简述全自动超声波无损检测方法
超声波无损检测基础原理

超声波无损检测基础原理超声波无损检测(Ultrasound Non-Destructive Testing,简称UT)是利用超声波在材料中传播、反射、折射以及散射现象,来检测材料的内部缺陷、异物、尺寸和性能的一种方法。
它具有非接触、无损、高精度、高效率、可定量测量等优点,广泛应用于航空航天、核工业、电力、石化等领域。
超声波无损检测的基本原理是利用超声波在材料中传播时发生的传播、反射、折射和散射现象来评估材料的完整性和性能。
其中,超声波是一种振动频率超过人耳听觉范围的机械波,具有频率高、穿透力强、传播速度快等特点。
超声波在材料中传播是通过介质粒子的弹性振动完成的。
当超声波进入材料后,会遇到材料内部的缺陷、异物等结构的界面,其中的一部分能量将被反射回来,称为反射波;另一部分能量则继续传播并发生折射或散射,称为透射波。
通过测量和分析反射波和透射波的信号,可以确定材料的内部缺陷、异物的位置、形状、大小等参数。
超声波无损检测通常采用传感器(也称为探头)将超声波引入到被检测物体中。
传感器由晶体材料制成,具有压电效应,即在受到外加电压作用下产生机械振动。
当外加电压施加在传感器上时,晶体会振动产生超声波,然后将超声波传播到被检测物体中。
当超声波在被检测物体中传播并遇到缺陷、界面等结构时,会有部分超声波能量被反射回来,在传感器上产生电信号。
这个信号经过放大、滤波、变换等处理后,可以得到被检测物体内部结构的信息。
超声波无损检测的信号处理是关键环节。
一般来说,反射信号的振幅和时间可以提供缺陷的大小和位置信息,而透射信号的强度和传播时间则可以提供材料的均质性和变质情况。
根据反射信号的波形和强度,可以判断缺陷种类(如裂纹、气孔、异物等)和位置。
通过对信号的波形、幅度以及时间的分析,可以获得材料的尺寸、形状、深度等更加详细的参数信息。
总之,超声波无损检测通过利用超声波在材料中传播的物理特性和反响情况,来评估材料的完整性和性能。
超声波无损检测概述

超声波无损检测概述超声波无损检测一、超声波无损检测基本介绍超声检测(UT)是利用其在物质中传播、界面反射、折射(产生波型转换)和衰减等物理性质来发现缺陷的一种无损检测方法,应用较为广泛。
按其工作原理不同分为:共振法、穿透法、脉冲反射法超声检测;按显示缺陷方式不同分为:A型、B型、C型、3D型超声检测;按选用超声波波型不同分为:纵波法、横波法、表面波法超声检测;二、超声波的产生(发射)与接收(1)超声波的物理本质:它是频率大于2万赫兹的机械振动在弹性介质中的转播行为。
即超声频率的机械波。
一般地说,超声波频率越高,其能量越大,探伤灵敏度也越高。
超声检测常用频率在0.5~10 MHZ。
(2)超声波的产生机理——利用了压电材料的压电效应。
压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。
当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。
当作用力的方向改变时,电荷的极性也随之改变。
相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。
(3)超声波的发射与接收①发射——在压电晶片制成的探头中,对压电晶片施以超声频率的交变电压,由于逆压电效应,晶片中就会产生超声频率的机械振动——产生超声波;若此机械振动与被检测的工件较好地耦合,超声波就会传入工件——这就是超声波的发射。
②接收——若发射出去的超声波遇到界面被反射回来,又会对探头的压电晶片产生机械振动,由于正压电效应,在晶片的上下电极之间就会产生交变的电信号。
将此电信号采集、检波、放大并显示出来,就完成了对超声波信号的接收。
可见,探头是一种声电换能元件,是一种特殊的传感器,在探伤过程中发挥重要的作用3.超声波检测方法的分类(1)按原理分类:超声波探伤方法按原理分类,可分为脉冲反射法、穿透法和共振法。
超声波检测的基本方法

超声波检测的基本方法超声波检测是一种利用超声波在物体内部传播和反射的原理来获取有关物体结构和性质的一种无损检测方法。
它具有非接触、实时性强、灵敏度高、能够检测深部缺陷等优点,在工业、医学、材料科学等领域得到广泛应用。
下面将介绍超声波检测的基本方法。
1. 超声波的产生与传播超声波是指频率超过20kHz的声波,通常由压电材料产生。
压电材料在电场的作用下会发生压电效应,产生机械振动,从而产生超声波。
超声波在介质中的传播速度与介质的密度、弹性模量等有关。
2. 超声波的接收与处理超声波检测系统通常由超声波发射器、接收器和信号处理器组成。
超声波发射器将电能转化为超声波能量,发送到被测物体上。
被测物体对超声波进行反射、散射或透射。
接收器接收到反射回来的超声波信号,并将其转化为电信号。
信号处理器对接收到的电信号进行放大、滤波、增益调节等处理,以便分析和判断被测物体的结构和缺陷情况。
3. 超声波的探头和成像超声波检测中常用的探头有接触式和非接触式两种。
接触式探头直接接触被测物体表面,通过声波在物体内部的传播和反射来获取信息。
非接触式探头则无需直接接触被测物体,通过空气或水等介质传播超声波。
超声波成像是超声波检测中常用的方法之一,它通过探头的移动和超声波的传播来获取被测物体内部的结构信息。
成像过程中,探头发射超声波,接收到反射回来的超声波信号后,计算机对接收到的信号进行处理,并将其转化为图像显示出来。
超声波成像可以直观地显示出被测物体的结构和缺陷位置,对于工业检测和医学诊断有着重要意义。
4. 超声波的参数和特征超声波检测中常用的参数有声速、频率、幅度和相位等。
声速是超声波在介质中传播的速度,与介质的物理性质有关。
频率是指超声波的振动次数,频率越高,分辨率越高。
幅度是超声波的振幅,与被测物体的缺陷大小有关。
相位是超声波的相对偏移,可以用来判断被测物体的结构。
超声波的特征包括信号的幅度、声速、频谱和波形等。
信号的幅度可以用来判断被测物体的缺陷大小。
使用超声相控阵技术的无损检测方法与技巧

使用超声相控阵技术的无损检测方法与技巧超声相控阵技术是一种常用于无损检测的技术,它通过使用一组探头向待测物体发射超声波,并接收其反射波,从而获取物体内部的信息。
相比传统的单点检测技术,超声相控阵技术具有更高的分辨率、更广的探测范围和更强的穿透力。
本文将介绍使用超声相控阵技术进行无损检测的方法和技巧。
首先,准备工作是使用超声相控阵技术进行无损检测的关键。
需要选取合适的探头和超声仪器。
探头的选择应根据待测物体的尺寸、形状和材料选择合适的频率、探头尺寸和探头阵列形式。
超声仪器的性能也需要符合要求,包括信号发射和接收的灵敏度、增益、滤波器和数据处理能力等。
其次,进行检测前需要进行合适的准备工作。
首先要对待测物体进行表面清洁,以保证超声波能够有效传播和反射。
其次要选择合适的耦合介质,将探头与待测物体保持良好的接触。
对于粗糙表面的物体,可以使用凝胶或液体耦合剂,而对于平滑表面的物体,可以尝试使用接触探头。
在实际检测过程中,需要注意一些技巧以提高检测的准确性和效率。
首先,要选择合适的扫查模式,可以根据实际需求选择直线扫查、螺旋扫查或网格扫查等。
其次,要根据待测物体的不同部位和表面形态进行特定的检测调节,例如调整传感器的入射角度和倾斜角度,以最大限度地获取有用的信息。
此外,在数据处理方面也有一些技巧可以加以应用。
首先是信号增强技术,可以通过滤波、均衡和增益调节等方式,提高信号质量。
其次是多角度检测技术,通过改变入射角度和探头位置,获取多个角度的数据,从而提高检测精度。
最后是图像重建技术,通过将多个数据进行整合和处理,生成更清晰、更具信息量的图像或曲线。
需要注意的是,在使用超声相控阵技术进行无损检测时,也存在一些潜在的问题和限制。
首先是探头的选择较为复杂,需要根据具体情况进行合理选择。
其次是背景噪声和杂散信号可能干扰检测结果,需要进行相应的滤波和处理。
此外,超声相控阵技术对于复杂结构和多层材料的检测可能存在一定的困难,需要结合其他技术进行辅助。
超声波无损检测概述

超声波无损检测概述超声波无损检测(Ultrasonic Testing,UT)是一种常用的无损检测方法,广泛应用于材料、结构和设备的评价和质量控制。
它利用超声波的传播特性,通过对材料内部缺陷的检测和测量来评估材料的完整性和性能。
超声波无损检测是一种非破坏性检测方法,不会对被检测材料造成损伤。
它基于超声波在材料中的传播和反射规律进行检测,通过分析声波在材料中的传播速度和幅度的变化,可以探测出材料中的各种缺陷,例如裂纹、夹杂、气泡等。
超声波无损检测的基本原理是利用声波在介质中传播的速度和振动形态来检测材料内部的缺陷。
在超声波检测中,一台超声波探头产生高频的声波短脉冲,并将其发送到被检测材料。
声波的传播速度受材料的密度、弹性模量、导热性等因素影响,当声波遇到材料的界面或内部缺陷时,部分声波能量会反射回来,并由探头接收。
探头接收到的反射波信号经过放大和处理后,可以得到材料中的缺陷信息。
根据声波的传播速度和反射振幅的变化,可以计算出缺陷的深度、大小和位置等参数。
同时,通过对声波的幅度和频率的分析,还可以评估材料的强度、硬度、粘度等性能指标。
超声波无损检测有许多优点。
首先,它是一种无损的检测方法,不会对被测材料造成任何损伤。
其次,超声波可以穿透较厚的材料,对内部缺陷的检测能力强。
此外,超声波的传播速度和振幅变化可以提供丰富的缺陷信息,能够准确评估材料的完整性和性能。
超声波无损检测广泛应用于各个行业和领域。
在制造业中,它常用于对焊缝、铸件、锻件等工件进行质量评估和缺陷检测。
在航空航天领域,它被广泛用于飞机结构、发动机零部件等重要部位的检测。
在能源行业,超声波无损检测可以用于对核电厂设备、水电站管道等进行安全评估。
在建筑行业,它可以用于对混凝土结构、钢桥梁等进行评估和检查。
总之,超声波无损检测是一种高效、可靠的无损检测方法。
它利用超声波在材料中的传播和反射规律,通过分析声波的传播速度和振幅变化,能够检测出材料中的缺陷并评估其完整性和性能。
超声波检测的基本方法

超声波检测的基本方法超声波检测是一种常用的无损检测技术,通过利用超声波的传播特性来检测材料内部的缺陷或异物。
本文将介绍超声波检测的基本方法,包括超声波的产生和传播、检测原理、设备和操作流程等方面。
一、超声波的产生和传播超声波是一种机械波,其频率高于人耳可听到的上限,一般在20kHz以上。
超声波的产生主要通过压电效应实现,即利用压电材料在电场作用下的形变产生机械振动,从而产生超声波。
超声波在材料中传播时,会遇到不同的界面和缺陷,其中包括反射、透射、折射和散射等现象。
通过对这些现象的分析,可以获取材料内部的信息,并检测出缺陷的位置、形状和尺寸等。
二、超声波检测的原理超声波检测的原理基于声波在材料中传播时的特性。
当超声波遇到材料内部的缺陷或异物时,会发生反射或散射,这些反射或散射的声波信号可以通过超声波探头接收到,并转化为电信号。
通过分析接收到的声波信号,可以判断材料内部的缺陷类型、位置和尺寸等信息。
根据声波的传播速度和接收到的信号强度,还可以对缺陷的性质进行初步判断。
三、超声波检测的设备和操作流程超声波检测通常需要使用超声波探头、超声波发生器和超声波接收器等设备。
超声波探头是将电信号转化为超声波信号的装置,超声波发生器用于产生超声波信号,超声波接收器用于接收和放大接收到的信号。
超声波检测的操作流程一般包括以下几个步骤:1. 准备工作:选择合适的超声波探头和超声波发生器,根据被测材料的特性进行设定。
2. 探头放置:将超声波探头放置在被测材料表面,保持与材料的接触。
3. 发射超声波:通过超声波发生器产生超声波信号,并将其发送到被测材料中。
4. 接收信号:超声波接收器接收到反射或散射的声波信号,并将其转化为电信号。
5. 信号处理:对接收到的电信号进行处理和分析,获取材料内部的信息。
6. 结果判断:根据信号处理的结果,判断材料是否存在缺陷或异物,并进行初步的定性和定量分析。
四、超声波检测的应用领域超声波检测广泛应用于工业领域,可以用于检测金属、塑料、陶瓷等材料中的缺陷或异物。
超声波无损检测概述

超声波无损检测概述J I A N G S U U N I V E R SI T Y超声波无损检测概述关键词:超声波检测,无损检测,超声波检测的原理,应用1.引言超声检测是无损检测技术中研究和应用最活跃的方法之一。
通过研究超声波在被检材料中传播时的变化情况来探测材料性能和结构变化。
超声波用于无损检测主要具备以下优点[1]:(1)检测范围广,能够进行金属、非金属和复合材料检测。
(2)波长短、方向性好、穿透能力强、缺陷定位准确、检测深度大。
(3)对人体和周围环境不构成危害。
(4)施加给工件的超声作用应力远低于弹性极限,对工件不会造成损害。
2.超声波无损检测的国内外研究情况和发展趋势2.1 国外研究情况国外对于超声波检测技术的研究始于上世纪二三十年代。
1929 年苏联科学家Sokolov 利用连续超声波的穿透法研制成功了世界上第一台超声波检测装置。
二战期间超声检测装置有了进一步发展,英国和美国分别于1944 年和1946 年成功制造出A 型脉冲发射式超声波探伤仪。
20 世纪50 年代,A 型脉冲反式超声波探伤仪已被广泛用于发达国家的机械、钢铁制造以及造船等工业[2]。
20 世纪60 年代以后,随着电子技术和电子元器件的进步,超声波检测装置也有了较大的改进。
1964 年德国Krautkramer 公司研制成功的小型超声检测设备成为了近代超声探伤技术的标志[3]。
20 世纪80 年代,计算机技术和大规模集成电路得到了快速发展,各公司开始了数字式超声检测装置的研制,特别是Krautkramer 公司生产的便携式数字化超声波探伤仪—USDI 型,代表着超声检测装置向数字化的发展趋势[4]。
目前国外的许多知名公司(如美国的METEC 公司、德国的K—K 公司、西班牙的TECHATOM 公司等)生产的超声检测系统在信号采集、分析和成像处理方面处于世界领先水平[1]。
2.2 国内研究情况20 世纪50 年代,我国开始从国外引进模拟超声检测设备并应用于工业生产中。
超声波无损检测方案及工作分解

超声波无损检测方案及工作分解超声波无损检测(Ultrasonic Testing,简称UT)是一种利用超声波传播于被测物质中进行缺陷检测的方法。
它广泛应用于工业领域,包括航空航天、石油化工、船舶制造等各个领域。
下面将介绍超声波无损检测的方案及工作分解。
1.确定检测目标:首先需要明确待检测的目标物,包括其材质、尺寸和形状等各项参数。
这是为了选择合适的超声波探头和适当的检测方法。
2.设计检测方案:根据目标物的特点,确定适用的超声波探头和检测方法。
常用的超声波探头包括接触式探头和非接触式探头。
接触式探头适用于平面物体的检测,而非接触式探头则适用于不规则形状或曲面的物体。
检测方法包括脉冲超声波和连续超声波,选择不同的方法要根据被测物体的具体情况来定。
3.实施检测:根据设计好的方案,进行超声波无损检测。
首先需要对探头进行校准,包括延迟校准、增益校准和灵敏度校准等。
然后,将探头与被测物体接触或保持适当的距离,通过控制仪器发射超声波信号。
当超声波遇到缺陷或界面时,一部分超声波将被反射回来,通过接收器接收并转换成电信号。
最后,根据接收到的信号进行分析和判读,得出检测结果。
4.分析和判读:对接收到的信号进行分析和判读,判断是否存在缺陷。
通常采用的方法包括振幅比较法、声速比较法、多次反射法等。
对不同类型的缺陷,采用不同的判读标准。
同时,还需要根据检测结果对缺陷进行评估和分类。
5.缺陷评估和报告编写:根据检测结果,对缺陷进行评估,并编写检测报告。
评估缺陷的大小、形状和位置等,并分析缺陷对被测物体的影响。
根据需要,还可以提供修复建议和预防措施。
最终将检测结果和评估报告交给相关部门或客户。
总结起来,超声波无损检测方案及工作分解可以概括为:确定检测目标、设计检测方案、实施检测、分析和判读、缺陷评估和报告编写。
这些步骤在实际工作中是密不可分的,每一步都需要认真执行,以确保检测结果准确可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述全自动超声波无损检测方法
摘要:全自动超声波检测技术(AUT)对于提高无损检测效率、保证无损检测质量,节约工程成本有着重要的意义,通过对AUT检测的特点,与传统检测手段进行了对比分析,阐述工程无损检测中AUT检测的通用做法。
关键词:全自动超声环焊缝检测
引言:AUT检测技术是一种新型的无损检测技术,在近几年的推广使用过程中得到了工程质检方的认可,在使用过程中各公司做法不一,本文通过多年AUT 检测工程应用经验总结归纳了AUT检测通用做法。
1、AUT检测方法适用范围
本文论述了环向焊缝全自动超声检测的要求。
在AUT检测所得到结论的基础上分析评定环焊缝。
根据工程临界判别法(ECA)来最终确定检测验收标准。
2 AUT检测方法步骤
2.1 外观检查
工程现场所有待检环焊缝在焊接完成后都要进行三方(监理、施工、检测)外观检查并且按照AUT检测相应标准的要求进行评定。
所有坡口应在机加工后进行焊接,并且确保焊接符合焊接工艺的要求,随后AUT全自动超声波检测应结合画参考线一起进行。
2.2 超声波检测
工程现场的所有环焊缝的全自动超声检测都要在整个焊缝圆周方向上进行,并按相应的验收标准进行评定。
3 超声波检测系统
AUT检测系统应该提供足够的检测通道的数量,保证仅扫查环焊缝一周,就可对该焊缝整个厚度上的所有区域进行全面检测。
所有被选通道都应能显示一个线性A型扫查显示。
检测的通道应该能按照通常如图1所示的检测区域评估被检焊缝。
仪器的线性应按照相应标准来确定,每6个月测定一次。
仪器的误差应该不大于实际满幅高的5%。
这一条件应该适用于对数放大器及线性放大器。
每一个检测的通道都应可以选择脉冲反射法或者直射法。
每一个检测通道的闸门位置及两个闸门之间的最小跨度和增益都是可选择的。
记录电位也是可以选择的,以显示记录的波幅和传播时间位于满幅高0~100%之间的信号。
对于B扫查或者图像显示的资料记录也应该为0~100%。
对于每个门都有两个可记录的输出信号。
无论是模拟信号还是数字信号都包括信号的高度和渡越时间。
它们都适于多通道记录仪或计算机数据采集软件的显示。
4 AUT的系统设置
4.1 AUT探头及探头灵敏度的确定
在工程现场的检测中用AUT对比试块选定该检测系统的合适当量。
每个AUT 检测探头固定在扫查架相应位置上,保证中心距满足要求。
分别调整扫查架上探头的位置、角度和激活晶片数,使所有探头在标准试块上的主反射体的信号都达到最大值。
把所有检测探头的峰值信号都设置到仪器满屏的80%,此时显示的灵敏度数值就是该探头检测时的基准灵敏度。
4.2 闸门的设置
4.2.1 熔合区闸门的设置参照AUT对比试块上的标准反射体:闸门起点位置在坡口前大于等于3mm,闸门终点位置应大于焊缝上中心线位置1mm。
闸门的起点和长度应记录在工艺文件中。
4.2.2 体积型通道闸门位置设置:对厚度大的工件,应根据其焊缝特性,使用
多个检测探头对填充区的气孔缺欠进行扫查。
实际扫查的灵敏度应比设置的检测
基准灵敏度高,但不能太大,导致电噪声干扰过强,从而引起误判。
4.2.3体积型通道(根焊道)闸门的设置一般采用参考试块,闸门长度都应设
成单个声程的距离,闸门长度范围要保证足够大,能够覆盖整个根焊道区域,起
始位置距离焊道坡口前端大于或等于1mm。
对根焊道的扫查灵敏度要求足以保证能够检测出此区域的气孔。
扫查灵敏度通常应比基准灵敏度高8—14dB,但不应
大到产生电噪声或几何干扰波,引起误判。
4.3 闸门电位设置
闸门电位大于或等于满屏的20%,超过此幅度的信号按API 1104-2005的验收
标准评定。
根据上述验收标准的规定,检测气孔还可以采用图象通道中的图形和
时间变化来帮助识别。
4.4 记录的设置
焊缝中心线两边图像都应在检测通道的输出声信号有相应显示。
并且对所有
检测探头的输入信号要有延时补偿,用于修正由于圆周零点的相对位置不同而产
生的误差。
5 校准
5.1 检测通道
系统当量参数确定后,用试块上每个反射体按照现场扫查相同的速度对进行
系统性能调试。
试块上所有主要的标准人工缺陷的信号都应超过满屏的80%。
试
块上记录的相邻反射体之间的显示编码的位置相对于现场焊缝一周实际位置的误
差应小于2mm;焊缝上编码器的零点相对于实际焊缝焊接“O”起点位置的误差小
于10mm。
5.2 耦合检测通道
AUT扫查图中的耦合显示通道应随时显示整个AUT图形在检测中的耦合情况,并判断检测过程中的探头和待检工件的耦合情况是否良好。
对于发现耦合不好,
除加强对管线外部的打磨外,在AUT系统中对系统重新调试。
6 现场检测
6.1 焊缝标识
现场检测时对所有焊缝按委托方要求做好标记,在平焊位置(一般在焊缝0
点位置)还应标注检测起始位置和检测方向,检测起始位置处一般用“O”表示,
检测扫查的方向一般用箭头表示,使用油性记号笔时应确保标记对探头耦合无影响。
6.2 受检表面制备
受检焊缝表面在焊缝两侧探头声束覆盖的扫查区域内保持光洁。
当焊缝存在
焊接飞溅或防腐层粉末等杂物时会妨碍AUT检测探头的环向移动,阻碍探头及待
检工件的=的耦合。
所有影响AUT检测的表面条件如焊渣,污染物,几何形状等
都应在扫查前清除,确保表面扫查区外观合格。
6.3 参考线
在施工单位焊接前,应在管子表面画一道参考线,参考线距焊道坡口中心的
距离为100mm±0.5mm。
目的是保证探头中心距离与探头阵列试块模拟中心线距
离相同。
探头阵列固定在导轨上,每道焊缝上导轨的位置由轨道尺来确定。
6.4 系统性能校验
6.4.1 在扫查每道焊缝前,都应利用试块进行校验。
每次对试块扫查校验的记
录数据都应以与焊缝检测数据存放在一起。
如果初始校准时,每个检测通道主反射体的信号为满屏的80%,那么校验时的信号也应在满屏的65-99%之间。
否则,应重新校准系统。
焊缝检测结束后,也应对试块进行校验,校验结果应符合初始校准要求。
从校验结果到焊缝扫查结束,当中时间间隔最多不能超过30分钟。
6.4.2 圆周位置精确度的校验—在开工之前及每隔一个月校验一次,显示记录的圆周距离与管道外表面标记的位置一致,误差不超过±10mm。
6.4.3 温差的控制:试块表面,探头斜楔的材质和检测表面之间的温度差可能引起超声波折射角的偏移,从而导致AUT检测系统不能正确识别待检工件的检测区,因此要求试块和斜楔材料(或两个都包括)的温度一直且符合标准要求。
保证上述温度相差不能超过±10°
7 报告
7.1 焊缝扫查记录
焊缝扫查记录为AUT检测结果的永久性记录,包括:完整的扫查图、检测参考点、扫查方向、现场检测的日期和时间、扫查温度以及检测人员姓名。
还应记录每一个通道的检测区域。
根据噪声水平,显示B扫数据颜色可以降到满屏的3-5%以帮助识别缺陷。
应根据操作者的需要调节显示器的颜色和打印机的颜色(或灰度)。
7.2 报告时间
在焊接过程中,应在焊接完成后尽快进行超声检测。
一条焊缝的整个检测过程(包括:超声检测,评定并且给出焊缝检测结果)不应超过焊接周期。
焊缝评定和相关焊缝检测资料应在后续焊接开始之前完成。
报告应根据施工的实际情况或业主和监理的要求出具,保证焊接的及时性和准确性。
结束语
AUT检测技术作为一种新型的超声波检测技术,已经在焊接工程领域得到了较好的应用,可以完成其他检测方法不能完成的检测,如在在役海底管道、结构件焊接和在用的过程中进行实时检测。
因此,我们有理由相信,再经过几年的发展,AUT检测方法有潜力成为无损检测工程中最常用的环焊缝检测技术。
参考文献:
[1]罗光明.简述TOFD检测技术优势及前景展望.基础建设.2018(03).。