[实用参考]大学物理(热学知识点总结).ppt

合集下载

大学物理上期末知识点总结

大学物理上期末知识点总结

大学物理上期末知识点总结关键信息:1、力学部分知识点质点运动学牛顿运动定律动量守恒定律和能量守恒定律刚体定轴转动2、热学部分知识点气体动理论热力学基础3、电磁学部分知识点静电场恒定磁场电磁感应电磁场和电磁波11 力学部分111 质点运动学位置矢量、位移、速度、加速度的定义和计算。

运动方程的表达式和求解。

曲线运动中的切向加速度和法向加速度。

相对运动的概念和计算。

112 牛顿运动定律牛顿第一定律、第二定律、第三定律的内容和应用。

常见力的分析,如重力、弹力、摩擦力等。

牛顿定律在质点和质点系中的应用。

113 动量守恒定律和能量守恒定律动量、冲量的定义和计算。

动量守恒定律的条件和应用。

功、功率的计算。

动能定理、势能的概念和计算。

机械能守恒定律的条件和应用。

114 刚体定轴转动刚体定轴转动的运动学描述,如角速度、角加速度等。

转动惯量的计算和影响因素。

刚体定轴转动定律的应用。

力矩的功、转动动能、机械能守恒在刚体定轴转动中的应用。

12 热学部分121 气体动理论理想气体的微观模型和假设。

理想气体压强和温度的微观解释。

能量均分定理和理想气体内能的计算。

麦克斯韦速率分布律。

122 热力学基础热力学第一定律的内容和应用。

热力学过程,如等容、等压、等温、绝热过程的特点和计算。

循环过程和热机效率。

热力学第二定律的两种表述和微观意义。

13 电磁学部分131 静电场库仑定律、电场强度的定义和计算。

电场强度的叠加原理。

电通量、高斯定理的应用。

静电场的环路定理、电势的定义和计算。

等势面、电场强度与电势的关系。

132 恒定磁场毕奥萨伐尔定律、磁感应强度的定义和计算。

磁感应强度的叠加原理。

磁通量、安培环路定理的应用。

安培力、洛伦兹力的计算。

133 电磁感应法拉第电磁感应定律的应用。

动生电动势和感生电动势的计算。

自感和互感的概念和计算。

磁场能量的计算。

134 电磁场和电磁波位移电流的概念。

麦克斯韦方程组的积分形式和微分形式。

电磁波的产生和传播特性。

大学物理上册(第五版)重点总结归纳及试题详解第五章热力学基础

大学物理上册(第五版)重点总结归纳及试题详解第五章热力学基础

⼤学物理上册(第五版)重点总结归纳及试题详解第五章热⼒学基础第五章热⼒学基础⼀、基本要求1.掌握功、热量、内能的概念,理解准静态过程。

2.掌握热⼒学第⼀定律,能分析、计算理想⽓体等值过程和绝热过程中功、热量、内能的改变量。

3.掌握循环过程和卡诺循环等简单循环效率的计算。

4.了解可逆过程和不可逆过程。

5.理解热⼒学第⼆定律及其统计意义,了解熵的玻⽿兹曼表达式及其微观意义。

⼆、基本内容1. 准静态过程过程进⾏中的每⼀时刻,系统的状态都⽆限接近于平衡态。

准静态过程可以⽤状态图上的曲线表⽰。

2. 体积功pdV dA = ?=21V V pdV A功是过程量。

3. 热量系统和外界之间或两个物体之间由于温度不同⽽交换的热运动能量。

热量也是过程量。

4. 理想⽓体的内能2iE RT ν=式中ν为⽓体物质的量,R 为摩尔⽓体常量。

内能是状态量,与热⼒学过程⽆关。

5. 热容定体摩尔热容 R i dT dQ C V m V 2)(,== 定压摩尔热容 R i dT dQ C p mp 22)(,+== 迈耶公式 R C C m V m p +=,, ⽐热容⽐ ,,2p m V mC i C iγ+==6.热⼒学第⼀定律A E Q +?=dA dE dQ +=(微分形式)7.理想⽓体热⼒学过程主要公式(1)等体过程体积不变的过程,其特征是体积V =常量。

过程⽅程: =-1PT 常量系统对外做功: 0V A =系统吸收的热量:()(),21212V V m iQ vC T T v R T T =-=-系统内能的增量:()212V iE Q v R T T ?==-(2)等压过程压强不变的过程,其特征是压强P =常量。

过程⽅程: =-1VT 常量系统对外做功:()()212121V P V A PdV P V V vR T T ==-=-?系统吸收的热量: (),2112P P m i Q vC T v R T T ??=?=+-系统内能的增量: ()212iE v R T T ?=-(3)等温过程温度不变的过程,其特征是温度T =常量。

热学-兰州大学物理学院

热学-兰州大学物理学院

热学课程教学大纲一、课程说明课程名称:热学所属专业:物理学专业本科学生课程性质:大类平台课程学分:3分主要先修课程和后续课程:(1)先修课程:高等数学,力学。

(2)后续课程:热力学与统计物理,电磁学,原子物理学,固体物理。

课程简介、目标与任务:“普通物理学”课程是理科物理类专业的重要基础课,由力学、热学电磁学、光学和原子物理学这五个部分组成。

各个部分单独设课,“热学”是其中继“力学”后的第二门课程。

“普通物理学”课程的“目的是使学生系统地了解和掌握物理学的基本概念、基本原理、基本知识、基本思想“和方法,以及它们的实验基础;了解物理学的发展方向及物理学与其它自然科学和社会科学等的关系;培养学生进一步学好物理学的兴趣,提高学生的自学能力、分析和解决问题的能力;逐步帮助学生建立科学的自然观、世界观和方法论。

”“热学”课程在物理类专业一年级第二学期开设。

通过“热学”课程的学习,使学生认识物质热运动形态的特点、规律和研究方法,深刻地理解热运动的本质,较为系统地掌握热力学、气体动理论和物性学的基础知识,能独立解决今后学习中遇到的一般热学问题,为进一步学习电磁学、原子物理学、理论物理热力学和统计物理等后续课程打下良好的基础。

教材:《热学》(第二版),李椿等编,高等教育出版社,2008主要参考书:1. 《热学》(第二版)习题分析与解答,宋峰常树人编,高等教育出版社,20102. 《热学》(第二版)常树人编,南开大学出版社,20092.《热学教程》,包科达编,科学出版社,20073. 《热学》(第二版),张玉民编,科学出版社,20064.《新概念物理教程·热学》(第二版),赵凯华等编,高等教育出版社,20055.《普通物理学教程·热学》(第二版),秦允豪编,高等教育出版社,20046. 《热学》(第二版),李洪芳编,高等教育出版社,2001二、课程内容与安排绪论(1学时)第一节热学研究的对象和方法第二节热学发展简述主要内容:热学研究的对象热现象热运动热力学统计物理学气体动理学理论物性学热学研究的方法宏观量微观量宏观量与微观量的关系热学发展简史热学常用物理量的符号热学常用物理量的单位基本物理常量基本物理常量的国际推荐值物理量的数量级物质世界的层次分子的典型数据热学课程的特点【掌握】:热学研究的对象热运动热学研究的方法宏观量微观量宏观量与微观量的关系热学课程的特点【了解】:热学发展简史热学常用物理量的符号热学常用物理量的单位物理量的数量级分子的典型数据物质世界的层次【难点】:深入理解热学是适用于宏观和微观的普适理论宏观理论和微观理论的本质关系第一章温度(5学时)第一节平衡态状态参量第二节温度第三节气体的物态方程主要内容:平衡态热动平衡对平衡态的描述力学平衡热学平衡化学平衡相变平衡状态参量几何参量力学参量化学参量电磁参量热接触热平衡热动平衡的条件热力学第零定律温度及温标建立温标的要素水的冰点水的汽点水的三相点经验温标华氏温标摄氏温标理想气体温标热力学温标国际实用温标ITS-90 温度计液体温度计定体气体温度计定压气体温度计物态方程气体物态方程玻意耳定律阿伏伽德罗定律理想气体物态方程普适气体常量阿伏伽德罗常量玻尔兹曼常量洛施密特常量道尔顿分压定律混合理想气体的物态方程分体积定律平均摩尔质量体积分数压强分数摩尔质量分数质量分数物质的量分数混合理想气体的密度非理想气体物态方程范德瓦耳斯方程范德瓦耳斯气体昂内斯方程【重点掌握】:平衡态热动平衡热动平衡的条件热力学第零定律温度及温标的概念理想气体物态方程范德瓦耳斯方程【掌握】:对平衡态的描述力学平衡热学平衡化学平衡相变平衡状态参量几何参量力学参量化学参量热接触热平衡建立温标的要素水的冰点水的汽点水的三相点经验温标理想气体温标热力学温标玻意耳定律阿伏伽德罗定律普适气体常量阿伏伽德罗常量玻尔兹曼常量洛施密特常量道尔顿分压定律混合理想气体的物态方程【了解】:国际实用温标ITS-90华氏温标摄氏温标温度计液体温度计定体气体温度计定压气体温度计各种物态方程平均摩尔质量体积分数压强分数摩尔质量分数质量分数物质的量分数混合理想气体的密度非理想气体物态方程昂内斯方程【难点】:平衡态热动平衡温度及温标概念的建立物态方程的建立第二章气体分子动理论的基本概念(6学时)第一节物质的微观模型第二节理想气体的压强第三节温度的微观解释第四节分子力第五节范德瓦耳斯气体的压强主要内容:气体动理学理论的基本论点分子论点热运动论点分子力论点统计论点布朗运动的微观解释统计规律性与涨落现象偶然性与必然性的关系统计性假设平均值加权平均统计平均理想气体的微观模型理想气体压强公式的推导气体压强的微观解释用不同的简化模型推导理想气体压强公式理想气体分子平均平动动能与热力学温度的关系温度的微观解释对理想气体定律的推证阿伏伽德罗定律道尔顿分压定律分子间力伦纳德-琼斯模型短程力分子间力势能常用分子间力势能模型微观粒子的弹性碰撞模型分子有效直径分子直径与热力学温度的关系分子间力的平衡距离分子间斥力的有效作用距离分子间引力的有效作用距离分子间力的典型数据分子体积引起的修正分子间引力所引起的修正范德瓦耳斯常量b 范德瓦耳斯常量a范德瓦耳斯气体的压强范德瓦耳斯气体的压强与理想气体的压强范德瓦耳斯方程的适用范围范德瓦耳斯气体的摩尔体积【重点掌握】:气体动理学理论的基本论点理想气体的微观模型气体压强的微观解释温度的微观解释【掌握】:理想气体压强公式的推导用不同的简化模型推导理想气体压强公式理想气体分子平均平动动能与热力学温度的关系对理想气体定律的推证常用分子间力势能模型微观粒子的弹性碰撞模型分子有效直径的概念分子体积引起的修正分子间引力所引起的修正范德瓦耳斯气体的压强【了解】:布朗运动的微观解释分子间力来源分子直径与热力学温度的关系分子间力的平衡距离分子间斥力的有效作用距离分子间引力的有效作用距离分子间力的典型数据范德瓦耳斯常量b范德瓦耳斯常量a范德瓦耳斯方程的适用范围【一般了解】:偶然性与必然性的关系统计性假设算术平均几何平均加权平均统计平均范德瓦耳斯气体的压强与理想气体的压强用迭代法计算范德瓦耳斯气体的摩尔体积【难点】:各种简化模型的建立方式物体内分子之间的相互作用和分子的热运动决定其宏观性质理想气体压强公式的推导宏观量的微观本质第三章气体分子热运动速率和能量的统计分布(11学时)第一节气体分子的速率分布率第二节用分子射线实验验证麦克斯韦速度分布律第三节玻尔兹曼分布律重力场中微粒按高度的分布第四节能量按自由度均分定理主要内容:分布函数速率分布函数速率分布函数的归一化条件麦克斯韦速率分布律麦克斯韦速率分布曲线的特征麦克斯韦速率分布律的适用范围随机事件概率概率加法定理概率乘法定理概率分布函数气体分子的最概然速率麦克斯韦速率分布函数的约化形式用麦克斯韦速率分布函数求平均值气体分子的平均速率和方均速率用麦克斯韦速率分布函数求分子数误差函数的计算气体分子速率其他特征速率麦克斯韦速度分布律麦克斯韦速度分布曲线的特征麦克斯韦速度分布函数的约化形式速度空间麦克斯韦速度分布函数与麦克斯韦速率分布函数的关系麦克斯韦速度分布函数的定义域气体分子速度分量的最概然值、平均值和方均根值分子通量公式泻流分子束泻流存在的条件麦克斯韦发射分布麦克斯韦发射分布的约化形式麦克斯韦速率分布律的实验验证密勒和库士实验葛正权实验等温大气等温气压公式气压计和高度计玻尔兹曼分布律重力场中微拉按高度的分布阿伏伽德罗常量的测定大气标高大气粒子总数大气的温度结构标准大气负绝对温度自由度分子运动的自由度分子的平动自由度分子的转动自由度分子的振动自由度刚性分子和非刚性分子的自由度线形分子和非线形分子的自由度能量均分定理理想气体的内能理想气体热容的经典理论能量均分定理的应用限度量子理论对气体热容量的解释【重点掌握】:麦克斯韦速率分布律麦克斯韦速度分布律玻尔兹曼分布律能量均分定理【掌握】:麦克斯韦速率分布曲线的特征麦克斯韦速率分布律的适用范围气体分子的最概然速率用麦克斯韦速率分布函数求平均值、气体分子的平均速率和方均速率用麦克斯韦速率分布函数求分子数麦克斯韦速度分布曲线的特征分子通量公式等温大气等温气压公式重力场中微拉按高度的分布分子运动的自由度理想气体的内能理想气体热容的经典理论【了解】:分布函数随机事件概率概率加法定理概率乘法定理气体分子特征速率的量纲分析麦克斯韦速率分布函数的约化形式麦克斯韦发射分布麦克斯韦速率分布律的实验验证密勒和库士实验葛正权实验大气标高能量均分定理的应用限度量子理论对气体热容量的解释【一般了解】:误差函数的计算麦克斯韦发射分布的约化形式阿伏伽德罗常量的测定大气粒子总数大气总质量大气的温度结构大气的均质层标准大气负绝对温度【难点】:速率分布函数及分布函数的统计意义麦克斯韦速率及速度分布律函数的统计意义及应用玻尔兹曼分布律的统计意义及应用第四章气体内的输运过程(5学时)第一节气体分子的平均自由程第二节输运过程的宏观规律第三节输运过程的微观规律主要内容:气体分子的碰撞频率气体分子的碰撞截面气体分子的平均自由程气体分子的平均相对速率与平均速率的关系分子的自由程分布函数穿过指定截面的分子的平均自由程分子穿过指定截面前最后一次受碰处至截面的平均距离黏性现象牛顿黏性定律黏度系数黏性现象的微观解释热传导现象傅里叶定律热导率热传导现象的微观解释热传导与电传导扩散现象菲克定律扩散系数扩散现象的微观解释黏度系数、热导率、扩散系数与压强的关系黏度系数、热导率、扩散系数与温度的关系黏度系数、热导率、扩散系数彼此之间的关系黏度系数、热导率、扩散系数的数量级低压下气体的黏性现象低压下气体的热传导现象容器对其内的低压气体分子的碰撞频率和平均自由程的限定估算分子有效直径的方法的比较分子热运动的典型数据【重点掌握】:气体分子的碰撞频率气体分子的碰撞截面气体分子的平均自由程黏性现象热传导现象扩散现象【掌握】:牛顿黏性定律及其微观解释傅里叶定律及其微观解释菲克定律及其微观解释低压下气体的黏性现象低压下气体的热传导现象容器对其内的低压气体分子的碰撞频率和平均自由程的限定【了解】:黏度系数、热导率、扩散系数与压强、温度的理论和实验比较黏度系数、热导率、扩散系数彼此之间的关系黏度系数、热导率、扩散系数的数量级估算分子有效直径的方法的比较分子热运动的典型数据【一般了解】:穿过指定截面的分子的平均自由程分子穿过指定截面前最后一次受碰处至截面的平均距离的概念【难点】:气体分子的碰撞频率、气体分子的碰撞截面、气体分子的平均自由程的概念的建立分子穿过指定截面前最后一次受碰处至截面的平均距离第五章热力学第一定律(10学时)第一节热力学过程第二节功第三节热量第四节热力学第一定律第五节热容焓第六节气体的内能焦耳-汤姆孙实验第七节热力学第一定律对理想气体的应用第八节循环过程和卡诺循环主要内容:热力学过程准静态过程非静态过程作功体积功作功的计算过程曲线示功图广义坐标广义位移广义力广义功绝热过程绝热功内能热量传热传热的计算热容量比热容摩尔热容焓作功与传热都是过程量作功与传热的等当性热力学第一定律能量守恒定律第一类永动机符号规定焦耳实验绝热自由膨胀过程等内能过程理想气体的内能焦耳-汤姆孙实验绝热节流膨胀过程等焓过程焦耳-汤姆孙效应焦耳-汤姆孙系数理想气体的焓反转温度理想气体的宏观定义迈耶关系热功当量的测定热力学第一定律对理想气体的应用等体过程等压过程等温过程绝热过程多方过程等热容过程直线过程理想气体绝热过程方程泊松公式循环热机的工作原理正循环的效率制冷机与热泵的工作原理逆循环的制冷系数符号规定卡诺热机卡诺循环理想气体卡诺循环的效率理想气体逆向卡诺循环的制冷系数奥托循环狄塞尔循环斯特林循环回热式循环热机与热泵的组合应用【重点掌握】:热力学过程准静态过程作功体积功作功的计算绝热功内能热量热容量比热容摩尔热容焓理想气体的宏观定义迈耶关系热力学第一定律对理想气体的应用循环热机的工作原理正循环的效率逆循环的制冷系数【掌握】:理想气体的内能理想气体绝热过程方程泊松公式【难点】:绝热过程多方过程第六章热力学第二定律(6学时)第一节热力学第二定律第二节热现象过程的不可逆性第三节热力学第二定律的统计意义第四节卡诺定理第五节热力学温标第六节应用卡诺定理的例子主要内容:热力学第二定律开尔文表述克劳修斯表述第二类永动机热力学第二定律的适用范围热力学第二定律两种表述的等效性可逆过程不可逆过程各种不可逆过程互相关联热力学第二定律的实质论证过程的不可逆性的方法不可逆过程的特点孤立系统宏观状态和微观状态气体自由膨胀的不可逆性热力学第二定律的统计意义卡诺定理可逆卡诺循环的效率不可逆卡诺循环的效率对于制冷机类似卡诺定理的结论卡诺定理的推广任意正循环的效率卡诺定理的应用热力学温标的引入热力学温标与理想气体温标和摄氏温标的关系内能随体积的改变与物态方程的关系定压摩尔热容与定体摩尔热容的关系【重点掌握】:热力学第二定律开尔文表述克劳修斯表述热力学第二定律两种表述的等效性可逆过程不可逆过程热力学第二定律的实质卡诺定理【掌握】:孤立系统宏观状态和微观状态气体自由膨胀的不可逆性热力学第二定律的统计意义【难点】:论证过程的不可逆性的方法不可逆过程的特点第七章固体(1学时)第一节晶体第二节晶体中粒子的结合力和结合能第三节晶体中粒子的热运动主要内容:物质的聚集态凝聚体固体液体气体晶体与非晶体单晶体和多晶体长程有序晶体中粒子的结合力晶体弹性的微观解释晶体中粒子的热运动热振动杜隆-珀蒂定律晶体热膨胀的微观解释晶体线膨胀率的计算非晶态固体过冷液体短程有序【重点掌握】:晶体中粒子的热运动热振动杜隆-珀蒂定律【掌握】:晶体与非晶体单晶体和多晶体晶体中粒子的结合力晶体弹性的微观解释晶体热膨胀的微观解释第八章液体(4学时)第一节液体的微观结构液晶第二节液体的彻体性质第三节液体的表面性质主要内容:液体与晶体和气体的比较液体的宏观特征液体的微观结构定居时间液体各向同性液晶外界因素对液晶的影响显示技术液体的表面性质表面张力表面层表面张力的微观解释表面张力系数影响表面张力系数的因素表面活性物质球形液面下的附加压强拉普拉斯公式柱形液面下的附加压强马鞍形液面下的附加压强接触角润湿和不润湿附着层附着力和内聚力润湿和不润湿的微观解释毛细现象毛细管【重点掌握】:液体的表面性质表面张力表面层表面张力的微观解释表面张力系数球形液面下的附加压强接触角毛细现象【掌握】:润湿和不润湿附着层附着力和内聚力润湿和不润湿的微观解释第九章相变(5学时)第一节单元系一级相变的普遍特征第二节气液相变第三节克拉珀龙方程第五节范德瓦耳斯等温线对比物态方程第六节固液相变第七节固气相变三相图主要内容:元单元系二元系多元系相相变一级相变单元系一级相变相变中体积的改变相变潜热内潜热和外潜热汽化蒸发气液等温相变饱和蒸气与液体平衡汽化曲线相平衡曲线饱和蒸气压影响饱和蒸气压的因素饱和蒸气压与液面曲率的关系凝结过冷蒸气亚稳态凝结核云雾的形成云室沸腾沸腾的条件过热液体亚稳态汽化核泡室暴沸临界等温线临界点临界态临界参量临界温度临界压强临界摩尔体积克劳修斯—克拉珀龙方程沸点与压强的关系正常沸点高压锅蒸气压方程由蒸气压方程求潜热沸点与海拔高度的关系兰州市区水的沸点熔点与压强的关系正常熔点范德瓦耳斯等温线亚稳平衡范德瓦耳斯气体的临界参量临界系数由临界参量确定范德瓦耳斯常量对应态对应态定律熔化凝固熔化曲线凝固时体积的改变升华凝华升华曲线升华与蒸发升华热与汽化热和熔化热的关系三相点相图三相图【重点掌握】:单元系一级相变相变中体积的改变相变潜热克劳修斯—克拉珀龙方程【掌握】:气液等温相变饱和蒸气与液体平衡汽化曲线相平衡曲线【难点】:临界等温线临界点临界态临界参量范德瓦耳斯等温线亚稳平衡制定人:蔡让岐毛延哲审定人:批准人:日期:。

2024版《大学物理》全套教学课件(共11章完整版)

2024版《大学物理》全套教学课件(共11章完整版)

01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。

02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。

法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。

介绍互感的概念、计算方法以及变压器的工作原理和应用。

分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。

电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。

大学物理知识点总结

大学物理知识点总结

大学物理知识点总结大学物理是理工科学生的一门重要基础课程,它涵盖了广泛的知识领域,包括力学、热学、电磁学、光学和近代物理等。

以下是对大学物理主要知识点的总结。

一、力学力学是大学物理的基础部分,主要研究物体的运动和相互作用。

1、运动学位移、速度和加速度的概念:位移是物体位置的变化,速度是位移对时间的变化率,加速度是速度对时间的变化率。

匀变速直线运动:速度与时间的关系、位移与时间的关系等公式,如 v = v₀+ at , x = v₀t + 1/2at²。

曲线运动:平抛运动、圆周运动等,涉及到线速度、角速度、向心加速度等概念及相关公式。

2、牛顿运动定律牛顿第一定律:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。

牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比,即 F = ma 。

牛顿第三定律:两个物体之间的作用力和反作用力,总是大小相等,方向相反,作用在同一条直线上。

3、功和能功的定义:力在位移方向上的分量与位移的乘积,W =Fxcosθ 。

动能定理:合外力对物体所做的功等于物体动能的变化。

势能:重力势能、弹性势能等,势能与位置有关。

机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。

二、热学热学研究热现象的规律和本质。

1、热力学第一定律表述为:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和,即ΔU = Q + W 。

应用于理想气体的等容、等压、等温过程和绝热过程。

2、热力学第二定律克劳修斯表述:热量不能自发地从低温物体传到高温物体。

开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。

3、理想气体状态方程公式为 pV = nRT ,其中 p 是压强,V 是体积,n 是物质的量,R 是普适气体常量,T 是温度。

三、电磁学电磁学是大学物理中的重要部分,涉及电场、磁场和电磁感应等内容。

大学物理知识点总结

大学物理知识点总结

大学物理知识点总结
大学物理是一门涉及物质、能量及其相互关系的科学学科。


下是一些重要的大学物理知识点总结:
力学
- 牛顿三定律:包括惯性定律、动量定律和作用反作用定律。

- 运动学:研究物体的位移、速度和加速度等运动规律。

- 动力学:研究物体受力后的运动状态和受力的相互关系。

热学
- 温度和热量:研究物体的热平衡和热传递。

- 理想气体状态方程:描述理想气体的温度、压力和体积之间
的关系。

- 热力学第一定律:能量守恒定律,热量和功之间的相互转化。

电磁学
- 电荷与电场:研究电荷的性质和电场的分布。

- 电流与电路:研究电流的流动和电路的组成和特性。

- 磁场与电磁感应:研究磁场的产生和电磁感应现象。

光学
- 光的传播:研究光的传播规律和光的特性。

- 光的干涉和衍射:研究光的相干性和干涉、衍射现象。

- 光的折射和反射:研究光在不同界面间的折射和反射现象。

以上是大学物理中的一些重要知识点总结,希望能帮助您深入理解和掌握物理学的基础知识。

大学物理热力学基本概念

热力学第一定律和第二定律
当一个科学家发现,自然界的结构有 这么多不可思议的奥妙,他会有一个触 及灵魂的震动。而这个时候的感觉,我 想是和最真诚的宗教信仰很接近的。
---杨振宁结构框图热力学Fra bibliotek统 内能变化的
两种量度
功 热量
等值过程
热力学
应用
第一定律 (理想气体)
热力学
绝热过程 循环过程
第二定律 (对热机效率的研究) 卡诺循环
p C T
等压 dp 0
V C T
热一律
QV E
Qp E pV
内能增量 M
E CVT
M
E CVT
等温 dT0 pVC QT A
0
绝热
dQ 0
pV C1
V1TC2
AE
p1T C3
实用文档
M
E CVT
过程
功A
等体
0
等压
pV
等温
绝热
M RT lnV2
V1
M RT ln p1
p2
M
CV T
2
2
Cp i 2 1
CV
i
泊松比
单原子分子气体 双原子刚性分子
Cp5 2R2.8 0 Jm-o 1K l1 Cp7 2R2.1 9Jm-o 1K l1
实用文档
1.67 1.40
讨论: 为什 Cp么 CV?
设系统 T1 由 T2 (T2T1),无论何 E种 相过 同程 。
若 V cA 0Q 1E
3)相互关系:互相补充,相辅相成 热力学- 宏观理论,基本结论来自实验事实,普遍可靠,
但不能解释其本质 解释 验证
统计物理- 微观理论,揭示热现象本质

大学物理力学热力学基础

#是统计规律,只适用于大量分子组成 是统计规律, 是统计规律 的系统。 的系统。 # 是气体分子无规则碰撞的结果。 是气体分子无规则碰撞的结果。 i 能量) ( 2.分子的 2.分子的平均动能 或:分子的平均 能量)ε = 2 kT 理想气体内能: 三. 理想气体内能:气体内所有分子热
k
运动的总动能
f(v) f(vP)
vP v #分布曲线或者高而窄,或者矮而宽。从而 分布曲线或者高而窄,或者矮而宽。 保证曲线下的面积为1 保证曲线下的面积为1
V’p 四. 用麦克斯韦速率分布函数求速率的各种平均值
0
1. 平均速率 2. 方均根速率
2 ∞ 0 2
8kT 8RT v = ∫ vf (v)dv = = πm πµ
气体分子平均 第三节 气体分子平均平动动能与温度的关系 温度的统计解释) (或:温度的统计解释) 推导气体分子平均 一.推导气体分子平均平动动能与温度的关系 推导气体分子 1. 理想气体状态方程
P=nkT
3 2
k=R = 1.38 ×10−23 J ⋅ K −1 (玻尔兹曼常数) 其中 NA
2.分子平均 2.分子平均平动动能与温度的关系 w = kT 分子 •温度标志着物体内部分子无规则运动的
摩尔氢气和1摩尔氦 例3. 一个容器内贮有 摩尔氢气和 摩尔氦 . 一个容器内贮有1摩尔氢气和 气,若两种气体各自对器壁产生的压强分别 则两者的大小关系是: 为p1和p2,则两者的大小关系是: (A) p1> p2. (C) p1=p2. (B) p1< p2. (D)不确定的. 不确定的. 不确定的
例6. 容器内混有二氧化碳和氧气两种气体, . 容器内混有二氧化碳和氧气两种气体, 混合气体的温度是 290 K,内能是 ,内能是9.64×105 × J,总质量是 ,总质量是5.4 kg,试分别求二氧化碳和氧 , 气的质量. 气的质量.

大学物理之热力学第一定律


CV ,m
i R 2
( i 为分子的自由度数)
单原子气体: i =3 , 氦、氖 双原子气体:i = 5 ,氢、氧、氮 多原子气体:i = 6 ,水蒸汽、二氧化碳、甲烷
定体摩尔热容与定压摩尔热容的关系
CV,m
i R 2
C p ,m
i 1 R 2
迈耶公式:
C p ,m CV ,m R
ΔE Q W 312 J
3 2 1
p/atm
V
V1
V4
V3
9-3-2 绝热过程
一、绝热过程 系统不与外界交换热量的过程。
dQ dE pdV
V2
dQ 0 , pdV dE
结论: 同一状态下1摩尔的理想气体温度升高1K, 等压过程需要吸收的热量比等体过程吸收的热量多 8.31 J。 C p ,m i 2 单原子分子:γ 1.67 比热容比: CV ,m i 双原子分子: γ 1.4
微过程的热量计算式:
m dQ C m dT M
m m 热量计算式: Q cM (T2 T1 ) C m (T2 T1 ) M M
t = -273.15 ℃
T / K 273.15C t
9-1-2 平衡态
准静态过程
平衡态:一个孤立系统,其宏观性质在经过充分长 的时间后保持不变(即其状态参量不再随时间改变) 的状态。
注意:如果系统与外 界有能量交换,即使 系统的宏观性质不随 时间变化,也不能断 定系统是否处于平衡 态。
外界:系统以外与系统有着相互作用的环境。 孤立系统:与外界不发生任何能量和物质的热力 学系统。 封闭系统:与外界只有能量交换而没有物质交换 的系统。
状态参量:描述热力学系统状态的物理量。 描述气体的状态参量:压强、体积和温度。

大学物理知识点总结

大学物理知识点总结为你提供大学物理知识点总结(以____字为限):物理学是自然科学中最基础和最广泛的学科之一,研究物质和能量的性质、相互间的相互作用以及它们的运动和变化规律。

大学物理主要包含力学、热学、电磁学、光学和量子力学等方面的内容,下面是这些方面的知识点总结:1. 力学:- 牛顿三定律:物体的运动状态会保持不变,直到受到外力的作用。

- 力的合成和分解:多个力合成为一个合力,一个力分解为多个分力。

- 牛顿第二定律:物体的加速度与作用在物体上的合力成正比,与物体质量成反比。

- 动量守恒定律:系统总动量在无外力作用下保持不变。

- 动能定理:物体的动能变化等于作用在物体上的净功。

- 弹性碰撞:碰撞前后总动量和总动能在没有外力的情况下保持不变。

- 其他力学知识点:万有引力定律、圆周运动、刚体转动等。

2. 热学:- 温度和热量:温度是物体热平衡状态下的一个特性,热量是能量的传递方式。

- 热传递:热传导、热对流和热辐射是热量传递的三种方式。

- 热力学定律:热平衡状态下各物体的温度相等,内能是热力学系统的一个基本量。

- 热力学过程:等温过程、绝热过程、等容过程和等压过程是热力学中常见的过程类型。

- 理想气体:理想气体状态方程、理想气体的内能和热容等。

3. 电磁学:- 电荷与电场:带电物体产生电场,电场对带电粒子施加力。

- 静电场:库仑定律、电场强度、电势等。

- 电场与导体:导体内部静电场为零,表面上电场垂直于导体表面。

- 电流与电阻:电流是电荷的流动,电阻是电流通过的障碍。

- 电阻与电压:欧姆定律、电功率等。

- 磁场与电流:电流产生磁场,磁场对电流产生力。

- 电磁感应:法拉第定律、楞次定律等。

4. 光学:- 光的传播:光的直线传播、反射、折射和散射等。

- 几何光学:光的像的成像规律、薄透镜成像等。

- 光的波动性:光的干涉、衍射和偏振等现象。

- 光的粒子性:光的光子理论、光的能量和动量等。

5. 量子力学:- 波粒二象性:微观粒子既具有波动性又具有粒子性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pV
RT
M mol
3、在标准状态下,若氧气(视为刚性双原子分子的理想气体) 和氦气的体积比V1 / V2=1 / 2 ,则其内能之比E1 / E2为:
A)3 / 10.
√C) 5 / 6.
B)1 / 2. D) 5 /3
E i RT
2
pV RT
4、下列各图所示的速率分布曲线,哪一图中的两条曲线能是 同一温度下氮气和氦气的分子速率分布曲线
f (v)
A
f (v)
√B
o
vo
v
f (v)
C
f (v)
D
o
vo
v
vp
2 RT M mol
5、一定量理想气体从体积V1 膨胀到体积V2 分别经历的过程是:
A→B等压过程;A→C等温过程;A→D绝热过程。其中吸
热最多的过程:
P A
√A)是A→B。 B)是A→C 。 C)是A→D。
D)既是A→B,也是A→C, 两过程吸热一样多。
8、处于重力场中的某种气体,在高度Z 处
p
单位体积内的分子数即分子数密度为 n 。若f (v)是分子的速率分布函数,则坐标 x ~x +
a
c2
dx 、y ~ y + dy 、z ~ z + dz 介于区间内,速
1

率介于v ~v + dv 区间内的分子数 dN =
O
b V


nf (v) d v d x d y d z
o V1
B C D V2 V
6、一定量的理想气体,经历某过程后,它的温度升高了。则 根据热力学定律可以断定:
① 理想气体系统在此过程中吸了热。
② 在此过程中外界对理想气体系统作了功。
③ 理想气体系统的内能增加了。
④ 理想气体系统既从外界吸了热,又对外作了功。
√ A) ① ③ B) ② ③ C) ③ D) ③ ④ E) ④
大学物理 (热学) 知识点总结
一、基本物理概念:
1、理想气体的压强
p

1 3
nm0 v2

2 3
nw
2、理想气体的温度和平均平动动能
w 3 kT 2
T2w 3k
每一个自由度的平均动能为 1 kT
2
一个分子的总平均动能为
k

i kT 2
3.ν摩尔理想气体内能
E i RT
2
4、气体分子的平均碰撞频率和平均自由程
[1]、有一定量的理想气体,从初状态 a (P1 、V1 )开始,经
过一个等容过程达到压强为P1 / 4 的 b 态,再经过一个等压过 程达到状态C ,最后经过等温过程而完成一个循环, 求:该循环过程中系统对外作的功A 和所吸收的热量Q。
m0
M
M
3、麦克斯韦速度分布函数
f
(v
x
,
v
y
,
v
z
)


m0 2πkT
3
2

m0
(
v
2 x

v
2 y

v
2 z
)
e
2 kT
4、玻耳兹曼分布律
m0 gz
重力场中粒子按高度的分布 n n0e kT
m0 gz
大气压强随高度的变化 p p0e kT
5、准静态过程的功 dA pdV
Q吸
Q吸
(2)卡诺循环
Q吸 Q吸 1
A Q放 Q吸 Q放 1 Q吸
卡诺热机效率
卡 诺
1
Q放 Q吸
1
Q2 Q1
1 T2 T1
1
8、热力学第二定律的两种表述 (1)开尔文表述
不可能从单一热源吸收热量,使之完全变为有用的功而
不产生其它影响。 (2)克劳修斯表述
6、热力学第一定律:
A V2 pdV V1
dQ dE dA
Q E A
E CV ,m (T2 T1 )
7、 循环过程 卡诺循环 E 0
(1)热机效率与制冷系数 Q A E A Q吸 Q放
A Q吸 Q放 1 Q放
Q吸
体分子的总平动动能(EK / V ),单位体积内的气体质量
ρ ,分别有如下的关系:
p nkT
A)n 不同, (EK / V )不同, ρ不同。 EK nw n 3 kT
B)n 不同, (EK / V )不同, ρ相同。 V
2
√C)n 相同, (EK / V )相同, ρ不同。
M
D)n 相同, (EK / V )相同, ρ相同。
不可能把热量从低温物体传到高温物体而不引起外界的
变化。
9、热力学第二定律的统计意义 孤立系统内发生的自发过程总是从包含微观态数少的
宏观态向包含微观态数多的宏观态,即从热力学概率小的 状态向热力学概率大的状态转变。
10、热力学第二定律的数学表达形式 —— 熵增加原理
玻尔兹曼熵 S k ln
克劳修斯熵 S 2 d Q
C)图中b表示氧气分子的速率分布曲线;(v p )O2 ( / v p ) H2 1 / 4
D)图中b表示氧气分子的速率分布曲线;
f (v )
(v
p
)O2
(/ v p ) H2

4
a
b
vp
2 RT M mol
O
v
2、两瓶不同种类的理想气体,它们的温度和压强都相同,但
体积不同,则单位体积内的气体分子数 n ,单位体积内气
1T
熵增加原理 S 0
习题
1、图示的两条曲线分别表示在相同温度下氧气和氢气分子的速
率分布曲线;令 (v p )O2 和 (v p ) H2 分别表示氧气和氢气的最概 然速率,则
A)图中a 表示氧气分子的速率分布曲线; (v p )O2 (/ v p ) H2 4
√B)图中a 表示氧气分子的速率分布曲线; (v p )O2 ( / v p ) H2 1 / 4
2、麦克斯韦速率分布函数
f
(v)



m0 2πkT
3
2
mv02
e 2kT
v2
三种速率:
2kT 2RT
RT
最概然速率
vp
m0
1.41
M
M
算术平均速率 v 8kT 8RT 1.60 RT
πm0 πM
M
方均根速率 v2 3kT 3RT 1.73 RT
7、bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过 程中气体作功与吸收热量的情况是:
A) b1a过程放热,作负功;b2a过程放热,作负功.
√B) b1a过程吸热,作负功;b2a过程放热,作负功.
C)b1a过程吸热,作正功;b2a过程吸热,作负功.
D) b1a过程放热,作正功;b2a过程吸热,作正功.
平均碰撞频率 Z 平均自由程 v
z
2 d 2vn
1 kT 2πd 2n 2πd 2 p
5、理想气体的摩尔热容
i 定体摩尔热容 CV ,m 2 R
定压摩尔热容
i2 C p,m 2 R CV ,m R
热容比
C p,m i 2
CV ,m
i
6、卡诺循环
相关文档
最新文档