对非线性光学的认识

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈对非线性光学的认识

以前看到非线性光学这个名称,只知道它是相对于线性光学而言的,至于它们之间有什么具体的区别,学了这门课之后才开始了解。非线性光学是研究介质在强相干光作用下产生的非线性现象及其应用。在线性光学效应中,出射光强与入射光强成正比,不同频率的光波之间没有相互作用,包括不能交换能量。非线性光学效应中,出射光强不与入射光强成正比,不同频率光波之间存在相互作用,包括可以交换能量。

过去的光学理论认为,介质的极化强度与入射光波的场强成正比。于是,表征物质光学性质的许多参数,如折射率、吸收系数等都是与光强无关的常量。普遍的光学实验证实,单一频率的光通过透明介质后频率不会发生任何变化,不同频率的光之间不会发生相互耦合作用。激光出现后的短短的几年内,人们观察到许多用过去的光学理论无法解释的新效应。为了解释这些新效应,产生了非线性光学。非线性作用出现,从而可以实现光和光之间的相互作用。

常见非线性光学现象有:①光学整流。E2项的存在将引起介质的恒定极化项,产生恒定的极化电荷和相应的电势差,电势差与光强成正比而与频率无关,类似于交流电经整流管整流后得到直流电压。②产生高次谐波。弱光进入介质后频率保持不变。强光进入介质后,由于介质的非线性效应,除原来的频率ω外,还将出现2ω、3ω、……等的高次谐波。1961年美国的P.A.弗兰肯和他的同事们首次在实验上观察到二次谐波。他们把红宝石激光器发出的3千瓦红色(6943埃)激光脉冲聚焦到石英晶片上,观察到了波长为3471.5埃的紫外二次谐波。若把一块铌酸钡钠晶体放在1瓦、1.06微米波长的激光器腔内,可得到连续的1瓦二次谐波激光,波长为5323埃。非线性介质的这种倍频效应在激光技术中有重要应用。③光学混频。当两束频率为ω1和ω2(ω1>ω2)的激光同时射入介质时,如果只考虑极化强度P的二次项,将产生频率为ω1+ω2的和频项和频率为ω1-ω2的差频项。利用光学混频效应可制作光学参量振荡器,这是一种可在很宽范围内调谐的类似激光器的光源,可发射从红外到紫外的相干辐射。④受激拉曼散射。普通光源产生的拉曼散射是自发拉曼散射,散射光是不相干的。当入射光采用很强的激光时,由于激光辐射与物质分子的强烈作用,使散射过程具有受激辐射的性质,称受激拉曼散射。所产生的拉曼散射光具有很高

的相干性,其强度也比自发拉曼散射光强得多。利用受激拉曼散射可获得多种新波长的相干辐射,并为深入研究强光与物质相互作用的规律提供手段。⑤自聚焦。介质在强光作用下折射率将随光强的增加而增大。激光束的强度具有高斯分布,光强在中轴处最大,并向外围递减,于是激光束的轴线附近有较大的折射率,像凸透镜一样光束将向轴线自动会聚,直到光束达到细丝极限(直径约5×10-6米),并可在这细丝范围内产生全反射,犹如光在光学纤维内传播一样。

⑥光致透明。弱光下介质的吸收系数与光强无关,但对很强的激光,介质的吸收系数与光强有依赖关系,某些本来不透明的介质在强光作用下吸收系数会变为零。

随着各种非线性效应的陆续发现,20世纪70年代以来,利用这些效应的应用研究也开展广泛。非线性光学效应已经有了比较成熟的应用。

(1)利用倍频和混频效应、可调谐光参量振荡以及受激散射等效应,可产生强相干光辐射,开创了产生新的激光辐射光源的物理途径。它在许多实际工程技术中得到了较成熟的应用,人们正在利用这种途径来填补各类激光器件发射激光波长的空白光谱区。例如:在光通讯技术中的应用。由于激光技术的出现,通过非线性光学效应获得的相干光的频带极其宽广,使其在通讯技术中由原来的微波电缆同时传送几十万路,到现在利用激光通讯的光缆可同时传送数百万路电话或几千万套电视节目,解决了无线电通讯的容量小、频带过分拥挤的难题。

(2)非线性光学的研究成果为光信息处理提供了新的方法和新的技术。例如,一些染料在高功率激光束通过时发生自感透明效应已被用来设计时间很短的“光开关”,使用这种Q开关的激光器的输出功率可提高2—3个数量级。又如,光学双稳态效应的激光感应折射率变化用于信息存贮以及制成双稳态元件(双稳态光学开关、光学“三极管”放大元件、光学记亿元件等);对非线性光学的深入研究,为集成光学、纤维光学、光学逻辑回路与光学计算机技术的发展提供了有关光信息处理与控制的新方法和新技术。

(3)非线性光学研究的学术价值具有深远的理论意义。通过强光与物质相互作用的研究,可以获得有关物质的组成、结构、状态、能量耦合及各种内部变化动力学过程的重要信息。这些信息可在不同程度上分别反映出物质的光学、电学、磁学、声学、力学、热学、化学、生物学等各方面特性。

另外,利用强度极高的飞秒激光可以产生高达上百倍的倍频效应,可以用来产生深紫外光和软X光。常用于产生非线性效应的物质有铌酸锂、铌酸锂、KDP、BBO等晶体(具有高的2阶非线性系数)及稀有气体(主要用于产生高阶非线性效应)。光参量振荡(OPO)是目前产生大范围连续可调波长(波长从红外到可见光甚至紫外光)激光的唯一方法。

就我所认识,学习非线性光学课程对其他课很有帮助,比如光纤通信中,当入射到光纤中的光功率较大时,光纤对光的响应将呈现非线性,光纤的参数不再是恒定的,而是依赖于光强的大小。光纤中的非线性效应主要有:自相位调制SPM,交叉相位调制XPM,四波混频FWM,受激拉曼散射SRS和受激布里渊散射SBS。另外,利用这些非线性效应可以在全光网络中实现光交换。例如:SOA 型全光波长变换器就是利用交叉增益调制(XGM)、交叉相位调制(XPM)和四波混频(FWM)等非线性效应进行光波分交换。

非线性光学和线性光学一样也是一门基础学科,非线性光学是一门理论性很强的专业课程,这门课程主要研究强激光与物质相互作用过程中出现的各种新现象和新效应,包括对这些非线性光学效应的产生和发展过程的深入理解,以及探索它们在当今或今后在科学技术中的可能应用。通过非线性光学技术课程的学习,将为我们进一步学习有关专业课程和从事激光与物质相互作用方面的研究工作打下良好基础。所以说,我们要好好学这门课,了解和掌握非线性光学的内容,以备不时之需。

参考资料:百度百科

相关文档
最新文档