【河东教育】2014-2015学年北师大版高中数学选修2-3同步练习:第3章 可线性化的回归分析]

合集下载

北师高中大版数学练习题(选修2-3)含答案.docx

北师高中大版数学练习题(选修2-3)含答案.docx

目录:数学选修2-3数学选修2-3第一章:计数原理[基础训练A组]数学选修2-3第一章:计数原理[综合训练B组]数学选修2-3第一章:计数原理[提高训练C组]数学选修2-3第二章:离散型随机变量解答题精选新课程高中数学训练题组《选修2-3》(数学选修2-3)第一章计数原理[基础训练A组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()A. 81B. 64C. 12D. 142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()A. 140 种B.84 种C.70 种D.35 种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A. A;B. 4A;C. A;—D. +4.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()A.20B. 16C. 10D. 65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C,男生5人,女生3人 D.男生6人,女生2人.6.在的展开式中的常数项是()(2 4x)A.7B. -7C. 28D. -287.(1-2X)5(2+ X)的展开式中尸的项的系数是()A. 120B. -120C. 100D. -1008.[右+ 展开式中只有第六项二项式系数最大,则展开式中的常数项是()A. 180B. 90C. 45D. 360二、填空题1.从甲、乙,......,等6人中选出4名代表,那么(1)甲一定当选,共有种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法.2,4名男生,4名女生排成一排,女生不排两端,则有种不同排法.3,由0,1,3,5,7,9这六个数字组成个没有重复数字的六位奇数.4,在(x-V3)10的展开式中,/的系数是.5,在(1-x2)20展开式中,如果第4r项和第r + 2项的二项式系数相等,贝打=, 以=.6,在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有个?7,用1,4,5,%四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x.8,从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?新课程高中数学训练题组《选修2-3》各有多少种不同排法? 4,已知[子—j 展开式中的二项式系数的和比(3a + 2b)7展开式的二项式系数的和大128,求nI 展开式中的系数最大的项和系数量小的项.5. (1)在(l+x )n 的展开式中,若第3项与第6项系数相等,且〃等于多少?2. 7个排成一排,在下列情况下,C1)甲排头, C2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起, C4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻, (6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮, 自左向右的顺序, (8)甲不排头,乙不排当中。

北师大版高中数学选修2-3二项式系数的性质同步练习.docx

北师大版高中数学选修2-3二项式系数的性质同步练习.docx

二项式系数的性质 同步练习【选择题】1、已知C 71+n - C 7n = C 8n ,那么n 等于 ( )A 、14B 、12C 、13D 、152、C 0n +3C 1n + 9C 2n …+3n C nn 的值等于 ( )A 、4nB 、3·4nC 、34n -1D 、314-n3、C 111+ C 311+…+C 911的值为 ( )A 、2048B 、1024C 、1023D 、512 4、(X+1)(2X+1)(3X+1)……(nX+1)展开式中X 的一次项系数为 ( )A 、C 1-n nB 、C 2n C 、C 21+nD 、不能用组合数表示5、设(1+X+X 2)n = a 0+ a 1X+ a 2X 2+…a n 2X 2n ,则a 0+ a 1+ a 2+…a n 2等于 ( ) A 、2n2 B 、3nC 、213-nD 、213+n6、若n 是正奇数,则7n + C 1n 71-n + C 2n 72-n +…C 1-n n 7被9除的余数为 ( )A 、2B 、5C 、7D 、8 7、(1+X )2+(1+X )3+…+(1+X )10展开式中X 4 的系数为 ( )A 、C 511B 、C 411 C 、C 510D 、C 410【填空题】 8、(a+b )n 展开式中第r 项为 。

9、0.955 精确到0.01的近似值为 。

10、11100-1的末位连续零的个数为 。

11、(2X+3Y )28展开式中系数最大的项是第 项。

【解答题】 12、已知(X X +31X)n 展开式中前三项的二项式系数和为37,求X 的整数次幕的项.13、利用二项式定理证明:)2(231+>-n n n (n ∈N +,n >2)14、在二项式(aX m +bX n )12 (a >0,b >0,m 、n ≠0) 中2m +n =0,如果它的展开式中系数最大的项恰为常数项。

北师大版数学【选修2-3】练习:3.2 独立性检验(含答案)

北师大版数学【选修2-3】练习:3.2 独立性检验(含答案)

第三章 §2一、选择题1.独立性检验显示:有90%的把握认为性别与是否喜爱喝酒有关,那么下列说法中正确的是( )A .在100个男性中约有90个人爱喝酒B .若某人爱喝酒,那么此人为男性的可能性为90%C .判断出错的可能性为10%D .有90%的把握认为10个男性中有9个人爱喝酒 [答案] C2.提出统计假设H 0,计算出χ2的值,即拒绝H 0的是( ) A .χ2=6.635 B .χ2=2.63 C .χ2=0.725 D .χ2=1.832[答案] A[解析] 依据独立性检验的思想及其结论的应用,应选A.3.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” [答案] C[解析] 根据独立性检验的思想方法,正确选项为C. 二、填空题4.某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集的数据是____________________________________.[答案] 男正教授人数,副教授人数;女正教授人数,副教授人数.5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表.能以________的把握认为婴儿的性别与出生时间有关系.[答案] 90%[解析] 由列联表可以看出a =24,b =31,c =8,d =26,a +b =55,c +d =34,a +c =32,b +d =57,n =a +b +c +d =89,代入公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )得χ2=89×(24×26-31×8)255×34×32×57≈3.689,由于χ2≈3.689>2.706,∴我们有90%的把握认为婴儿的性别与出生时间有关系. 三、解答题6.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人的调查结果如下:[分析] 先计算χ2的数值,然后比较χ2与3.841及6.635的大小,进而得出是否有关的结论.[解析] 由公式得χ2=540(60×200-260×20)2320×220×80×460=540(12 000-5 200)22 590 720 000=2 496 960259 072≈9.638.∴9.638>6.635,∴有99%的把握说40岁以上的人患胃病与生活是否有规律有关,即生活不规律的人易患胃病.[点评]本题利用χ2公式计算出χ2的值,再利用临界性的大小关系来判断假设是否成立,解题时应注意准确代数与计算,不可错用公式,要准确进行比较与判断.一、选择题1.(2014·江西理,6)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()A.成绩B.视力C.智商D.阅读量[答案] D[解析]根据χ2计算公式可知,阅读量与性别相关数据较大,所以选D.2.在一次独立性检验中,其把握性超过99%,则随机变量χ2的一个可能的值为() A.6.635 B.5.024C.7.897 D.3.841[答案] C[解析]若有99%把握,则χ2>6.635,只有C满足条件.3.分类变量X和Y的列联表如下,则()A.ad-bcB.ad-bc越大,说明X与Y的关系越强C .(ad -bc )2越大,说明X 与Y 的关系越强D .(ad -bc )2越接近于0,说明X 与Y 的关系越强 [答案] C[解析] 由统计量χ2的计算公式计算χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )可知(ad -bc )2越大,则计算出的统计量的值也越大,而统计量越大,说明(ad -bc )2越大,故选C.4.根据下面的列联表判断患肝病与嗜酒有关系的把握有( )A.90% C .97.5% D .99.9%[答案] D[解析] 由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )得其观测值k =9 965×(7 775×49-2 099×42)27 817×2 148×9 874×91≈56.632>10.828.故有99.9%的把握认为患肝病与嗜酒有关系,答案选D.5.为了研究性格和血型的关系,抽查80人实验,血型和性格情况如下:O 型或A 型者是内向型的有18人,外向型的有22人,B 型或AB 型是内向型的有12人,是外向型的有28人,则有多大的把握认为性格与血型有关系( )A.99.9% B .99%C .没有充分的证据显示有关D .1% [答案] C [解析]χ2=n (n 11n 22-12n 21)50×30×40×40=80×(22×12-28×18)50×30×40×40≈1.92<2.706,∴没有充分的证据显示有关.二、填空题6.在一次打鼾与患心脏病的调查中,共调查了1671人,经过计算得χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是____________的.填(“有关”或“无关”)[答案] 有关[解析] ∵27.63>6.635∴打鼾与患心脏病有关的可能性很大,我们可以有99%的把握这么认为.7.为了了解小学生是否喜欢吃零食与性别之间的关系,调查者随机调查了89名小学生的情况,得到的数据如下表(单位:人):[答案] 3.689[解析] χ2=89×(24×26-31×8)255×34×32×57≈3.689.三、解答题8.在某医院,因为患心脏病而住院的655名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中,有175人秃顶.根据以上数据判断男性病人的秃顶是否与患心脏病有关.[解析] 问题是判断男性病人的秃顶是否与患心脏病有关.计算得到下表(单位:人)由公式计算得χ2=1437×(214×597-175×451)389×1048×665×772≈16.373.因为16.373>6.635,所以有99%以上的把握认为男性病人的秃顶与患心脏病有关.9.为检验回答一个问题的对错是否和性别有关,有人作了一个调查,其中女生人数是男生人数的12,男生答对人数占男生人数的56,女生答错人数占女生人数的23.(1)若有99%的把握认为回答结果的对错和性别有关,则男生至少有多少人? (2)若没有充分的证据显示回答结果的对错和性别有关,则男生至多有多少人? [分析] 若有99%的把握认为回答结果的对错和性别有关,说明χ2>6.635;没有充分的证据显示回答结果的对错和性别有关,说明χ2≤2.706.设出男生人数,并且它分别表示各类别人数,代入χ2的计算公式,建立不等式求解即可.[解析] 设男生人数为x ,依题意可得2×2列联表如下:(1)若有99%, 由χ2=3x 2·(5x 6·x 3-x 6·x 6)2x ·x 2·x 2·x =3x 8>6.635,解得x >17.693.因为x 2,x 6,x3为整数,所以若有99%的把握认为回答结果的对错和性别有关,则男生至少有18人.(2)没有充分的证据显示回答结果的对错和性别有关,则χ2≤3.841. 由χ2=3x 2·(5x 6·x 3-x 6·x 6)2x ·x 2·x 2·x =3x8≤2.706,解得x ≤7.216.因为x 2,x 3,x6为整数,所以若没有充分的证据显示回答结果的对错和性别有关,则男生至多有6人.[点评] 本题是逆向型思维问题,即将根据已知数据判断相关性问题变式为了一道由已知相关性求表中的字母数据问题,同时也是一个独立性检验和不等式的综合问题,解答时要注意理解“至少”“至多”的含义,充分建立不等式(组)来解决.10.为了比较注射A ,B 两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A ,另一组注射药物B .(1)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(2)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表②完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:χ2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)[解析]2×2列联表等统计学知识.解题思路是(1)古典概型的概率公式的应用,需用到组合数公式.(2)绘制频率分布直方图,并从图中观察出中位数进行比较,(3)从频率分布表中读取数值填制2×2列联表并计算χ2与临界值比较,说明是否有关.解:(1)甲、乙两只家兔分在不同组的概率为p =2C 99198C 100200=100199.(2)①可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数.②表3:χ2=200×(70×65-35×30)100×100×105×95≈24.56,由于χ2>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.[点评] 本题比较新颖,将统计学与古典概型、组合联系在一起,难度不大,但考查知识全面,而且还需要一定的识图表能力,是今年命题一热点方向.。

最新北师大版高中数学高中数学选修2-3第三章《统计案例》测试题(包含答案解析)

最新北师大版高中数学高中数学选修2-3第三章《统计案例》测试题(包含答案解析)

一、选择题1.已知x 与y 之间的几组数据如下表:参考公式:线性回归方程y bx a =+,其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;相关系数()()niix x y y r --=∑上表数据中y 的平均值为2.5,若某同学对m 赋了三个值分别为1.5,2,2.5得到三条线性回归直线方程分别为11y b x a =+,22y b x a =+,33y b x a =+,对应的相关系数分别为1r ,2r ,3r ,下列结论中错误..的是( ) A .三条回归直线有共同交点 B .相关系数中,2r 最大 C .12b b >D .12a a >2.下列说法错误..的是( ) A .10xy ≠是5x ≠或2y ≠的充分不必要条件B .若命题p :x R ∀∈,210x x ++≠,则p ⌝:x R ∃∈,210x x ++=C .已知随机变量()2~2,X N σ,且()40.84P X ≤=,则()00.16P X ≤=D .相关系数r 越接近1,表示线性相关程度越弱. 3.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值4.对于独立性检验,下列说法正确的是( ) A .2 3.841K >时,有95%的把握说事件A 与B 无关 B .2 6.635K >时,有99%的把握说事件A 与B 有关 C .2 3.841K ≤时,有95%的把握说事件A 与B 有关 D .2 6.635K >时,有99%的把握说事件A 与B 无关 5.下列命题中正确命题的个数是(1)对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变; (3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; (4)设随机变量ξ服从正态分布()0,1N ; 若()1P p ξ>=,则()1102P p ξ-<<=-( ) A .4B .3C .2D .16.对四对变量Y 和x 进行线性相关性检验,已知n 是观测值组数,r 是相关系数,且已知: ①n=7,r=0.953 3;②n=15,r=0.301 2;③n=17,r=0.499 1;④n=3,r=0.995 0,则变量Y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④7.给出下列说法:①用()()221211ˆni i i n i i i y y R y y ==-=--∑∑刻画回归效果,当2R 越大时,模型的拟合效果越差,反之则越好;②归纳推理是由特殊到一般的推理,而演绎推移则是由一般到特殊的推理;③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”;④设有一个回归方程ˆ35yx =+,变量x 增加1个单位时,y 平均增加5个单位;⑤线性回归方程ˆˆˆy bx a =+必过点(),x y .其中错误的个数有( )A .0个B .1个C .2个D .3个8.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试,统计得到成绩与专业的列联表:( )附:参考公式及数据:(1)统计量:()()()()()22n ad bcKa b c d a c b d-=++++,(n a b c d=+++).(2)独立性检验的临界值表:则下列说法正确的是A.有95%的把握认为环保知识测试成绩与专业有关B.有95%的把握认为环保知识测试成绩与专业无关C.有99%的把握认为环保知识测试成绩与专业有关D.有99%的把握认为环保知识测试成绩与专业无关9.通过随机询问250名不同性别的高中生在购买食物时是否看营养说明书,得到如下列联表:从调查的结果分析,认为性别和读营养说明书的关系为()附:()()()()()22n ad bc K a b c d a c b d -=++++ . A .95%以上认为无关 B .90%~95%认为有关 C .95%~99.9%认为有关D .99.9%以上认为有关10.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系: x 2 4 5 6 8 y3040605070y 与x 的线性回归方程为 6.5175ˆ.y x =+,当广告支出5万元时,随机误差的效应(残差)为( ) A .40 B .20 C .30D .1011.下列说法中,不正确的是A .两个变量的任何一组观测值都能得到线性回归方程B .在平面直角坐标系中,用描点的方法得到表示两个变量的关系的图象叫做散点图C .线性回归方程反映了两个变量所具备的线性相关关系D .线性相关关系可分为正相关和负相关 12.有下列数据: x123y35.9912.01下列四个函数中,模拟效果最好的为( ) A .B .C .D .二、填空题13.对相关系数r ,①r 越大,线性相关程度越大; ②r 越小,线性相关程度越大;③|r|越大,线性相关程度越小,|r|越接近0,线性相关程度越大; ④|r|≤1且|r|越接近1,线性相关程度越大,|r|越接近0,线性相关程度越小 以上说法中,正确说法的序号是__________.14. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个 2.5PM 监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是_________.15.某单位为了了解用电量y (度)与气温x (度)之间的关系,随机统计了某4天的用电量与当天气温,并制作了如下的对照表由表中数据,得回归直线方程ˆˆˆy bx a =+,若ˆ2b=-,则ˆa =________. 16.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考查某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附表:参照附表,在犯错误的概率不超过______(填百分比)的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.17.已知方程ˆ0.8582.71yx =-是根据女大学生的身高预报她的体重的回归方程,其中x 的单位是cm ,ˆy的单位是kg ,那么针对某个体(160,53)的残差是______________. 18.给出下列结论:(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好;(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量; (3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;(4)若关于x 的不等式2x x a a -+-≥在R 上恒成立,则a 的最大值是1;(5)甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是相互独立事件.其中结论正确的是 .(把所有正确结论的序号填上)19.给出下列四个结论:(1)相关系数r的取值范围是1r<;(2)用相关系数r来刻画回归效果,r的值越大,说明模型的拟合效果越差;(3)一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,则其中所含白球个数的期望是2;(4) 一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,且(),,0,1a b c∈,已知他投篮一次得分的数学期望为2,则213a b+的最小值为163.其中正确结论的序号为______________.20.为了了解司机开车时礼让斑马线行人的情况,交警部门调查了100名机动车司机,得到以下统计数据:礼让斑马线行人不礼让斑马线行人男性司机人数4015女性司机人数2025若以2χ为统计量进行独立性检验,则2χ的值是__________.(结果保留2位小数)参考公式()11221221 21212n n n n nn n n nχ++++-=三、解答题21.我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在2020年2月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如表频数分布表:(1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值;(2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如表列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.参考公式和数据:()()()()()22n ad bcKa b c d a c b d-=++++.(其中n a b c d=+++为样本容量)22.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50kg箱产量≥50kg合计旧养殖法新养殖法合计(2)在新养殖法养殖的网箱中,按照分层抽样的方法从箱产量少于50kg和不少于50kg的网箱中随机抽取5箱,再从中抽取3箱进行研究,这3箱中产量不少于50kg的网箱数为X,求X的分布列和数学期望.()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++ ()2P K k ≥ 0.1000.050 0.010 0.005 0.001 k 2.706 3.8416.6357.87910.82823.支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比,从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如下,(1)记A 表示事件“微信支付人数低于50千人”,估计A 的概率;(2)填写下面2╳2列联表,并根据2╳2列联表判断是否有99%的把握认为支付人数与支付方式有关;()()()()()2n ad bc K a b c d a c b d -=++++.24.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关? (2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X ,若用样本的频率作为概率,求随机变量X 的分布列和期望.附:K 2=2()()()()()n ad bc a b c d a c b d -++++,其中n =a +b +c +d .25.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下列联表,并判断能否在犯错误率不超过0.05的前提下认为“体育迷”与性别有关?非体育迷体育迷合计男女合计(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.050.01k 3.841 6.63526.为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]得到如图所示的频率分布直方图.(Ⅰ)求a 的值;(Ⅱ)记A 表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80分”,估计A 的概率;(Ⅲ)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请在答题卡上将22⨯列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意可得5m n +=,分别取m 与n 的值,由公式计算出1122123,,,,,,b a b a r r r 的值,逐一分析四个选项,即可得到答案. 【详解】由题意,1410m n +++=,即5m n +=. 若 1.5m =,则 3.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 1.5 2.53 2.5 3.5 2.54 2.54 2.5 5.5iii x x y y =--=--+--+--+--=∑ ,()()()4222221 1.50.50.5 1.55i i x x =-=-+-++=∑ , ()()()42222211.511 1.5 6.5i i y y =-=-+-++=∑.则1 5.51.15b ==,1 2.5 1.1 2.50.25a =-⨯=- ,1r =≈; 若2m =,则3n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.52 2.53 2.53 2.54 2.54 2.55iii x x y y =--=--+--+--+--=∑,()4215ii x x =-=∑,()()()42222211.50.50.5 1.55i i y y =-=-+-++=∑.2515b ==,2 2.51 2.50a =-⨯=,21r ==; 若 2.5m =,则 2.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 2.5 2.53 2.5 2.5 2.54 2.54 2.5 4.5iii x x y y =--=--+--+--+--=∑,()4215i i x x =-=∑,()()422211.5 1.5 4.5i i y y =-=-+=∑,3r ==由样本点的中心相同,故A 正确;由以上计算可得,相关系数中,2r 最大,12b b >,12a a <,故B ,C 正确,D 错误. 故选:D . 【点睛】本题考查线性回归方程与相关系数的求法,考查计算能力,是中档题.2.D解析:D 【分析】A 选项,由“若10xy ≠,则5x ≠或2y ≠”的逆否命题判断充分性,由其否命题判断必要性;由全称命题的否定的概念判断选项B ;由正态分布的性质判断选项C ;由相关系数的概念判断选项D. 【详解】对于选项A,命题“若10xy ≠,则5x ≠或2y ≠”的逆否命题为“若5x =且2x =,则10xy =”,为真命题,而命题“若10xy =,则5x =且2x =”为假命题,所以10xy ≠是5x ≠或2y ≠的充分不必要条件,故A 正确;对于选项B,由全称命题的否定可得p ⌝:x R ∃∈,210x x ++=,故B 正确;对于选项C,由随机变量()2~2,X N σ,且()40.84P X ≤=,则()()()041410.840.16P X P X P X ≤=≥=-≤=-=,故C 正确;对于选项D,相关系数r 越接近1,表示线性相关程度越强,故D 错误, 故选:D 【点睛】本题考查充分不必要条件的判断,考查全称命题的否定,考查正态分布的概率,考查相关系数的概念,熟练掌握各知识点是解题关键.3.B解析:B 【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案. 【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验, 回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析, 综上可知①是独立性检验,②是回归分析,故选B . 【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.B解析:B 【分析】根据独立性检验中卡方的概念知,选B. 【详解】根据独立性检验中卡方的概念知,2 6.635K >时,有99%的把握说事件A 与B 有关选B. 【点睛】本题主要考查了独立性检验中卡方的概念,属于中档题.5.B解析:B 【解析】 【分析】根据独立性检验的定义可判断(1);根据方差的性质可判断(2);根据残差的性质可判断(3);根据正态分布的对称性可判断(4). 【详解】(1)对分类变量X 与Y 的随机变量2K 的观测值K 来说,K 越大,判断“X 与Y 有关系”的把握越大,故(1)错误;(2)若将一组样本数据中的每个数据都加上同一个常数后,数据的离散程度不变,则样本的方差不变,故(2)正确;(3)根据残差的定义可知,在残差图,残差点分布的带状区域的宽度越狭窄,预测值与实际值越接近,其模型拟合的精度越高,(3)正确;(4)设随机变量ξ服从正态分布()0,1N ,若()1P p ζ>=,则()1P p ζ<-=,则()1112P p ζ-<<=-,则()1102P p ζ-<<=-,故(4)正确, 故正确的命题的个数为3个,故选B. 【点睛】本题主要通过对多个命题真假的判断,主要综合考查独立性检验的定义、方差的性质、残差的性质以及正态分布的对称性,属于中档题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.6.B解析:B 【解析】分析:先查相关系数检验的临界值表,再判断变量Y 和x 具有线性相关关系的选项. 详解: 查相关系数检验的临界值表 ①r 0.05=0.754,r >r 0.05; ②r 0.05=0.514,r <r 0.05; ③r 0.05=0.482,r >r 0.05; ④r 0.05=0.997,r 0.05>r.∴y 和x 具有线性相关关系的是①③.故答案为B.点睛:本题主要考查相关系数,意在考查学生对这些知识的掌握水平.7.B解析:B 【解析】分析:①可由相关指数的概念判断;②③由推理,综合法和反证法的概念判断;④和⑤由线性回归分析判断即可.详解:①相关指数2R 越大,则相关性越强,模型的拟合效果越好.错误;② 归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理,由归纳推理与演绎推理的概念可知正确.③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”,由概念可知正确. ④由回归方程的系数意义知,当变量x 增加1个单位时,y 平均增加5个单位,正确;⑤线性回归方程ˆˆˆy bx a =+必过样本中心点(),x y ,正确.故选B.点睛:本题是一道综合性考题,即考查了推理与证明的原理,又考查了利用2R 判断模型拟合程度,同时还考查了线性回归分析的相关概念,属于中档题.8.A【解析】分析:首先计算观测值k 0的值,然后给出结论即可. 详解:由列联表计算观测值:()2401413672804.912 3.8412119202057k ⨯⨯-⨯==≈>⨯⨯⨯, 则有95%的把握认为环保知识测试成绩与专业有关. 本题选择A 选项.点睛:本题主要考查独立性检验及其应用等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D 【解析】分析:由列联表中的数据,利用公式()()()()()22n ad bc K a b c d a c b d -=++++求得2K ,与邻界值比较,即可得到结论. 详解:()222509070603021.6310.828120130150100K ⨯⨯-⨯=≈>⨯⨯⨯,∴有0099.9的把握认为性别和读营养说明书的有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)10.D解析:D 【解析】∵y 与x 的线性回归方程为 6.5175ˆ.y x =+ 当5x =时,ˆ50y=. 当广告支出5万元时,由表格得:60y = 故随机误差的效应(残差)为605010.-= 故选D .11.A解析:A 【解析】要得到线性回归方程应至少有两个变量的两组观测值,因此A 不正确.根据散点图、线性回归方程、线性相关关系的概念可得B ,C ,D 都正确.故选A .12.A【解析】当x=1,2,3时,分别代入求y值,离y最近的值模拟效果最好,可知A模拟效果最好.故选A.考点:非线性回归方程的选择.二、填空题13.④【解析】两个变量之间的相关系数r的绝对值越接近于1表示两个变量的线性相关性越强r的绝对值非常接近于0时表示两个变量之间几乎不存在线性相关故答案为④解析:④【解析】两个变量之间的相关系数,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值非常接近于0时,表示两个变量之间几乎不存在线性相关.故答案为④.14.甲【解析】根据茎叶图中的数据可知甲地的数据都集中在006和007之间数据分布比较稳定而乙地的数据分布比较分散不如甲地数据集中故甲地的方差小故答案为甲解析:甲【解析】根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分布比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,故甲地的方差小,故答案为甲. 15.【解析】试题分析:由题意得即样本中心点代入回归直线方程得考点:回归直线方程的应用解析:60【解析】试题分析:由题意得18131011542x++-==,24343864404y+++==,即样本中心点15(,40)2,代入回归直线方程,得15402602ˆˆa a=-⨯+⇒=.考点:回归直线方程的应用.16.%【解析】试题分析:所以在犯错误不超过%的前提下认为小动物是否被感染与有没有服用疫苗有关考点:1卡方统计量2统计;【易错点晴】本题主要考查的是统计中的卡方统计量属于容易题解题时一定要注意计算问题很多解析:%【解析】试题分析:,所以在犯错误不超过%的前提下,认为“小动物是否被感染与有没有服用疫苗有关” . 考点:1.卡方统计量,2.统计;【易错点晴】本题主要考查的是统计中的卡方统计量,属于容易题.解题时一定要注意计算问题,很多同学列式正确计算错误,从而不能正确得到结果.另外,学生容易把答案写为%,所以一定要注意本题中的问题是什么,否则很容易出现错误.17.【解析】将代入得所以残差 解析:0.29-【解析】将160x =代入0.85 2.1ˆ87yx =-,得0.8516082.71ˆ53.29y =⨯-=,所以残差5353.ˆ290ˆ.29ey y =-=-=-. 18.(1)(3)(4)【分析】根据相关指数离散型随机变量随机变量的方差和标准差绝对值不等式和相互独立事件相关的知识对五个结论逐一分析由此得出正确结论的序号【详解】对于(1)R2越大模型的拟合效果越好结论解析:(1),(3),(4) 【分析】根据相关指数、离散型随机变量、随机变量的方差和标准差、绝对值不等式和相互独立事件相关的知识,对五个结论逐一分析,由此得出正确结论的序号. 【详解】对于(1),R 2越大,模型的拟合效果越好,结论正确.对于(2),内径与规定的内径尺寸之差是连续型随机变量,结论错误.对于(3),根据随机变量的方差和标准差的知识可判断出结论正确.对于(4),根据绝对值不等式有22x x a a a -+-≥-≥,所以2a a -≤-或2a a -≥,前者解得1a ≤,后者无解,故a 的最大值为1,结论正确.对于(5),事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是对立事件,不是相互独立事件,结论错误.综上所述,正确结论为(1),(3),(4). 【点睛】本小题主要考查关指数、离散型随机变量、随机变量的方差和标准差、绝对值不等式和相互独立事件相关的知识,考查分析与解决问题的能力,属于基础题.19.(3)(4)【解析】分析:(1)相关系数的范围;(2)由相关指数r 的含有知|r|的值越大说明模型的拟合效果越好;(3)离散型随机变量的期望;(4)根据期望公式得到3a+2b=2进而利用均值不等式求最解析:(3)(4) 【解析】分析:(1)相关系数的范围;(2)由相关指数r 的含有知,|r|的值越大,说明模型的拟合效果越好;(3)离散型随机变量的期望;(4)根据期望公式得到3a+2b=2,进而利用均值不等式求最值.详解:(1)相关系数r 的取值范围是1r ≤,故(1)错误;(2)用相关指数r 来刻画回归效果,|r|的值越大,说明模型的拟合效果越好,故(2)错误;(3)含零个白球的概率为5210,含一个白球的概率为50210,含二个白球的概率为100210,含三个白球的概率为50210,含四个白球的概率为5210, 白球个数的期望为:550100505012342210210210210210⨯+⨯+⨯+⨯+⨯=,故(3)正确; (4)∵3a+2b+0•c=2,a ,b ,c ∈(0,1), ∴213a b +=(213a b +)•12(3a+2b )=12(6+4b a +a b +23)≥12(203+24b aa b ⋅) =12(203+4)=163(当且仅当a=2b ,即a=12,b=14时取“=”),故(4)正确. 其中正确结论的序号为:(3)(4). 故答案为(3)(4).点睛:本题考查相关系数的有关概念,考查离散型随机变量的期望及概率统计与基本不等式的综合应用,属于中档题.20.【解析】分析:根据题意填写2×2列联表计算观测值对照临界值得出结论详解:填写2×2列联表如下:根据数表计算=≈825>7879所以有995的把握认为开车时使用手机与司机的性别有关;点睛:独立性检验的 解析:8.25【解析】分析:根据题意填写2×2列联表,计算观测值,对照临界值得出结论. 详解:填写2×2列联表,如下:根据数表,计算()()()()()22n ad bc a b c d a c b d -X =++++=()21004025201555456040⨯⨯-⨯⨯⨯⨯≈8.25>7.879,所以有99.5%的把握认为开车时使用手机与司机的性别有关;点睛:独立性检验的一般步骤:(I )根据样本数据制成22⨯列联表;(II )根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(III ) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)三、解答题21.(1)直方图见解析,3360元;(2)列联表见解析,没有95%的把握认为网购金额与网购人年龄有关. 【分析】(1)由频数分布表计算出各组数据的纵坐标(频率除以组距),再做出频率分布直方图, 由频率分布直方图估计平均值的定义可得本市居民此期间网络购物的消费平均值; (2) 根据频数分布表中的数据可知网购金额不超过4000元的有700人,超过4000元的有300人,根据分层抽样可得网购金额不超过4000元需要抽取140人,超过4000元的需要抽取60人,再根据列联表的性质即可完成表格,再根据列联表的数据计算出2K 并与给定的参考表对照得到结论. 【详解】(1)由题可知随机对1000人做问卷调查,消费数据的组距为2000, 可求得频率分布直方图纵轴上每组的数据(频率除以组距), 即3000.0001510002000=⨯,4000.000210002000=⨯,1800.0000910002000=⨯,600.0000310002000=⨯,则[]0,2000,(]2000,4000,(]4000,6000,(]6000,8000,(]8000,10000, 对应的的数据(频率除以组距)分别是0.00015,0.0002,0.00009,0.00003,0.00003, 从而得出频率分布直方图,由频率分布直方图估计平均值的定义,可得10000.330000.450000.1870000.0690000.0630012009004205403360x =⨯+⨯+⨯+⨯+⨯=++++=(元),故本市居民此期间网络购物的消费平均值为3360元; (2)由数据可知以网购金额不超过4000元的有2007001401000⨯=(人), 超过4000元的有200300601000⨯=(人),可得列联表.由()()()()220075356525502.3813.8411406010010021n ad bc K a b c d a c b d -⨯⨯-⨯===≈<++++⨯⨯⨯. 故在此期间没有95%的把握认为网购金额与网购人年龄有关. 【点睛】本题第一问考查了平均数的计算、画出频率分布直方图,其中主要是计算出纵坐标的值(频率除以组距)属于常见题型,第二问主要考查完善列联表,2K 的计算,属于中档题目,解题中对计算能力要求较高.22.(1)列联表见解析,有把握;(2)分布列见解析,1.8. 【分析】(1)完成列联表求出2K ,从而有99%的把握认为箱产量与养殖方法有关.(2)推导出X 的可能取值为1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望. 【详解】解:(1)依题意,得下表:2200(62603840)9.68 6.63510298100100K ⨯-⨯∴=≈>⨯⨯⨯,即2( 6.635)0.010P K ∴>=所以,有99%的把握认为箱产量与养殖方法有关;(2)按照分层抽样的方法从箱产量少于50kg 和不少于50kg 的网箱中随机抽取5箱,分别为2箱和3箱,从中再抽3箱,则1,2,3X =则2123353(1)10C C P X C ===,1223356(2)10C C P X C ===,0323351(3)10C C P X C ===,X 的分布列为所以,1123 1.8101010EX=⨯+⨯+⨯=【点睛】本题考查独立检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查运算求解能力,属于中档题.23.(1)0.62;(2)列联表见解析,有99%的把握认为支付人数与支付方式有关.【分析】(1)由频率分布直方图可得微信支付人数低于50千人的频率;(2)根据频率分布直方图得出<50千人和≥50千人的人数,得列联表,计算出2K,比较后可得结论.【详解】(1)根据题意,由微信支付人数的频率分布直方图可得:()()0.0120.0140.0240.0340.04050.62P A=++++⨯=(2)根据题意,补全列联表可得:则有()22006266383415.705 6.63510010096104K⋅⨯-⨯=≈>⨯⨯⨯,故有99%的把握认为支付人数与支付方式有关.【点睛】本题考查频率分布直方图,考查列联表,独立性检验,计算出2K即得,本题属于基础题.24.(1)见解析;(2)分布列见解析,期望是10 3.【分析】(1)先根据题中数据完成列联表,再进行计算,判断;(2)根据题意得X服从二项分布,进而求解.【详解】(1)由题意得,。

(常考题)北师大版高中数学高中数学选修2-3第三章《统计案例》检测题(有答案解析)

(常考题)北师大版高中数学高中数学选修2-3第三章《统计案例》检测题(有答案解析)

一、选择题1.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是()A.①回归分析,②取平均值B.①独立性检验,②回归分析C.①回归分析,②独立性检验D.①独立性检验,②取平均值2.某中学采取分层抽样的方法从高二学生中按照性别抽出20名学生,其选报文科、理科的情况如下表所示,参考公式和数据:22()()()()()n ad bcKa cb d a bc d-=++++,其中n a b c d=+++.则以下判断正确的是A.至少有97.5%的把握认为学生选报文理科与性别有关B.至多有97.5%的把握认为学生选报文理科与性别有关C.至少有95%的把握认为学生选报文理科与性别有关D.至多有95%的把握认为学生选报文理科与性别有关3.某班主任对全班50名学生进行了作业量的调查,数据如表:若推断“学生的性别与认为作业量大有关”,则这种推断犯错误的概率不超过()附:()()()()()22n ad bcKa b c d a c b d-=++++A.0.01 B.0.025 C.0.10 D.0.054.为了考查两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是( )A.l1和l2有交点(s,t)B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合5.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是()P(K2≥k)…0.250.150.100.0250.0100.005…k…1.3232.0722.7065.0246.6357.879…A.90% B.95% C.97.5% D.99.5%6.以下四个命题中:①在回归分析中,可用相关指数R2的值判断拟合的效果,R2越大,模型的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近1; ③若数据x 1,x 2,x 3,…,x n 的方差为1,则2x 1,2x 2,2x 3,…,2x n 的方差为2;④对分类变量x 与y 的随机变量K 2的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为( ) A .1 B .2 C .3 D .47.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是( )A .男、女人患色盲的频率分别为0.038,0.006B .男、女人患色盲的概率分别为,C .男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D .调查人数太少,不能说明色盲与性别有关8.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A .平均数与方差 B .回归分析 C .独立性检验 D .概率 9.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归方程^^^y b x a =+必过(),x y ;④在一个22⨯列联表中,由计算得213.079K =,则有99%以上的把握认为这两个变量间有关系.其中错误..的个数是( ) A .0 B .1 C .2D .310.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( ) A .25B .25C .35D .321011.由某个22⨯列联表数据计算得随机变量2K 的观测值k 6.879=,则下列说法正确的是 ( )0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0.7081.3232.0722.7063.8415.0246.6357.87910.828A .两个分类变量之间有很强的相关关系B .有99%的把握认为两个分类变量没有关系C .在犯错误的概率不超过1.0%的前提下认为这两个变量间有关系D .在犯错误的概率不超过0.5%的前提下认为这两个变量间有关系 12.某商场为了解毛衣的月销售量y (件)与月平均气温()x C 之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: )C(件)由表中数据算出线性回归方程ˆybx a =+中的2b =-,气象部门預测下个月的平均气温约为6C ,据此估计该商场下个月毛衣销售量约为( )件. A .46B .40C .38D .58二、填空题13.针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的13,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数的23.若有95%的把握认为是否喜欢韩剧和性别有关,求男生至少有______人.14.以下结论正确..的序号有_________ (1)根据22⨯列联表中的数据计算得出2K ≥6.635, 而P (2K ≥6.635)≈0.01,则有99% 的把握认为两个分类变量有关系.(2)在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关.(3)在线性回归分析中,相关系数为r ,r 越接近于1,相关程度越大;r 越小,相关程度越小.(4)在回归直线0.585y x =-中,变量200x =时,变量y 的值一定是15.15.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生720为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________.16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程=+x 中=﹣2,据此预测当气温为5℃时,用电量的度数约为_____.17.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③某项测量结果ξ服从正态分布()21,σN ,()50.81ξP ≤=,则()30.19ξP ≤-=;④对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大.以上命题中其中真命题的个数为___________.18.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为ˆ0.7973.56yx =-,数据列表是:则其中的数据a =__________.19.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K 来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cos sin x y θθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y +=;③极坐标系中,22,3A π⎛⎫⎪⎝⎭与()3,0B 的距离是19; ④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误. 20.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:三、解答题21.网购是当前人们购物的新方式,某公司为了改进营销方式,随机调查了100名市民,统计了不同年龄的人群网购的人数如下表: 年龄段(岁) ()0,20[)20,40[)40,60[)60100,网购人数 2632348 男性人数1510 105(1)若把年龄在[2060,的人称为“网购迷”,否则称为“非网购迷”,请完成下面的22⨯列联表,并判断能否在犯错误的概率不超过1%的前提下,认为网购与性别有关?网购迷 非网购迷 总计男性 女性 总计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥0.10 0.05 0.01 0.001两人年龄都小于20岁的概率.22.为了解使用手机是否对学生的学习有影响,某校随机抽取50名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):与使用手机有关;(2)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出9人,再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X,试求X的分布列与数学期望.参考公式:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.参考数据:23.第十八届中国国际农产品交易会于11月27日在重庆国际博览中心开幕,我市全面推广“遂宁红薯”及“遂宁鲜”农产品区域公用品牌,并组织了100家企业、1000个产品进行展示展销,扩大优质特色农产品市场的占有率和影响力,提升遂宁特色农产品的社会认知度和美誉度,让来自世界各地的与会者和消费者更深入了解遂宁,某记者对本次农交会进行了跟踪报道和实际调查,对某特产的最满意度()%x和对应的销售额y(万元)进行了调查得到以下数据:关系数r的绝对值在0.95以上(含0.95)是线性相关性较强;否则,线性相关性较弱.请你对线性相关性强弱作出判断,并给出理由;(2)如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的那一天不作为计算数据),并求在剔除“末位淘汰”的那一天后的销量额y 关于最满意度x 的线性回归方程(系数精确到0.1). 参考数据:24x =,81y =,52215146ii xx =-=∑, 52215176i i y y =-=∑,515151i ii x y xy =-=∑13.27≈≈.附:对于一组数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅.其回归直线方程 ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆ·ni ii n ii x y nx y bxnx ==-=-∑∑,ˆa y bx=-,线性相关系数·ni ix y nx y r -=∑24.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,25.为了响应国家号召,某校组织部分学生参与了“垃圾分类,从我做起”的知识问卷作答,并将学生的作答结果分为“合格”与“不合格”两类与“问卷的结果”有关?(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望()E X.附:22()()()()()n ad bcKa b c d a c b d-=++++26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2.C解析:C【解析】由题易得22⨯列联表如下:则2K的观测值为()220235104.432 3.841128713k⨯⨯-⨯=≈>⨯⨯⨯,所以至少有95%的把握认为学生选报文理科与性别有关,故选:C.【解题必备】(1)独立性检验是对两个分类变量有关系的可信程度的判断,而不是对其是否有关系的判断.独立性检验的结论只能是有多大的把握认为两个分类变量有关系,而不能是两个分类变量一定有关系或没有关系.(2)列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此,需要用独立性检验的方法确认所得结论在多大程度上适用于总体.即独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释. (3)独立性检验的具体做法:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α, 然后查下表确定临界值0k ; ②利用公式()()()()()22n ad bc K a c b d a b c d -=++++,计算随机变量2K 的观测值k ;③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”.说明:通常认为 2.706k ≤时,样本数据就没有充分的证据显示“X 与Y 有关系”.3.B解析:B 【解析】分析:根据表格中所给数据,代入公式()()()()()22n ad bc K a b c d a c b d -=++++,求出观测值,把所求的观测值同临界值进行比较,从而可得结果. 详解:根据表中数据得到()2250181589 5.059 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯,所以,若推断“学生的性别与认为作业量大有关”, 则这种推断犯错误的概率不超过0.025,故选B.点睛:本题主要考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,计算过程一定要细心,避免出现计算错误,属于基础题.4.A解析:A 【解析】回归直线方程过样本中心点,过A 选项正确.5.C解析:C 【详解】∵2 6.023 5.024K=>∴可断言市民收入增减与旅游欲望有关的把握为97.5%.故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bcKa b c d a c b d-=++++,计算出2K的值;(3)查表比较2K与临界值的大小关系,作统计判断.6.B解析:B【解析】由题意得,若数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为4,所以③不正确;对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y 有关系”的把握程度越小,所以④不正确.其中①、②是正确的,故选B.7.C解析:C【解析】男人中患色盲的比例为,要比女人中患色盲的比例大,其差值为,差值较大,所以认为患色盲与性别是有关的.考点:独立性检验.8.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C.考点:独立性检验的意义.9.B解析:B【解析】一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x的系数具备直线斜率的功能,对于回归方程y35x=-,当x增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y= b x+a必过点(),x y,③正确;因为213.079 6.635K=>,故有0099以上的把握认为这两个变量间有关系,④正确,即错误的个数为1,故选B. 10.B解析:B【解析】∵直线0x y a ++=与圆()()22122x y -+=+有公共点,∴≤13a -≤≤,∴在区间[55]-,内任取一个实数a ,使直线0x y a ++=与圆()()22122x y -+=+有公共点的概率为312555+=+,故选B. 点睛:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题;利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a ,最后根据几何概型的概率公式可求出所求.11.C解析:C 【解析】由22⨯列联表数据计算得随机变量2K 的观测值是 6.879 6.635k =>,通过对照表中数据得,在犯错误的概率不超过1.0%的前提下,认为这两个变量间有关系,故选C.12.A解析:A 【解析】试题分析:根据题意,样本中心点的坐标为()10,38,所以38210,58a a =-⨯+∴=,因此回归直线方程为2ˆ58yx =-+,所以当6x =时,估计该商场下个月毛衣销售量约为26ˆ5846y=-⨯+=,故选A. 考点:回归直线方程.二、填空题13.【分析】设男生人数为依题意填写列联表计算观测值列出不等式求出的取值范围再根据题意求出男生的人数【详解】设男生人数为由题意可得列联表如下: 喜欢韩剧 不喜欢韩剧 总计 男生 女生 总 解析:18【分析】设男生人数为x ,依题意填写列联表,计算观测值,列出不等式求出x 的取值范围,再根据题意求出男生的人数. 【详解】设男生人数为x ,由题意可得列联表如下:则 3.841k>,即2452()3636969 3.84171711931818x x x x xxkx x xx⋅-⋅==>⋅⋅⋅,解得12.697x>.因为各部分人数均为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有18人.故答案为:18.【点睛】本题考查独立性检验的应用,解题关键是列出列联表,然后进行计算,属于常考题. 14.(1)(3)【解析】分析:根据独立性检验残差图相关系数回归分析的定义及性质逐一分析四个答案的真假即可详解:对于(1)根据2×2列联表中的数据计算得出≥6635而P(≥6635)≈001则有99的把握解析:(1)(3).【解析】分析:根据独立性检验、残差图、相关系数、回归分析的定义及性质,逐一分析四个答案的真假即可.详解:对于(1),根据2×2列联表中的数据计算得出2K≥6.635, 而P(2K≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系,故(1)正确.对于(2),根据残差图的意义可得,当带状区域的宽度较小时,说明选用的模型比价合适,而当带状区域的宽度较大时,说明选用的模型不合适,故(2)不正确.对于(3),在线性回归分析中,相关系数为r,|r|越接近于1,则相关程度越大;|r|越接近于0,则相关程度越小.故(3)正确.对于(4),在回归直线y=0.5x−85中,当x=200时,y=15,但实际观测值可能不是15,故(4)不正确.综上可得(1)(3)正确.点睛:本题考查回归分析和独立性检验的基本知识,属于基础类题目,解题的关键是熟记相关的的概念和性质.15.5【解析】因为随机变量K2的观测值k>3841所以在犯错误的概率不超过005的前提下认为主修统计专业与性别有关系故这种判断出现错误的可能性为5考点:独立性检验思想解析:5% 【解析】因为随机变量K 2的观测值k >3.841,所以在犯错误的概率不超过0.05的前提下认为“主修统计专业与性别有关系”.故这种判断出现错误的可能性为5%. 考点:独立性检验思想.16.40【解析】试题分析:根据所给的表格做出本组数据的样本中心点根据样本中心点在线性回归直线上利用待定系数法做出a 的值现在方程是一个确定的方程根据所给的x 的值代入线性回归方程预报要销售的件数解:由表格得解析:40 【解析】试题分析:根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a 的值,现在方程是一个确定的方程,根据所给的x 的值,代入线性回归方程,预报要销售的件数.解:由表格得=(14+12+8+6)÷4=10,=(22+26+34+38)÷4=30 即样本中心点的坐标为:(10,40), 又∵样本中心点(10,40)在回归方程 上且b=﹣2∴30=10×(﹣2)+a , 解得:a=50, ∴当x=5时,y=﹣2×(5)+50=40. 故答案为40.考点:回归分析的初步应用.17.【解析】试题分析:对于①从匀速传递的新产品生产流水线上质检员每20分钟抽取一件新产品进行某项指标检测这样的抽样是系统抽样而不是分层抽样故①错;对于②两个随机变量的相关性知识可知②正确;对于③变量所以 解析:2【解析】试题分析:对于①,从匀速传递的新产品生产流水线上,质检员每20分钟抽取一件新产品进行某项指标检测,这样的抽样是系统抽样,而不是分层抽样,故①错;对于②,两个随机变量的相关性知识可知②正确;对于③变量2(1,)N ξσ~,所以()()30.191510.810.19ξξP ≤-==-P ≤=-=,故③正确;对于④,随机变量2K 观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④错,所以真命题有2个. 考点:1. 回归分析的基本思想及其应用初步;2.统计与概率.18.163【解析】由根据回归直线经过样本中心即得由得故答案为解析:163 【解析】由4953565864565y ++++==,根据回归直线经过样本中心(),x y ,即560.7973.56x =⨯-,得164x =,由1551611671741645a x ++++==,得163a =,故答案为163.19.①③④【解析】①是独立性检验的应用①对②中由于所以显然是半个圆②错③中由极坐标中两点距离公式=③对④中所有边长相等的凸多边形都是正多边形为大前提是错误的因为只需要正多边形挤压变形使之仍为凸多边形即可解析:①③④ 【解析】①是独立性检验的应用,①对.②中由于[]0,θπ∈,所以01y ≤≤,显然是半个圆,②错.③中,由极坐标中两点距离公式2221212212cos()AB ρρρρθθ=+--=14912()19,2+-⨯-=AB ③对.④中“所有边长相等的凸多边形都是正多边形”为大前提,是错误的,因为只需要正多边形挤压变形,使之仍为凸多边形即可.④对.所以填①③④.20.①④【解析】分析:根据性回归方程独立性检验相关关系以及命题的否定等知识选出正确的得到结果详解:线性回归方程必过样本中心点故①正确命题的否定是故②错误③相关系数r 绝对值越小表明两个变量相关性越弱故不正解析:①④ 【解析】分析:根据性回归方程,独立性检验,相关关系,以及命题的否定等知识,选出正确的,得到结果.详解:线性回归方程ˆˆˆy bx a =+必过样本中心点(),x y ,故①正确.命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃≥+<” 故②错误 ③相关系数r 绝对值越小,表明两个变量相关性越弱,故不正确;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系,正确. 故答案为①④.点睛:本题以命题真假的判断为载体,着重考查了相关系数、命题的否定、独立性检验、回归直线方程等知识点,属于中档题.三、解答题21.(1)列联表答案见解析,能在犯错误的概率不超过1%的前提下,认为网购与性别有关;(2)310.【分析】(1)根据表格中的数据可题中信息可完善22⨯列联表,计算出2K 的观测值,结合临界值表可得出结论;(2)计算得出年龄段()0,20应抽取3人,分别记为1、2、3;年龄段[)20,40应抽取2人,分别记为a 、b ,列举出所有的基本事件,并确定事件“所抽的两人年龄都小于20岁”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)由题中信息可完善22⨯列联表如下表所示:计算得()2100201446207.605 6.63566344060K ⨯⨯-⨯=≈>⨯⨯⨯,故能在犯错误的概率不超过1%的前提下,认为网购与性别有关;(2)年龄在()0,20、[)20,40网购男性分别有15人、10人.按分层抽样的方法随机抽取5人,年龄段()0,20应抽取3人,分别记为1、2、3;年龄段[)20,40应抽取2人,分别记为a 、b .从中随机抽取2人的一切可能结果所组成的基本事件共10个:()1,2、()1,3、()1,a 、()1,b 、()2,3、()2,a 、()2,b 、()3,a 、()3,b 、(),a b .用A 表示“两人年龄都小于20岁”这一事件,则事件A 由3个基本事件组成:()1,2、()1,3、()2,3.故事件A 的概率为()310P A =. 【点睛】方法点睛:求解古典概型的概率方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列、组合数的应用.22.(1)没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)分布列见解析,()2E X =.【分析】(1)根据表格中数据和题中信息可完善22⨯列联表,计算出2χ的观测值,结合临界值表可得出结论;(2)由题意可知,随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望值. 【详解】(1)22⨯列联表如下表所示:()22505102015258.33310.828203025253χ⨯⨯-⨯==≈<⨯⨯⨯,所以,没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)9人中学习成绩优秀的人有209630⨯=人,学习成绩一般的有109330⨯=人, X 可能的取值有0、1、2、3,()3911084P X C ===,()1263393114C C P X C ===,()21633915228C C P X C ===,()363953?21C P X C ===.所以,随机变量X 的分布列为()1232142821E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.23.(1)0.94r ≈,线性相关性较弱;(2) +77.3ˆyx =。

北师大版高中数学选修2-3组合及组合数公式同步练习.docx

北师大版高中数学选修2-3组合及组合数公式同步练习.docx

组合及组合数公式 同步练习【选择题】1、若m≠n,则组合数C m n 等于 ( )A. !n A m nB.m n C m n 1-C.C 1+-m n mD. mn C mn n 1--2、200件产品中有3件是次品,现从中任意抽取5件,其中至少有两件次品的抽法有( )种.A 、C 210C 3197B 、C 23C 3197 C 、C 5200-C 5197D 、C 5200+ C 12C 41973、十棱柱的内部对角线共有 ( ) A 、50条 .B 、60条 C 、70条 D 、80条4、空间9个点分布在异面直线l 1、l 2上,l 1有4个点,l 2上5个点,则由它们可确定异面直线 ( )A .180对 B.21对 C.121对 D.60对5、把半圆弧分成九等份,以这些分点(包括直径端点)为顶点,作出的钝角三角形有( )A.120个B.112个C.165D.1566、6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法( )A.C39 B.A39C.A69D.A39·A337、身高互不相同的6个人排成2横3纵列照相,在第一行的每个人都比他同列身后的人个子矮,则不同的排法种数为 ( )A.1B.15C.90D.548、马路上十盏路灯,为了节约用电可以关掉三盏路灯,但两端两盏不能关掉,也不能同时关掉相邻的两盏或三盏,这样的关灯方法有()A、56种 B、36种 C、20种 D、10种【填空题】9、从0、1、2、3、5、7、11七个数字中每次取出三个相乘,共有个不同的积。

10、甲、乙、丙、丁四个建筑公司承包8次工程,甲公司承包3项工程,乙公司承包1项,丙和丁各承包2项,则共有种承包方式。

11、平面上四条平行直线与另外五条平行直线垂直,则它们可以构成个矩形。

12、3个人坐在一排的8个座位上,若每人两边都是空位,则不同的坐法种数为。

13、2310的正约数有个,其中偶数有个。

高中数学北师大版选修2-3同步训练:(3)组合

(3)组合1、从正方体1111ABCD A B C D -的8个顶点中选取4个作为四面体的顶点,可得到的不同四面体的个数为( ).A. 4812C -B. 488C -C. 486C -D. 484C -2、某学生要邀请10位同学中的6位参加一项活动,其中有2位同学不能同时参加,则邀请的方法有( ).A.84种B.98种C.112种D.140种3、有11名学生,其中女生3名,男生8名,从中选出5名学生组成代表队,要求至少有1名女生参加,则不同的选派方法种数是( ).A.406B.560C.462D.1544、六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种5、用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24B.48C.60D.726、有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种7、在12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,则下列事件为必然事件的是( )A.3件都是正品B.至少有件是次品C.3件都是次品D.至少有件是正品8、将甲、乙、丙、丁四名学生分到三个不同的班里,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A.18B.24C.30D.369、方程22ay b x c =+中的{},,2,0,1,2,3a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A.28条B.32条C.36条D.48条10、设集合(){}12345{,,,,|1,0,1,1,2,3,4,5}i A x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A.60B.90C.120D.13011、若整数 x 满足232551616C C x x x +++=,则 x 的取值集合为 . 12、设4{,n A x x C n N ==∈且{}4},1,2,3,4n B ≤=,则A B ⋂=13、已知集合{}1,2,3,4,5,6A =,{}1,2B =,若集合M 从满足B M A ∈∈,则这样不同集合M 的个数为__________.14、某校开设9门课程供学生选修,其中,,A B C ,3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有__________种.15、从6双不同的手套中任取4只1.恰有1双配对的取法有多少种?2.没有1双配对的取法有多少种?3.至少有1双配对的取法有多少种?答案以及解析1答案及解析:答案:A解析:在正方体中,6个面和6个对角面上的四个点不能构成四面体.2答案及解析:答案:D解析:共有150624282828140C C C C C C ++=种3答案及解析:答案:A解析:共有142332383838406C C C C C C ++=种4答案及解析:答案:B解析:若最左端排甲,其他位置共有55120A = (种)排法;若最左端排乙,最右端共有4种排法,其余4个位置有4424A = (种)排法,所以共有120424216+⨯= (种)排法。

北师大版高中数学选修2-3同步精练3组合 Word版含解析

.以一个正三棱柱的顶点为顶点的四面体共有( )个......从名男医生,名女医生中选名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )种......若,则=( )......从位同学中选出位参加一个座谈会,要求张、王两人中至多有一个人参加,则不同的选法种数为( )......在某种信息传输过程中,用个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有和,则与信息至多有两个对应位置上的数字相同的信息个数为( )......名志愿者中安排人在周六,周日两天参加社区公益活动,若每天安排不同的人,则不同的安排方案共有种.(用数字作答).从名男生和名女生中选出人担任奥运会志愿者,若选出的人中既有男生又有女生,则不同的选法共有种.(用数字作答).若,求的取值集合..将个颜色互不相同的球全部放入编号为和的两个盒子里,使得放入每个盒子的球的个数不小于该盒子的编号,则不同的放球方法有多少种?.双互不相同的鞋子混装在一只口袋中,从中任意取出只,试求各有多少种情况出现如下结果:()只鞋子没有成双的;()只鞋子恰成两双;()只鞋子中有只成双,另只不成双.参考答案.答案:解析:根据题意,知-=-=个..答案:解析:可分两类,男医生名,女医生名或男医生名,女医生名.∴共有=种..答案:解析:∵,即,∴+=+,∴=..答案:解析:根据题意,参加座谈会人员的选法可分两类:第一类:张、王两人都不参加,有=种选法;第二类:张、王两人只有人参加,有=种选法,故共有+=种选法..答案:解析:与信息至多有两个位置上的数字对应相同的信息包括三类:第一类:与信息只有两个对应位置上的数字相同有=个;第二类:与信息只有一个对应位置上的数字相同有=个;第三类:与信息没有一个对应位置上的数字相同有=个.∴与信息至多有两个对应位置上的数字相同的信息有++=个..答案:解析:由题意知,=(种)..答案:解析:由题意知:=(种)..解:∵,∴∴∴∴又∵∈*,∴的集合为{}..解:将个颜色互不相同的球全部放入编号为和的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分两种情况:①号盒子里放球,其余的放入号盒子里,有=种方法;②号盒子里放球,其余的放入号盒子里,有=种方法;所以共有+=种不同的放球方法..解:()从双鞋子中选取双,有种不同的选法,每双鞋子中各取一只,分别有种取法,根据乘法计数原理,选取种数为·=(种).()从双鞋子中选取双,有=(种).()先选取一双有=种,再从双鞋中选取双有种选法.每双鞋只取一只有×=种,根据乘法计数原理得不同的取法种数为:·=(种).。

北师大版高中数学选修2-3同步精练:3组合 Word版含解析

∴与信息 0110 至多有两个对应位置上的数字相同的信息有 6+4+1=11 个.
6. 答案:140
解析:由题意知, C37 C34 =140(种).
7. 答案:34
解析:由题意知: C74 C44 =34(种).
8.
解:∵ C4n

C6n
Hale Waihona Puke ,∴C4n n C6n 6.
,
2
1


数为( ).
A.10
B.11
C.12
D.15
6.7 名志愿者中安排 6 人在周六,周日两天参加社区公益活动,若每天安排不同的 3 人,则
不同的安排方案共有__________种.(用数字作答)
7.从 4 名男生和 3 名女生中选出 4 人担任奥运会志愿者,若选出的 4 人中既有男生又有女生,
则不同的选法共有__________种.(用数字作答)
的球的个数不小于该盒子的编号,分两种情况:
①1 号盒子里放 1 球,其余的放入 2 号盒子里,有 C14 =4 种方法;
②1 号盒子里放 2 球,其余的放入 2 号盒子里,有 C24 =6 种方法;
所以共有 4+6=10 种不同的放球方法.
10. 解:(1)从 10 双鞋子中选取 4 双,有 C140 种不同的选法,每双鞋子中各取一只,分别有 2
(2)4 只鞋子恰成两双;
(3)4 只鞋子中有 2 只成双,另 2 只不成双.
2
1
参考答案
1. 答案:B
解析:根据题意,知 C64 -3= C62 -3=12 个.
2. 答案:A 解析:可分两类,男医生 2 名,女医生 1 名或男医生 1 名,女医生 2 名.

北师大版数学选修2-3第3章 §1

第三章 §1一、选择题1.相关系数r 的取值范围是( ) A .[-1,1] B .[-1,0] C .[0,1] D .(-1,1)[答案] A2.(2014·重庆理,3)已知变量x 与y 正相关,且由观测数据算得样本平均数x -=3,y -=3.5,则由该观测数据算得线性回归方程可能为( )A.y ^=0.4x +2.3 B .y ^=2x -2.4 C.y ^=-2x +9.5 D .y ^=-0.3x +4.4 [答案] A[解析] 本题考查了线性回归方程,将点(3,3.5)代入个方程中可知,选项A 成立,所以选A ,线性回归方程一定经过点(x ,y ).3.(2015·全国新课标Ⅱ,3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 [答案] D[解析] 由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D.4.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1[答案] D[解析] 本题考查了相关系数及相关性的判定.样本相关系数越接近1,相关性越强,现在所有的样本点都在直线y =12x +1上,样本的相关系数应为1.要注意理清相关系数的大小与相关性强弱的关系.5.(2015·福建理,4)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元[答案] B[解析] 由已知得x =8.2+8.6+10.0+11.3+11.95=10(万元),y =6.2+7.5+8.0+8.5+9.85=8(万元),故a ^=8-0.76×10=0.4.所以回归直线方程为y ^=0.76x +0.4,社区一户年收入为15万元家庭年支出为y ^=0.76×15+0.4=11.8(万元),故选B.二、填空题6.对于回归方程y =4.75x +257,当x =28时,y 的估计值是____________. [答案] 390[解析] ∵y =4.75x +257,当x =28时,y =4.75×28+257=390.7.某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:支出有__________线性相关关系.[答案]13较强的[解析]由表中所组的数据知所求的中位数为13,画出x与Y的散点图知它们有较强的线性相关关系.8.如图所示,有5组数据,去掉________后,剩下的4组数据的线性相关性更好了.[答案]D(3,10)[解析]由散点图可见:点A、B、C、E近似地在一条直线上,所以去掉D点以后,线性相关性就更好了.三、解答题9.下表提供了某厂节能降耗技术改造实行后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)[解析](1)由题设所给数据,可得散点图如下图所示.(2)由对照数据,计算得4i =1x 2i =86,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,已知4i =1x i y i =66.5,所以,由最小二乘法确定的回归方程的系数为:b =4i =1x i y i -4x y 4i =1x 2i -4x 2=66.5-4×4.5×3.586-4×4.52=0.7,a =y -b x =3.5-0.7×4.5=0.35.因此,所求的线性回归方程为y =0.7x +0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为90-(0.7×100+0.35)=19.65(吨标准煤).[反思总结] 解本节有关散点图、相关系数、回归直线方程时,要明确散点图的意义,熟记公式,准确计算.由于有关公式较为麻烦,一般说来,计算量比较大,建议采用分步计算的方法.10.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解析] (1)由于x =16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y =16(y 1+y 2+y 3+y 4+y 5+y 6)=80.所以a =y -b x =80+20×8.5=250,从而回归直线方程为y =-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1000 =-20(x -334)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定价为8.25元时,工厂可获得最大利润.一、选择题1.(2014·湖北理,4)根据如下样本数据得到的回归方程为y =bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <0[答案] B[解析] 作出散点图如下:由图象不难得出:回归直线y ^=bx +a 的斜率b <0,截距a >0.所以a >0,b <0.解答本题的关键是画出散点图,然后根据散点图中回归直线的斜率、截距来判断系数b ,a 与0的大小.2.对四对变量y 和x 进行相关性检验,已知n 是观测值的组数,r 是相关系数,且知①n =3,r =0.9950;②n =7,r =0.9533;③n =15,r =0.3012;④n =17,r =0.4991.(已知n =3时,r 0.05=0.997;n =7时,r 0.05=0.754;n =15时,r 0.05=0.514;n =17时,r 0.05=0.482)(r 0.05为r 的临界值)则变量y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④ D .③和④[答案] C[解析] 若y 与x 具有线性相关关系,则需r >r 0.05,对②和④都满足r >r 0.05. 3.已知x 、y 之间的一组数据:x 与y A .(0,0) B .(x -,0) C .(0,y -) D .(x -,y -)[答案] D[解析] 任何线性回归方程必定过(x -,y -)点.4.(2013·湖北文,4)四名同学根据各自的样本数据研究变量x 、y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④ D .①④ [答案] D[解析] 若y 与x 负相关,则y ^=bx +a 中b <0,故①不正确,②正确; 若y 与x 正相关,则y ^=bx +a 中b >0,故③正确,④不正确;故选D.二、填空题5.下列说法中错误的命题序号是________.(1)如果变量η与ξ之间存在着线性相关关系,则我们根据实验数据得到的点(x i ,y i )(i =1、2、…,n )将散布在某一条直线的附近(2)如果两个变量ξ与η之间不存在线性关系,那么根据它们的一组数据(x i ,y i )(i =1,2,…,n )不能写出一个线性方程(3)设x 、y 是具有相关关系的两个变量,且x 关于y 的线性回归方程为y =bx +a ,b 叫作回归系数(4)为使求出的线性回归方程有意义,可用统计假设检验的方法来判断变量η与ξ之间是否存在线性相关关系[答案] (2)[解析] 两个变量不具有相关关系,但据公式,我们也能求得其回归方程,只是无意义,因此要进行相关性检验.然后再求回归直线的方程.故(2)不正确,∴填(2).6.某化工厂为预测某产品的回收率y ,研究得知它和原料有效成分含量x 之间具有线性相关关系,现取8对观测值,计算得∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =18x i y i =1849,则y与x 的线性回归方程是____________.(精确到小数点后两位数)[答案] y =11.47+2.62x[解析] 根据给出的数据可先求x =18∑i =18x i =132,y =18∑i =18y i =572,然后代入公式b =∑i =18x i y i -8x y∑i =18x 2i -8x2=1849-8×132×572478-8×1694≈2.62,a =y -b x =11.47,进而求得回归方程y =11.47+2.62x .三、解答题7.假设某设备的使用年限x 和所支出的维修费用y (万元)有如下的统计资料.若由资料知y(1)线性回归方程y =bx +a 的回归系数a 、b ; (2)估计使用年限为10年时,维修费用是多少? [解析] (1)x -=4,y -=5,∑i =1nx 2i =90,∑i =1nx i y i =112.3, 于是b =112.3-5×4×590-5×42=1.23,a =y --b x -=5-1.23×4=0.08.(2)回归直线方程为y =1.23x +0.08.当x =10年时,y =1.23×10+0.08=12.38(万元),即估计使用10年时的维修费用是12.38万元.8.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y =bx +a 中,b =∑i =1nx i y i -n x -y-∑i =1n x 2i -n x -2,a =y --b x -, 其中x -,y -为样本平均值.线性回归方程也可写为y ^=b ^x +a ^.[解析] (1)由题意知n =10,x =-1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2.又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i =n x y =184-10×8×2=24.由此得b =l xy l xx =2480=0.3,a =y -b x =2-0.3×8=-0.4,故所求回归方程为y=0.3x-0.4.(2)由于变量y的值B随x的值增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可线性化的回归分析 同步练习
【选择题】
1、给定y 与x 的一组样本数据,求得相关系数r=-0.690,则( ) A.y 与x 的线性相关性很强 B. y 与x 的相关性很强 C. y 与x 正线性相关 D. y 与x 负线性相关
2、下列关系中是相关关系的是 ( )
A 、位移与速度、时间的关系
B 、烧香的次数与成绩的关系
C 、广告费支出与销售额的关系
D 、物体的加速度与力的关系 【填空题】
3、为考虑广告费用x 与销售额y 之间的关系,随机地抽取5家超市,得到如下表
4、独立性检验常作的图形是______________和_________________. 【解答题】
5、在彩色显影中,由经验可知,形成染料光学密度y 与析出银的光学密度x 由公式)0(<=b Ae y x
b 表示,现测得试验数据如下:
检验每册书的成本费Y 与印刷册数的倒数x
之间是否具有线性相关关系,如有,
求出Y 对x 的回归方程.
参考答案
1、D
2、C
3、31.856 4
4、三维柱形图,二维条形图
5、
解:由题意知,对于给定的公式)0(<=b Ae y x
b 两边取自然对数,
得.ln ln x
b
A y +=
与线性回归方程相对照可以看出,只要取,ln ,ln ,1
A a y v x
u ===
就有v =a +bu . 这是V 对u 的线性回归直线方程,对此我们再套用相关性检验,求回归系数b 和
a ,题目中所给的数据由变量置换,ln ,1
y v u ==变为如下所示的数据.
由于,75.0998.0||>=r 可知,v u 与具有很强的线性相关关系. 再求出b =-0.14,a =0.548, u v
146.0548.0ˆ-=∴ 把v u 与置换回来可得
.146
.0548.0ˆln x
y
-=∴ x
x
x
e
e
e e y
146.0146.0548.0146
.0548.073.1ˆ---
=⋅==∴
所以回归曲线方程为x
e y
146
.073.1ˆ-=∴
6、Y 对x 的回归方程为.120.1976
.8ˆ+=x
y。

相关文档
最新文档