超声波无损检测原理及应用

合集下载

无损检测之超声监测--TOFD检测原理

无损检测之超声监测--TOFD检测原理

无损检测之超声监测--TOFD检测原理超声在工业设备上的应用以承压设备为例,超声主要用于检测设备的腐蚀情况、焊缝和原材料质量等。

(1)检测在用承压设备的厚度,以确定设备腐蚀程度,综合设备使用年限和使用情况,对设备安全性做出评估;(2)检测奥氏体不锈钢、镍合金等堆焊层厚度,以确定耐腐蚀层是否堆焊均匀;(3)最常用的就是检测焊接接头的质量,检测焊缝是否存在缺陷,确定缺陷的位置和形状;(4)检测板材本身的质量,确保板材是否存在缺陷。

传统的脉冲反射超声检测超声检测可检厚度厚度:检测焊缝质量方面,焊缝所连接工件的适用厚度已经扩展为6-500mm甚至更厚的工件;检测板材质量方面,碳素钢和低合金钢制承压设备的板材适用厚度为6-250mm。

TOFD检测TOFD--Time Of Flight Diffraction超声波衍射时差法,属于超声检测(UT)的一员。

采用一发一收探头对工作模式,利用缺陷端点的衍射波信号探测和测定缺陷位置和尺寸的超声检测方法。

1套TOFD设备主要由自动探伤系统传感器、扫查架、系统电路、主机硬件、系统软件等组成。

单通道手动TOFD扫查器TOFD检测为什么用纵波纵波传播速度快,最先到达接收探头,容易识别缺陷,以纵波计算缺陷深度,不会与横波信号混淆。

TOFD检测的优缺点(1)相比射线检测(RT)的优势a.灵敏度高,缺陷检出率高,可达80-95%;b.穿透力强,探测深度大,可用于超厚设备检测;c.缺陷的位置、大小、形状及性质等方面较为准确;d.仅须从一面接近被检验的物体;e.无放射性危害,操作安全,无须清场;f.设备轻便,检测速度快。

(2)自身缺点a.表面测量存在盲区,易受焊缝表面质量影响;b.图像识别和缺陷定性较难,需要丰富的经验,对人员要求高;c.横向缺陷难检测;d.对粗晶粒材料检测困难,易受干扰等。

e.不规则焊缝检出较难。

TOFD检测原理1典型TOFD检测图像工人现场手动TOFD扫查环焊缝工人现场手动TOFD扫查环焊缝。

超声波应用原理

超声波应用原理

超声波应用原理
超声波应用原理是将电能转化为机械振动,再将机械振动转化为声能的过程。

超声波是指频率超过人类听觉范围(20 kHz)的声波。

超声波应用广泛,包括医学、工业和科学研究等领域。

在医学领域,超声波被用于医学成像,如超声心动图、超声检查等。

它的原理是通过超声波的反射和传导特性来获取人体内部不同组织结构的图像。

当超声波传播到人体内部时,遇到不同的组织或器官会发生反射或传导,这些反射或传导的声波被接收器接收并转化为电信号。

通过对这些电信号的处理和分析,就可以获取人体内部的影像。

在工业领域,超声波广泛应用于无损检测、清洗和焊接等工艺。

在无损检测中,超声波可以通过检测材料内部的缺陷或疾病,如腐蚀、裂纹等来评估材料的完整性。

在清洗方面,超声波震荡能够产生高强度的能量释放,可以有效地清除表面附着物,如油污、污垢等。

在焊接方面,超声波震荡能够加强材料的接触,提高焊接质量和效率。

在科学研究中,超声波被用于流体力学研究、材料性能测试和声学实验等领域。

超声波的传播特性可以用来研究流体的运动、粘度和密度等。

此外,利用超声波的压力效应和声学谐振现象,可以研究材料的力学性能和物理特性。

总之,超声波应用原理的基础是将电能转化为机械振动,再将机械振动转化为声能。

通过超声波的传播、反射和传导特性,可以在医学、工业和科学研究等领域实现多种应用。

无损检测的原理及应用

无损检测的原理及应用

无损检测的原理及应用1. 简介无损检测(Non-destructive testing,简称NDT)是一种用于检测材料内部或表面缺陷而无需破坏测试物理性能的方法。

它在许多行业中都有广泛应用,如航空航天、核能、造船和制造业。

2. 原理无损检测的原理是通过对材料表面或内部传播的声波、电磁波或其他形式的能量进行检测和分析。

这些能量会与缺陷或材料性质的变化相互作用,从而产生测量信号。

根据测量信号的特征,可以确定缺陷的位置、尺寸和类型。

3. 常见的无损检测方法以下是常见的无损检测方法及其应用范围的简要介绍:•超声波检测(Ultrasonic testing):通过将高频声波传播到材料中,并监测反射信号来识别缺陷位置和尺寸。

广泛应用于金属、塑料和复合材料的表面和内部缺陷检测。

•涡流检测(Eddy current testing):利用涡流感应原理,通过将交流电通过线圈引入材料,监测涡流产生的变化来检测缺陷。

常用于金属导体和管道的表面缺陷检测。

•磁粉检测(Magnetic particle testing):在材料表面施加磁场,并在缺陷处应用磁粉颗粒。

检测粒子的集聚可以显示出缺陷的位置和形状。

适用于金属表面的裂纹和疲劳破坏检测。

•X射线检测(X-ray testing):使用X射线或伽马射线透射材料,并通过测量射线的吸收或散射来检测缺陷。

常用于金属和混凝土结构的内部缺陷检测。

•磁学检测(Magnetic testing):通过测量磁场变化来检测金属表面或近表面的缺陷。

常用于金属结构的缺陷检测和磁性材料的质量控制。

4. 无损检测的应用无损检测在许多行业中都有重要应用,以下是一些常见的应用领域:•航空航天:无损检测在航空航天工业中的应用广泛。

它可以用来检测飞机结构的疲劳破坏、缺陷和裂纹,确保飞机的安全运行。

•核能:在核能行业中,无损检测用于检测核反应堆和燃料元件中的缺陷和裂纹,以确保核设施的运行安全性。

•制造业:无损检测在制造业中用于产品质量的控制。

钢结构无损检测中超声探伤的应用

钢结构无损检测中超声探伤的应用

钢结构无损检测中超声探伤的应用摘要:随着我国城镇化水平的不断提高,建筑业取得了长足的进步,而钢结构在这个过程中发挥着骨干支撑的重要作用,决定着我国社会主义发展的质量。

对钢结构工程质量进行必要的检查,及时发现问题,解决问题,尽可能减少损失,具有重要意义。

本文详细分析了超声波探伤在钢结构无损检测中的应用。

关键词:钢结构;无损检测技术;超声探伤;应用一、超声波探伤技术介绍及原理超声波探伤技术,顾名思义,就是利用超声波检测钢结构的缺陷。

它是一种重要的无损检测方法,应用范围很广。

超声波探伤设备结构简单,操作条件不是特别苛刻,安全性能好。

由于超声波穿透能力强,检测结果比较准确可靠,具有广阔的发展前景。

超声探伤主要构成有超声波探伤仪、耦合剂、探头、标准试块等部分。

根据设备运行所产生的波形不同,机械波可分为纵波、横波、板波和表面波,其中常用的波形为纵波和横波。

超声波探伤技术的应用主要是检测钢结构中是否存在气泡、缩孔、夹渣、、焊接裂纹以及不同部位的熔接,还可以确定铸件的厚度。

主要原理如下:超声波的频率在20000Hz以上,穿透能力强,设备产生超声波并通过探头发射,声波会在被检部位以一定的速度传播,当存在夹渣等异面介质时,部分超声波会被反射回来,通过接收机的处理,可以将缺陷的回波显示在示波器屏幕上,然后通过相关计算得到缺陷的深度和大小。

二、超声波探伤法在实际工作中的应用在进行探伤之前,我们需要了解图纸对焊接质量的技术要求。

目前,钢结构验收标准按照《钢结构工程施工质量验收规范》(GB50205-2001)执行。

标准规定:图纸要求焊缝焊接质量等级为一级,评定等级为一级时,规范要求100%超声波探伤;要求焊缝焊接质量等级为二级的图纸,评价等级为二级,按照现行规范,要求进行20%的超声波探伤;对于要求焊接质量等级 3 级的图纸,不进行超声波内部缺陷检查。

这里值得注意的是,超声波探伤用于全熔透焊缝,探伤率以每条焊缝长度的百分比计算,且不小于200mm。

超声波原理及作用

超声波原理及作用

超声波原理及作用超声波是指频率高于人耳听觉范围(20Hz - 20kHz)的声波。

在物理学和医学等领域中,超声波被广泛应用于不同的实验和诊断工作中,如探测、成像、清洁等方面。

本文将详细介绍超声波的原理和作用。

一、超声波的原理超声波的产生是通过压电效应实现的。

在压电材料中施加电压会使其发生机械变形,而当施加的电压频率达到压电材料的固有频率时,会产生共振效应,形成超声波。

超声波是由高频振动产生的机械波,其在传播过程中以纵波的形式存在。

相比于其他声波,超声波具有高频率、短波长和高能量的特点,能够在介质中穿透和传播。

二、超声波的作用1. 检测与成像超声波在医学领域中广泛用于人体内部的检测与成像。

通过向人体不同部位发射超声波,并记录其回波情况,可以获得部位的形状、结构和功能信息。

超声波成像技术可以用于检测器官、肿瘤、疾病等,成为非侵入性、安全可靠的检测手段。

2. 清洁与除垢超声波在工业领域中被广泛用于清洗、除垢等工作。

利用超声波的高频振动和局部高压力的变化,可以在液体中产生大量微小气泡,并在气泡瞬间坍缩时释放出巨大能量,达到清洁物体表面和微孔中的目的。

3. 材料加工超声波在材料加工领域也有重要应用。

通过超声波的集中能量和高频振动,可以实现对材料的切割、焊接、拼接等加工工艺。

与传统加工方法相比,超声波加工具有操作简单、速度快、精度高等优点。

4. 医疗治疗超声波在医疗治疗中被用于物理疗法。

通过超声波的声压、热量和微震动等效应,可以促进组织血液循环、淋巴循环和细胞代谢,并有助于舒缓疼痛、消肿、促进伤口愈合等。

5. 其他应用超声波还有许多其他应用领域,如测量、无损检测、测速、材料分析等等。

不同行业根据实际需求可以发展出更多特定应用。

总结:超声波作为一种高频振动的机械波,具有广泛的应用前景。

在医学、工业、科学研究等领域中,超声波的原理和作用对于开展相关工作起着重要的支持作用。

随着科技的发展,超声波技术也将不断创新和进步,为各个领域的发展带来更多机遇和挑战。

超声波检测培训资料

超声波检测培训资料

案例五:复合材料的超声波检测
总结词
适用于非金属复合材料的无损检测
详细描述
复合材料的超声波检测适用于非金属复合材料的无损检 测,可以检测出复合材料内部的缺陷和分层。该方法采 用专门的探头和仪器,通过将超声波束发射到复合材料 内部,对回波信号进行分析和处理,以确定缺陷的位置 、大小和性质。
06
超声波检测常见问题与对 策
超声波检测仪器
应具有与被检测材料和焊接工艺特点相适应的频 率、灵敏度和分辨力。
超声波检测方法
一般采用脉冲反射法,根据缺陷信号的特征,如 回波幅度、位置、波形等进行分析和判断。
05
超声波检测案例分析
案例一:管道环焊缝的超声波检测
总结词
高效、准确、无损的检测方法
详细描述
管道环焊缝的超声波检测是一种高效、准确、无损的检测方法,适用于检测管道环焊缝的缺陷和裂纹。该方法 采用专门的探头和仪器,通过将超声波束发射到管道内部,对回波信号进行分析和处理,以确定焊缝的质量和 完整性。
03
超声波检测技术与方法
一维超声检测技术
总结词
一维超声波检测技术是一种常规的超声检测技术,主要用于检测材料表面和 近表面的缺陷。
详细描述
一维超声波检测技术使用单探头或双探头系统,通过在材料表面产生超声波 并接收回波信号来检测缺陷。该技术适用于金属、非金属和复合材料等多种 材料。
二维超声检测技术
探头性能下降对检测结果的影响及解决方法
总结词
探头性能下降会对超声波检测结果产生负面影响,如 信号失真、图像模糊等。解决方法包括定期维护探头 、使用优质耦合剂、避免过度使用以及根据需要调整 增益等。
详细描述
探头性能下降会导致超声波信号的失真,从而影响检 测结果的准确性。为了确保检测结果的可靠性,需要 定期对探头进行维护和校准。此外,使用高质量的耦 合剂也是关键,因为低质量的耦合剂可能会影响超声 波的传播,从而降低检测效果。在检测过程中,还需 要根据实际情况调整增益,以获得最佳的图像效果。

无损检测 原理

无损检测 原理

无损检测原理无损检测是一种非侵入性的检测方法,其原理是利用物体本身的特性,通过无需破坏物体表面或内部结构的方式,对物体的质量、结构、缺陷等进行评估和诊断。

无损检测可以使用多种技术,包括超声波检测、磁粉检测、涡流检测、X射线检测、红外热像仪检测等。

以下是各种无损检测技术的原理简介:1. 超声波检测:利用超声波在物体中传播的特性,通过发射超声波探头对物体进行扫描。

当波束遇到缺陷或界面时,部分能量会被反射或散射,从而形成回波。

通过分析回波的特征,可以确定物体的缺陷位置、尺寸和性质。

2. 磁粉检测:在被检测物体表面涂覆磁性颗粒,然后通过施加磁场,观察颗粒在表面的分布情况。

如果存在表面裂纹、焊接缺陷等,会导致磁粉在这些区域产生畸变,进而显示出明显的磁粉堆积。

3. 涡流检测:通过在被检测物体附近放置线圈,通过交变电流在线圈中产生涡流。

当涡流与物体中的缺陷相互作用时,会引起感应电流的变化。

通过测量这种变化,可以检测到物体中的缺陷。

4. X射线检测:利用X射线的穿透性,通过对物体进行照射,观察透射的X射线强度和分布。

当物体存在缺陷时,X射线会被缺陷处的材料吸收或散射,从而形成暗影或亮斑。

通过对这些暗影或亮斑进行分析,可以确定物体的缺陷情况。

5. 红外热像仪检测:利用物体辐射的红外热量,通过红外热像仪对其进行热成像。

物体表面温度的变化与其内部结构和缺陷之间存在一定的关系。

通过分析热图,可以确定物体的热分布,进而推断出可能存在的结构或缺陷。

综上所述,无损检测通过利用物体本身的特性,结合不同的检测技术,可以对物体进行全面、高效的质量和结构评估,为工程和生产领域提供了重要的技术手段。

超声波检测的基本方法

超声波检测的基本方法

超声波检测的基本方法超声波检测是一种常用的无损检测技术,通过利用超声波的传播特性来检测材料内部的缺陷或异物。

本文将介绍超声波检测的基本方法,包括超声波的产生和传播、检测原理、设备和操作流程等方面。

一、超声波的产生和传播超声波是一种机械波,其频率高于人耳可听到的上限,一般在20kHz以上。

超声波的产生主要通过压电效应实现,即利用压电材料在电场作用下的形变产生机械振动,从而产生超声波。

超声波在材料中传播时,会遇到不同的界面和缺陷,其中包括反射、透射、折射和散射等现象。

通过对这些现象的分析,可以获取材料内部的信息,并检测出缺陷的位置、形状和尺寸等。

二、超声波检测的原理超声波检测的原理基于声波在材料中传播时的特性。

当超声波遇到材料内部的缺陷或异物时,会发生反射或散射,这些反射或散射的声波信号可以通过超声波探头接收到,并转化为电信号。

通过分析接收到的声波信号,可以判断材料内部的缺陷类型、位置和尺寸等信息。

根据声波的传播速度和接收到的信号强度,还可以对缺陷的性质进行初步判断。

三、超声波检测的设备和操作流程超声波检测通常需要使用超声波探头、超声波发生器和超声波接收器等设备。

超声波探头是将电信号转化为超声波信号的装置,超声波发生器用于产生超声波信号,超声波接收器用于接收和放大接收到的信号。

超声波检测的操作流程一般包括以下几个步骤:1. 准备工作:选择合适的超声波探头和超声波发生器,根据被测材料的特性进行设定。

2. 探头放置:将超声波探头放置在被测材料表面,保持与材料的接触。

3. 发射超声波:通过超声波发生器产生超声波信号,并将其发送到被测材料中。

4. 接收信号:超声波接收器接收到反射或散射的声波信号,并将其转化为电信号。

5. 信号处理:对接收到的电信号进行处理和分析,获取材料内部的信息。

6. 结果判断:根据信号处理的结果,判断材料是否存在缺陷或异物,并进行初步的定性和定量分析。

四、超声波检测的应用领域超声波检测广泛应用于工业领域,可以用于检测金属、塑料、陶瓷等材料中的缺陷或异物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京工业大学
研究生课程考试答题纸

考试课程: 材料加工理论基础
课程类别: 专业学位课
研究生学号:S*********
研究生姓名:乔巧
学生类别: 硕士
考试时间: 2014-12

题号 分数 任课教师签名










总分
超声波无损检测原理及应用
Application and Prospect of Ultrasonic Nondestructive Test

学 院: 材料科学与工程
学 号: S*********
* 名: * *
指导教师: 李 晓 延 (教授)
摘 要
超声无损检测是物体无损检测的一种重要方法,几乎应用到所有工业部门。本
文回顾了超声无损检测技术的发展历史,阐述了超声无损检测技术应用现状,并
展望超声无损检测技术未来发展趋势 。
Abstract: Ultrasonic nondestructive test is an important method of nondestructive
test used in all the industries. This paper reviews the developmental history of such
technology and discusses the present situation of its application and the future
developmental tendency as well.

关键词:超声波;无损检测;无损探伤;无损评价

相关文档
最新文档