . 8 ( t ,b=0 62 661 m/) .9
2 )钻孔 瓦斯 流量 衰减 系数 、 限流 量 、 极 透气 性 系 数 及煤 的瓦斯 吸 附常数 。 测 定 瓦 斯 基 础 参 数 期 间 , 层 瓦斯 衰减 系数 为 煤
海 拔 10 13m, 7 . 相对 高 差 12 7m。本 井 田地 层 平 4 . 缓, 陷落柱 不发育 , 孔 及 生 产 中未 发 现 断层 及 岩 浆 钻 岩 。亨元 矿 区东 西 长 约 2 4 5k 南 北 长 约 3 5 0 .0 m, .5
进 行 瓦斯抽 采 , 建议 采取 综合抽 采 的方 法。 关 键词 瓦斯 涌 出量预 测 ; 采 必要性 ; 采 可行性 抽 抽
中图分 类号 :D 1 文 献标识 码 : 文章编 号 :62— 62 2 1 )3— 03— 4 T 72 B 17 05 (0 2 0 05 0
1 矿 井概 况
顶板 岩性 为砂 质泥 岩或砂 岩 。 2 瓦斯 赋存 基础 参数 的测 定及 瓦斯涌 出量预 测 2 1 煤 层 瓦斯 赋存 基础参 数 .
享 元煤 矿位 于 山西 省寿 阳县城 北 , 沁水煤 田的北
部 , 田处 于太原 东 山背 斜 之 东南 翼 , 曲 一盂 县 纬 井 阳
m一开 采层厚 度 , m;

工作 面采 高 , m;

煤层 瓦斯含 量 , 。t取 W =95 t i / , o .0i / ; n n

矿井瓦斯抽采技术的研究现状及前景

矿井瓦斯抽采技术的研究现状及前景

矿井瓦斯抽采技术的研究现状及前景矿井瓦斯抽采技术是指对煤矿井下的瓦斯进行抽采处理,以防止瓦斯爆炸事故的发生,同时也可以利用瓦斯资源进行能源开发。

随着我国煤矿生产规模的不断扩大,矿井瓦斯抽采技术在煤矿安全生产中的地位日益重要。

本文将对矿井瓦斯抽采技术的研究现状及前景进行探讨。

一、研究现状1. 瓦斯抽采技术的发展历程瓦斯抽采技术的发展经历了多个阶段,最初是简单的自然通风和机械通风抽采方式,后来发展出了稀释瓦斯、吸附瓦斯、水封、地面抽采等技术。

随着科技的发展,现在还涌现出了更加先进的抽采技术,如超高压水射流技术、地下煤层气回采技术等。

2. 研究领域及热点目前,国内外矿井瓦斯抽采技术的研究主要集中在以下几个领域:(1)瓦斯抽采新技术的研究,包括新型瓦斯抽采设备的开发与应用、新型瓦斯抽采工艺的探索等;(2)瓦斯抽采理论研究,包括瓦斯涌出规律、瓦斯抽采效果评价、瓦斯抽采参数优化等;(3)瓦斯资源综合利用技术的研究,包括瓦斯发电、瓦斯化学利用、瓦斯制氢等方面的研究。

3. 技术应用情况目前,国内外矿井瓦斯抽采技术已经得到了广泛的应用,各种抽采设备和工艺在煤矿生产中得到了推广。

在我国,随着《煤矿安全规程》的不断修订和完善,矿井瓦斯抽采技术得到了更加重视,很多煤矿都配备了先进的瓦斯抽采设备,实现了瓦斯的高效抽采和综合利用。

二、前景分析随着煤矿开采深度的不断加深和瓦斯含量的增加,瓦斯抽采技术将朝着更加安全、高效、节能、环保的方向发展。

未来,瓦斯抽采技术的发展趋势将主要包括以下几个方面:(1)智能化:瓦斯抽采设备将更加智能化,实现自动化控制和远程监控,提高抽采的稳定性和安全性;(2)节能减排:瓦斯抽采过程中的能源消耗和废气排放将大大减少,达到节能减排的目标;(3)多元化利用:瓦斯资源将不仅仅用于防治瓦斯爆炸,还将更多地用于能源开发和化学利用。

3. 技术发展挑战在矿井瓦斯抽采技术的发展过程中,也面临着一些挑战,主要包括以下几个方面:(1)深部矿井瓦斯抽采技术的难点:随着煤矿深部开采的加速,深部矿井瓦斯抽采技术将面临更大的挑战,如瓦斯渗透规律、瓦斯抽采设备的适应性等问题;(3)瓦斯综合利用技术的突破:虽然瓦斯综合利用技术已经取得了一定进展,但如何将瓦斯资源更好地转化为清洁能源和化工原料,仍然需要进一步的研究和突破。

瓦斯抽采基本知识

为了减少和解除矿井瓦斯对煤矿安全生产 的威胁,利用机械设备和专用管道造成的负 压,将煤层中存在或释放出的瓦斯抽出来, 输送到地面或其他安全地点的做法叫做瓦斯 抽采。
二、预抽煤层瓦斯的方式 目前,能做为区域防突措施的只有开采保护层
和区域预抽煤层瓦斯。 对于突出危险区域煤层不 具备开采保护层的条件时,必须采用预抽煤层瓦斯。
第八章 瓦斯抽采基本知识
☆瓦斯抽放发展概况
我国煤矿瓦斯抽放技术的发展
高透气性煤层抽放 瓦斯阶段
邻近层卸压抽放 瓦斯阶段
低透气性煤层强化 抽放瓦斯阶段
综合抽瓦斯阶段
50年代初期,在
50年代中期,采用穿
突出煤层抽放
80年代开始,随着
抚顺高透气性特厚 层 钻 孔 抽 放 上 邻 近 层 瓦 瓦斯效果不理想、难 机采、综采和放顶煤技
3、《煤矿安全规程》对抽采瓦斯的规定
一个采煤工作面的瓦斯涌出量大于5m3/min或一
个掘进工作面的瓦斯涌出量大于3m3/min,用
通风方法解决瓦斯问题不合理的。


① 大于或等于40m3/min;

矿井绝对瓦
② 年产量1.0~1.5Mt的矿井,大于30m3/ min;
放 的
斯涌出量达 到以下条件
③ 年产量0.6~1.0Mt的矿井,大于25m3/min; ④ 年产量0.4~0.6Mt的矿井,大于20m3/min; ⑤ 年产量小于或等于0.4Mt的矿井,大于15 m3/min。


开采保护层时应考虑抽放被保护层瓦斯。
开采有煤与瓦斯突出危险煤层的。
4、煤层瓦斯抽采难易程度的指标
煤层抽放瓦斯难以程度(可行性)主要针对预抽方法而言, 主要有钻孔瓦斯流量衰减系数(瓦斯压力)和煤层透气性系 数两项指标,是用来衡量开采层瓦斯抽放难易程度的重要参 数。 根据这两项指标将未卸压原始煤层的抽放难以程度划分为三 类,即容易抽放、可以抽放和较难抽放。

瓦斯抽采

瓦斯抽放原则:应抽尽抽;多措并举;抽采平衡
9.利用瓦斯时,瓦斯浓度不得低于30%,且在利用瓦斯的系统中必须装设有防回火、防回气和防爆炸作用的安全装置。不利用瓦斯、采用干式抽放瓦斯设备时,抽放瓦斯浓度不得低于25%。
10.瓦斯压力直接测定法封孔:黄泥封孔;普通水泥浆封孔;胶囊-粘液封孔;胶圈-粘液封孔;聚氨酯泡沫封孔。
二、地面钻孔抽放法
三、巷道抽放法:走向高抽巷、倾向高抽巷、顶板巷道结合钻孔抽放临近层瓦斯
20.临近层的抽放效果取决于抽放参数:钻孔角度与长度、钻孔间距、钻孔直径
21.提高本煤层钻孔瓦斯抽放(预抽)效果的技术途径
(1)增加钻孔暴露煤面积:①加大钻孔直径;②增加钻孔的穿煤长度;③增加钻孔密度,缩小钻孔距;
①大于或等于40m3/min;
②年产量1.0~1.5Mt的矿井,大于30m3/min;
③年产量0.6~1.0Mt的矿井,大于25m3/min;
④年产量0.4~0.6Mt的矿井,大于20m3/min;
⑤年产量小于或等于0.4Mt的矿井,大于15m3/min。
⑶开采有煤与瓦斯突出危险煤层的。
(4)瓦斯抽放系统的抽放量可稳定在2 m3/min以上,预计瓦斯抽放服务年限在10年以上。
14400~2880
较难抽放
>0.05
<0.1
<2880
13.煤层瓦斯以吸附(人们通常把进入煤体内部的瓦斯称为吸收瓦斯,把附着在煤体表面的瓦斯称为吸着瓦斯,吸收瓦斯和吸着瓦斯统称为吸附瓦斯)、游离态瓦斯储存于煤层中。
14.影响煤层瓦斯含量的因素
(1)煤层的埋藏深度:煤层的埋藏深度越深,煤层瓦斯含量增大
(3)保护环境方面的意义:煤矿瓦斯抽采是利用的前提,通过利用才有可能降低其对大气环境的破坏作用。

煤矿瓦斯抽采技术的研究与改进

煤矿瓦斯抽采技术的研究与改进煤矿瓦斯是煤矿生产过程中产生的一种危险气体,主要由甲烷组成。

瓦斯在矿井中积聚会增加矿井的爆炸风险,关于煤矿瓦斯抽采技术的研究与改进具有重要意义。

本文将探讨现有的煤矿瓦斯抽采技术,分析其存在的问题,并提出改进的方向。

煤矿瓦斯抽采技术是为了提高矿井安全生产水平,减少瓦斯事故发生的危害,保护矿工的生命财产安全。

目前,常用的瓦斯抽采技术包括自然抽采、机械抽采和综合抽放法。

自然抽采是通过开采矿井排出瓦斯。

这种方法简单、成本低,但其效率较低,尤其在深井和煤层赋存条件复杂的情况下。

机械抽采则是通过安装抽采设备,将瓦斯抽出矿井。

机械抽采方法较为常用,在一定程度上提高了瓦斯抽采效率,但也存在一些问题。

综合抽放法是对自然抽采和机械抽采的综合利用,通过优化排放工艺和抽放系统,实现瓦斯的抽采和利用。

然而,现有的瓦斯抽采技术还存在一些问题。

首先,传统的抽采方法对煤矿瓦斯抽采的效率不高,无法满足煤矿安全生产的需要。

其次,传统的抽采方法浪费了大量的瓦斯资源,没有进行有效利用。

同时,现有技术在瓦斯抽采过程中存在能耗较高、设备维护困难等问题。

对于这些问题,我们可以通过研究和改进煤矿瓦斯抽采技术,提高瓦斯抽采效率,实现瓦斯资源的有效利用,降低能耗和维护成本。

煤矿瓦斯抽采技术的研究与改进可以从以下几个方面进行。

首先,优化瓦斯抽采设备和系统。

通过改进抽采设备的性能和结构,提高瓦斯抽采效率。

同时,应该加强对抽放系统的研究,改善瓦斯抽放工艺并减少瓦斯泄漏。

其次,发展新型的瓦斯抽采方法。

例如,利用超声波技术提高瓦斯的溶解率,采用微生物、化学药剂等技术降低瓦斯在煤层中的吸附量,从而提高瓦斯抽采效果。

此外,可以研究开发新型的抽采设备,如带有阻火功能的高效抽采泵等。

再次,加强瓦斯抽采过程中的监测与控制。

通过引入传感器、物联网等技术,实现对瓦斯抽采过程的实时监控和智能化控制,提高瓦斯抽采工作的安全性和稳定性。

最后,加强对瓦斯资源的利用研究。

煤矿瓦斯抽采

31
第三节 采空区瓦斯抽放方法 一、采空区瓦斯抽放的含义
开采厚煤层或邻近层处于冒落带时,
其中大量的瓦斯会直接进入采空区。当
回采工作面的采空区或老空区积存大量
瓦斯时,往往被漏风带入生产巷道或工
作面,造成瓦斯超限而影响生产,因而
应对采空区的瓦斯进行抽放。采空区抽放
瓦斯:抽放现采工作面采空区和老采空区的
抽放的目的就是通过抽放降低风流中的瓦 斯浓度,来改善矿井的安全生产条件和安全状 况。
3
• 瓦斯抽放的意义
• 1、减少瓦斯涌出,避免瓦斯燃烧或爆炸, 保证矿井安全生产;
• 2、防治煤与瓦斯突出,减少人员伤亡; • 3、瓦斯为工业生产和人民生活服务,变
害为利,创造良好的社会效益和经济效益; • 4、减少瓦斯对大气的污染,有利于生态
29
(一)、上邻近层瓦斯抽放
上邻近层瓦斯抽放即是邻近层位于开采层的 顶板,通过巷道或钻孔来抽放上邻近层的瓦斯。 根据岩层的破坏程度与位移状态可把顶板划分为 冒落带、裂隙带和弯曲下沉带,底板划分为裂隙 带和变形带。冒落带高度一般为采厚的5倍,在 距开采层近、处于冒落带内的煤层,随冒落带的 冒落而冒落,瓦斯完全释放到采空区内,很难
管道附属装置有阀门、钻孔(钻场)连 接装置、排渣放水器等。
6
(二)、瓦斯泵 常用的瓦斯泵有水环真空泵、离心
式瓦斯泵和回转式瓦斯泵。水环真空泵的 特点是真空度高、负压大、安全性好(工 作室内充满介质,不会发生瓦斯爆炸)。
由于水环真空泵安全性好,抽放负 压大,所以煤矿使用较为广泛。
ZWY60/90 ZWY105/132
环境的保护
4
二、瓦斯抽放系统的构成
瓦斯抽放系统分为地面固定式瓦斯 抽放系统和井下临时瓦斯抽放系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

瓦斯抽采的必要性及抽采方法 摘要 中国是个煤矿蕴藏量大国,同时也是个煤矿需求量大国,煤矿作为中国工业生产以及生活生产的主要原材料,对中国经济起着举足轻重的作用,但是经过多年的开采和生产,煤矿的蕴藏量在减少,煤矿瓦斯主要指蕴含在煤矿层中的甲烷气体的含量,是新能源的代表,中国煤层中大量含有这种新型的能源,但是因为地势的复杂,通风系数以及安全系数的威胁,开采难度很大,因此怎样在煤矿开采时做到煤矿瓦斯的抽采成了我们研究的主要问题,本文就煤矿瓦斯抽采的必要性及方法进行论述。 关键词 煤矿瓦斯抽采;必要性;抽采方法 中图分类号td712 文献标识码a 文章编号 1674-6708(2012)73-0176-02 我国的煤矿开采行业拥有悠久的历史,我国也一直是一个用煤大国,煤矿资源属于不可再生资源,随着资源的运用以及开发,煤矿资源的贮藏量已大不如前,而且开采的地势复杂,难度很大,并且在开采过程中因为煤矿瓦斯普遍存在于煤矿层中,给煤矿的开采加大了难度,容易出现安全事故,开采的首要任务变成了煤矿瓦斯的抽采,我国已经在运用和研究各种新科技方式进行抽采,煤矿瓦斯本身属于一种可再生的新能源,具有高效节能的作用,如果能在煤矿开采中进行煤矿瓦斯同时抽采,那么新能源的广泛使用势必为中国的经济发展提供全新的动力,但是开采难度的问题也始终是我 们前进步伐中所面临的主要问题。 1煤矿瓦斯抽采的定义、必要性 1.1 煤矿瓦斯抽采的定义 煤矿瓦斯的是蕴含在煤层中的主要以甲烷气体为主的在煤矿井下开采中从煤层或者周围岩壁中涌进矿井巷道中的天然气体,也可以称作瓦斯,属于现代化产业的新能源,因其产量问题还未全面取代就得能源,被广泛使用,但是社会发展的趋势。在煤矿开采活动中,必须要先进行煤矿瓦斯的抽采,煤矿瓦斯的抽采是指通过专门的设备和抽采管道将煤矿瓦斯从井下排出,这样井下的煤矿瓦斯浓度不会过高,不容易出现爆炸和煤与瓦斯突出等危险事故,增加开采工作的难度并威胁到开采工人的生命安全。 1.2 煤矿瓦斯的特点 煤矿瓦斯的体积浓度大于等于30%的,属于高浓度瓦斯,低于30%的我们称之为低浓度瓦斯,低浓度的瓦斯可以直接适用于日常生产生活中的许多环节,对于高浓度的瓦斯以目前的技术一般无法直接使用,只能通过贮存液压等方式保存。 煤矿瓦斯的分布也存在这不同,有的煤层之中瓦斯的浓度含量会比较高,有的煤层之中浓度含量低,防突工作中需要根据瓦斯浓度和压强的大小,确定具体打孔的方位,孔深以及孔径等因素。 1.3 煤矿瓦斯抽采的必要性 对于井下开采来说,煤矿瓦斯抽采是必须的流程,是开采工作 正常实施的保证,是井下作业环境安全的可靠保障,开采工作必须坚持先排后采的原则,只有完成了煤矿瓦斯的抽采工作,煤矿开采工作才能紧接着进行,根据煤层中瓦斯的分布,必须坚持先排后采,边排边采的原则,才能保证煤矿开采工作的持续安全进行。 煤矿瓦斯产生于煤层很岩壁之中,属于可再生资源,是人类发现的新型能源,既环保节能又可再生,但是因为工艺难度,开采难度以及应用难题等因素导致煤炭瓦斯还没有在日常生产生活中全面使用并取代传统能源,但这是未来社会的发展趋势,是经济发展的必然需求,所以对煤矿瓦斯进行抽采,实现新能源的全面使用是祖国向前迈向一步的强大动力支持。 2 煤矿瓦斯抽采遇到的问题 2.1 复杂的地势 中国是个煤矿运含量大的国家,但是煤矿的分布主要分布地形复杂多变,给开采工作带来了很大的不便,就算是国外的新技术引进也无法适用于中国的复杂地势,面对复杂地势,人们不能很快了解地势内部煤层构造,也不能根据煤层构造推断出煤矿瓦斯的分布与含量,无法迅速掌握地势构造,就不能安全安心的开采并进行瓦斯的抽采。 2.2 抽采技术的局限性 根据目前的开采水平,不能够很好的控制煤层之间煤矿瓦斯的抽采和风排, 现有的开采技术和开采经验都具有局限性,在开采 的同时或多或少都存在这一些弊端,还没有找到整体完善又能过有效解决煤矿瓦斯问题的方法。 2.3 煤层透气性差 煤矿开采主要采取井下开采的形式,煤层的透气性很差,就算进行了煤矿瓦斯的抽采,安全隐患还是实施存在,威胁着操作人员的安全,也加大了井下作业的难度。井下开采时,一般先进行煤矿瓦斯抽采,但是煤炭瓦斯是分层存在的,进行完抽采后,新的煤矿瓦斯可能重新进入井下,每层透气性差的原因,高浓度的煤矿瓦斯可能导致井下作业人员昏厥,甚至导致爆炸,无法正常进行开采工作。 2.4 井下开采危险系数高 井下开采危险系数高,不仅仅因为每层透气性差,也因为开采工作往往要持续很多年,很多公共设施出现的小问题甚至于开采工人的开采用具的磨损等,没有及时更换也会造成安全隐患,井下作业不止工作环境差,而且工作强度也大,对工人的体魄和精神上都是很严峻的考验,有些矿井甚至会出现煤与瓦斯突出的现象,造成人员伤亡,总之井下作业时时面临着危机的发生。 2.5环境污染问题的出现 一般的井下开采活动都会持续进行很多年,日积月累的煤层开采将会给当地环境带来污染,空气中会充满粉尘,煤灰,空气透明度指标下降,温度上升,同时排放出来的煤矿瓦斯也会污染空气, 煤矿开采会导致地质结构的变化,从而从根本上影响一地的自然构成,包括地质、植被、天气等,可能会打破一地的生态平衡。 2.6 还未实现煤与瓦斯共采 现在的开采活动主要是进行煤矿开采的之前先根据煤层以及煤矿瓦斯的分布现状,进行抽放和风排相结合的抽采方法对煤矿瓦斯进行抽采,对每层进行风排的通风处理,然后在进行煤矿的开采,这样大大的加大了工作量,以及工作难度,而且对煤矿瓦斯的抽采也会造成大量的浪费和环境污染。 3 煤矿瓦斯的抽采方法 3.1 考察和研究地形 在一个煤矿基地的开采活动进行之前,必须先由专业团队进行考察和研究,对于煤层的分布,煤矿瓦斯的含量进行检测,对可能出现的问题进行物理推演,尽量做足开采前的准备和研究工作,并应当在煤矿开采过程中组织有经验的专家团队,跟踪开采,时时对井下地质构造的细微变化以及现状进行记录和更新,只有了解地质特点,才能更好更安全的开采。 3.2 多种方法相结合 因为地质的复杂程度,导致煤层中瓦斯的含量比例不等,在煤矿开采之前必须要进行瓦斯的抽采,但是井下的突发状况很多,因此要进行都种方法相结合的方式来确保井下的安全,现在瓦斯抽采一般采用抽放与风排相结合的抽采方法,同时在井下的煤层防突工 作中采用瓦斯压力测定并打孔注浆的方法,帮助煤层揭煤是进行瓦斯卸压,边采边排的方式,多种抽采方式相结合,整体降低风险系数,也改善了井下工作环境。 3.3 改善开采环境 由于煤矿开采作业进行中,井下的透气性很差,井下工人在开采时工作环境很差,长期工作对身体危害很大,为了改善井下作业环境,现在最新采用了抽放与风排相结合的抽采方法,在年开采的同时对境内进行通风,保持井下环境的透气性。 3.4 煤矿安全监控系统通用技术要求 煤矿开采必中最不希望出现的问题就是安全事故,造成的人员伤亡问题,为了实时防护,应当建立安全监控系统,要有专门的检测设备对井下的煤矿瓦斯抽排管道进行浓度、温度、流量、压力等参数监控,要有专人定时核实和更新监测数据,设置感应系统防止瓦斯泄漏,并建立安全逃生通道,开采人员需时刻保持清醒,一旦出现什么危险情况,要迅速有序的从安全通道撤离,安全意识很重要,安全开采人人有责。 3.5 环境监测管理办法 对于瓦斯抽排需制定严格的环境标准,对于瓦斯气体的排放应当采用具体解决措施,减少有害气体对环境的污染,杜宇排放的能够直接使用的低浓度瓦斯应当建立储气罐保存,可供当地化工、发电、民用等,对于当前无法直接使用的高浓度瓦斯可以采用液压贮 存的方式,以供于异地使用,对于目前无法使用的超高浓度瓦斯气体不应放任自流,应当进行焚烧或者其他办法,避免其排放于空气中。 3.6 新技术的研发 煤矿瓦斯作为现代社会的新能源,在煤矿开采时确实安全隐患和工作难度的制造者,怎样能够做到边还为宝,减少瓦斯排放,增加使用率成为新的目标,新的追求,应当开发新技术,实现煤与瓦斯共采的新型开采形式,新能源的应用既能减少环境污染,增加开采效益,也能节约能源浪费,为新能源的使用尽一份力,也节约了不可再生的传统能源的使用量。 4 结论 总的来说,煤矿开采业务操作中,最基础的是解决煤矿瓦斯抽采问题,面临的是地势以及开采环境带来的难度,最重要的是人员安全问题,目标是实现煤与瓦斯共采的新的开采方式,要防护的是环境污染问题,面对重重困难和考验,我们的任务是开发新技术,研究出可以实现煤与瓦斯共采的新技术,并开发新能源的利用率,解决环境污染问题,同时健全开采的安全设施建立,新型的文明开采意识。 参考文献 [1]黄承根,胡福龙,章亚斌,何清海.复杂地质条件下瓦斯治理技术的探索[j].矿业安全与环保, 2007. [2]练友红,邓涛,董钢锋.复杂地质条件近水平煤层石门揭煤瓦斯防治技术研究[j].矿业安全与环保,2009. [3]王浩,蒋承林,张建军.煤层瓦斯压力测定中的钻孔注浆新技术研究[j].中国安全科学学报,2011. [4]龚昌泽,王家春.复杂地质条件下高瓦斯综采工作面瓦斯治理措施的研究[j].矿业安全与环保,2000. [5]实现安全生产应“煤与瓦斯共采”[j].能源与节能,2011.

相关文档
最新文档