统计名词解释

合集下载

统计学

统计学

第一章名词解释统计:即统计工作、统计资料、统计科学统计总体:是根据一定目的确定的所要研究事物的全体,它是客观存在,并在某一相同性质基础上结合起来的有许多个别事物组成的整体。

总体单位:构成统计总体的每个独立的个别事物。

标志:是说明总体单位特称的名称。

指标(统计指标):是说明现象总体量的特征的概念或范畴,及通过统计实践活动可得到指标的具体数值的总称。

变异:可变标志在总体各个单位具体表现上的差别。

变量:就是可变的数量标志。

简答题1.统计三种含义之间的关系:统计工作的成果是统计资料,统计科学是统计工作实践经验的理论概括和科。

学总结.2.统计研究的对象:社会经济现象的数量方面,其特点:同质性、大量性、差异性。

3.统计的职能:进行统计调查、统计分析;.提供统计资料和统计咨询意见;.实行统计监督。

4.分组的依据:①统计分组按其任务和作用不同,分为类型分组、结构分组和分析分组。

②统计分组按分组标志的多少分为简单分组和复合分组。

③统计分组按分组标志的性质分为品质分组和变量分组。

5.统计研究的基本方法:大量观察法、分组法、综合指标法。

统计研究的特点:数量性、总体性、具体性、社会性。

(从定性认识到定量认识,从个体认识到总体认识,从已知量的描述到未知量的推断)6.标志与指标二者的区别和联系有哪些?区别:(1)标志是说明总体单位特征的,而指标是说明总体特征的;(2)标志有可能用数值表示的品质标志与能用数值表示的数量标志,然而不论什么指标,都要用数值表示。

联系:(1)有些统计指标的数值是从总体单位的数量标志值汇总得到的;(2)在一定的研究范围内指标和数量标志之间存在着变换关系。

第二章名词解释统计调查:就是根据统计研究的目的、要求和任务,运用各种科学的调查方法,有计划、有组织地搜集有关现象的各个单位的资料,对客观事实进行登记,取得真实可靠的调查资料的活动过程。

统计设计:是根据统计研究对象的性质和研究目的,对统计工作各个方面和各个环节通盘考虑和安排。

统计学名词解释

统计学名词解释

统计学名词解释第一章绪论1.随机变量:在统计学上,把取值之间不能预料到什么值的变量。

2.总体:又称母全体、全域,指具有某种特征的一类事物的全体。

3.个体:构成总体的每个基本单元称为个体。

4.样本:从总体中抽取的一部分个体,称为总体的一个样本。

5.次数:指某一事件在某一类别中出现的数目,又称为频数。

6.频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。

7.概率:某一事物或某一情在某一总体中出现的比率。

8.观测值:一旦确定了某个值。

就称这个值为某一变量的观测值。

9.参数:又称为总体参数,是描述一个总体情况的统计指标。

10.统计量:样本的那些特征值叫做统计量,又称特征值。

第二章统计图表1.统计表:是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。

一般由表号、名称、标目、数字、表注组成。

2.统计图:一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。

纵轴表示事物出现的次数或因变量,称为数值轴。

一般由图号及图题、图目、图尺、图形、图例、图组成。

3.简单次数分布表:依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表,适合数据个数和分布范围比较小的时候用。

4.分组次数分布表:数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来,适合数据个数和分布范围比较大的时候用。

5.分组次数分布表的编制步骤:(1)求全距(2)定组距和组数(3)列出分组组距(4)登记次数(5)计算次数6.分组次数分布的意义:(1)优点:A.可将杂乱无章数据排列成序,以发现各数据的出现次数及分布状况。

B.可显示一组数据的集中情况和差异情况等。

(2)缺点:原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差,即归组效应。

统计学名词解释(超全)

统计学名词解释(超全)

统计学名词解释(超全)统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。

总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。

参数:是描述总体数量特征的指标,又称总体指标。

样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。

变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。

总体参数:描述总体数量特征的指标,又称总体指标。

样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。

普查:为某一特定目的而专门组织的一次性全面调查。

抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。

统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。

统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。

时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。

时点指标:反应现象整体在某一的点(瞬间)上所处状况的总量指标。

众数:是一组数据中出现次数最多的变量值。

时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。

发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。

均匀发展水平:将不同时间的发展水平加以均匀而得到的均匀数。

发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。

环比发展速度:是时间序列中敷陈期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。

定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。

统计学名词解释

统计学名词解释

1、统计包括三方面的涵义:统计活动、统计资料、统计学;2、统计活动:是在一定的理论指导下,采用适宜的科学方法搜集、处理统计资料的一系列调查研究过程。

3、统计资料:即统计信息,它集中、全面、综合地反应国民经济和社会发展的现象和过程4、统计学:即统计理论,是一门独立的方法论科学,它根据自己的研究对象,系统的阐述统计理论的方法5、统计总体:是根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的,具有某种共同性质的许多个别单位构成的整体。

6、总体单位:是指构成总体的个体单位,它是总体的基本单位。

(又称个体)7、同质性:指总体各单位在某一标志上的共同性8、变异性:指总体所有单位至少有一个以上的可变品质标志或数量标志9、大量性:指统计总体中的单位应有足够的数量,如果总体单位应有足够的数量,如果总体单位数量很少,就难以揭示总体的规律性10、标志:是指统计总体中各单位所具同具有的属性和特征11、品质标志:表明总体单位属性方面的特征,用文字表示12、数量标志:数量方面的特征13、指标:是反映社会经济现象总体数量特征的概念和数值。

14、变异:统计中的标志和指标都是可变的15、变量:可以取不同值得量,在社会经济统计学中,各种数量标志和全部统计指标都是变量16、连续变量:数值是连续不断的,相邻两值之间可作无限分割,即可去无限数值17、离散变量:数值都是以整数位断开的,其数值要用计算的方法取得18、确定性变量:变量值的变动受制于某种决定性因素,致使其沿着一定的方向变动19、随机变量:影响变量值变动的因素有很多,作用不同,因而变量值变动无确定方向20、统计法:国家制定和认可的调整参与统计活动的各方面——统计主体、客体、宿体在统计活动中形成的社会关系的法律规范的总称21、统计设计:对一个完整的统计工作涉及各个方面和各个环节的通盘考虑和适当安排22、统计指标体系:将反映社会经济现象数量特征的一系列相互依存、相互联系的统计指标有机结合所组成的整体;23、指标名称:指标质的规定,它反映一定的社会经济范畴24、指标数值:根据指标的内容所计算出来的具体数值25、数量指标:反映总体总规模、总水平或总工作量的统计指标,又称总量指标26、质量指标:反映总体内部数量关系、单位一般水平、工作质量的统计指标27、描述指标:对总体及其组成部分的规模水平和数量关系进行客观描述的统计指标28、评价指标:反映社会经济总体的结构、比例、速度以及利用状况和效益、效果的统计指标29、监测指标:对社会经济总体运行进行跟踪监测,看其是否偏离既定目标,是否保持平衡的统计指标30、预警指标:可以对总体运行中出现的偏离进行及时的调控31、统计调查:是按照统计的任务和调查的目的要求,运用科学的方法搜集或者收集被研究对象的各个标志值的过程。

统计学基础名词解释及简答题

统计学基础名词解释及简答题

统计学基础知识名词解释及简答题一、名词解释1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。

2、指标和标志标志是说明总体单位属性或特征的名称。

指标是说明总体综合数量特征和数量关系的数字资料。

3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。

简称总体。

构成总体的个体则称为总体单位,简称单位。

样本是从总体中抽取的一部分单位。

4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。

它是取得统计数据的重要手段。

5、统计绝对数和统计相对数反映总体规模的绝对数量值,在社会经济统计中称为总量指标。

统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。

6、时期指标和时点指标时期指标是反映总体在一段时期内累计总量的数字资料,是流量。

时点指标是反映总体在某一时刻上具有的总量的数字资料,是存量。

7、抽样估计和假设检验抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。

假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。

8、变量和变异标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。

数量标志和指标在统计中称为变量。

9、参数和统计量参数是反映总体特征的一些变量,包括总体平均数、总体方差、总体标准差等。

统计量是反映样本特征的一些变量,包括样本平均数、样本方差、样本标准差等。

10、抽样平均误差样本平均数与总体平均数之间的平均离散程度称之为抽样平均误差,简称为抽样误差。

重复抽样的抽样平均误差为总体标准差的1/n。

11、抽样极限误差抽样极限误差是指样本统计量和总体参数之间抽样误差的可能范围。

我们用样本统计量变动的上限或下限与总体参数的绝对值表示抽样误差的可能范围,称为极限误差或允许误差。

统计学名词解释超级大全

统计学名词解释超级大全
小数永存法则:第一个样本中所表现出的特性,在其他样本中也会存在,这 就是小数永存法则。此处“小数”是指小数量的意思。
大量惰性原则:某一事物的某一性质或状态,在反复观察或试验中是保持不 变的。
有效数字:指能影响测量准确性的数字。
变量:又称随机变量。具有变异性的数据。三个特性,离散型,变异性,规 律性。
推断统计:又称抽样统计。它是根据对部分个体进行观测所得到的信息,通 过概括性的分析、论证,在一定可靠程度上去推测相应团体。换言之,就是根据 已知的情况推测未知情况。
实验设计:研究如何更加合理、有效地获得观测资料,如何更正确、更经济、 更有效地达到实验目的,以揭示试验中各种变量关系的实验计划。
统计常态法则:从总体中随机抽取一部分个体所组成的样本,差不多可以保 持总体的特征。这种样本特性保持着总体特性的现象叫做统计常态法则。
次数:某一事件在某一类别中出现的数目,又叫频数,用 f 表示。 频率:指每一组的数据个数除以数据的总和,又称相对次数。用符号 p 表示。 百分频率:频率与百分数的乘积。
组中值:每一组的中点值,常用 m 或 Xc 表示。 全距:全部数据的距离,也称极差,是用一群数据中的最大值减去最小值。 组距:指每一组所包含的间隔或数据单位,用 i 表示。 组限:指每一组的起止点或每一组的界限。
统计表:以表格的形式表达统计资料数量关系的方式或工具。 统计图:以几何图形和形象图形表示统计资料数量关系的工具。
次数分布 累积次数:以简单次数为基础,从最低组开始逐级累加直至最高组,或从最 高组开始逐级累加直至最低组,用符号 cum﹒f 或 F 表示。 累积百分频率:各组累计次数与总次数的比值。
一时性资料:在一定时限内所收集的有关问题的资料为一时性资料。来源三 个方面,教育与心理调查,教育与心理测量和教育与心理实验。

统计名词解释

2 2 2 2 2
应很小,即出现大X 值概率很小。即X 越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。若P>a则没有 理由拒绝H0。 29. X 用途: (1) 实际频数与拟合频数拟合优度: A推断两个或两个以上总体率或构成比有无差别 (四格表/行x列表) 。 B两变量之间有无相互关系。C频数分布的拟合优度检验(判断次样本是否来自某种分布)。 (2)某些分布可用X 近似。 (3)间接应用:如t分布和F分布就是在X 分布基础上推导出来的。 30. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部 分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是 否具有统计学意义。 31.假设检验中P,a,b(倍他)的关系及统计学意义: a:检验水准,即显著性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”, 以此判断是否不拒绝H0无效假设, 在假设检验中, 按a检验水准, 拒绝了原来正确的H0, 即犯了第1类错误, 犯此错误的概率为a。 b:在T假设检验中,按照a检验标准,没有拒绝原来错误的无效假设,即犯了第2类错误,犯次错误的概率 是b。 P:是在H0成立时大于等于用样本计算的统计值出现的概率用P值与检验水准a比较,根据比较的结果作出统 计判断。如果P≤a时,就怀疑假设的成立,拒绝H0。若P>a则接受H0拒绝H1。P值越小只能说明作出拒绝H0, 接受H1的推论时犯错误的机会越小。 32.制定参考值步骤: (1)从正常人总体中抽样(2)控制测量误差 (3)判定是否需要分组确定参考值范围(4)决定单侧还是双侧 (5)选择合适的百分上限(6)对资料的分布进行正态性检验 (7)根据资料的分配类型选定恰当的方法进行参考值范围的估计 33. 标准差与标准误不同: (1)二者描述内容不同:前者个体变异;后者群体变异。 (2)二者与n样本含量关系不同:n很小时S不稳定,n足够大时S接近总体标准差;而S不变时,n接近无穷 大时,标准误接近0。 (3)二者用途不同:S:描述观察值的离散程度/计算CV即变异系数/估计医学参考值范围/计算标准误;标 准误:反映均数抽样误差大小/估计总体均数可信区间/用于假设检验。 34. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为 定性变量(分类)和定量变量(连续)。

完整版)统计学名词解释

完整版)统计学名词解释统计学名词解释第一章绪论在统计学上,随机变量指的是取值之间不能预料到的变量。

总体,又称母全体或全域,是指具有某种特征的一类事物的全体。

构成总体的每个基本单元称为个体。

从总体中抽取的一部分个体称为样本。

次数指的是某一事件在某一类别中出现的数目,又称为频数。

频率,又称相对次数,指某一事件发生的次数被总的事件数目除,即某一数据出现的次数被这一组数据总个数去除。

概率指某一事物或某一情在某一总体中出现的比率。

一旦确定了某个值,就称这个值为某一变量的观测值。

参数,又称为总体参数,是描述一个总体情况的统计指标。

样本的那些特征值叫做统计量,又称特征值。

第二章统计图表统计表是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。

一般由表号、名称、标目、数字、表注组成。

统计图一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。

纵轴表示事物出现的次数或因变量,称为数值轴。

一般由图号及图题、图目、图尺、图形、图例、图组成。

简单次数分布表适合数据个数和分布范围比较小的时候用,它是依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表。

而分组次数分布表适合数据个数和分布范围比较大的时候用。

数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来。

分组次数分布表的编制步骤包括求全距、定组距和组数、列出分组组距、登记次数和计算次数。

相对次数分布表用频数比率或百分数来表示次数,而累加次数分布表则把各组的次数由下而上或由上而下加在一起。

最后一组的累加次数等于总次数。

双列次数分布表用同一个表表示有联系的两列变量的次数分布。

而不等距次数分布表则适用于像工资级别和年龄分组这样的不等距数据。

需要注意的是,归组效应是分组次数分布表的缺点之一,因为原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差。

统计名词解释

名词解释:1,总体(population):总体指根据研究目的所确定的同质的观察单位的全体。

更确切的说,它是同质的所有观察单位某种观察值的集合。

可分为有限总体和无限总体。

总体中只包含有限个观察单位者为有限总体,反之为无限总体。

2,样本(sample):从总体中随机抽取部分观察单位的测量结果集合称为样本。

样本应具有可靠性和代表性。

样本的可靠性是指样本的确是来自同一总体,具有同质性;代表性是必须采用随机抽样方法从总体中获得的足够多的观察单位。

3,参数(parameter):参数是用来表示总体分布特征的统计数字。

统计中常用的总体参数有描述总体分布中心位置或集中趋势的总体平均数指标;有描述总体离散度的总体变异指标。

4,统计量(statistic):统计量是依据样本观察值推算出的反映样本分布特征(如样本平均数、样本变异等)的一些量。

5,误差(error):观察值与真值之差称为误差。

误差分为过失误差、系统误差和随机误差三类。

6,抽样误差(sampling error):抽样误差是随机误差中的一种,它是由抽样所至的样本统计量与总体参数间的差异。

抽样误差愈小,用样本推算总体的精确度就愈高,反之亦然。

7,正态分布(normal distribution)和标准正态分布():由密度曲线f(x) = (1/√2π)×(1/σ)×EXP[(-1/2)×(x-x0)^2/σ^2]确定的中间高、两边低、左右对称的连续随机变量的分布称为正态分布。

记为N(μ,σ2) ,其中μ为总体均数σ为总体标准差;把总体均数为0,把总体标准差为1的正态分布N(0,1)称为标准正态分布。

一般正态分布可以通过μ=(x-μ)/σ转化为标准正态分布。

8,抽样误差(sampling error):在抽样研究中,由抽样所至的样本与总体参数间的差异称为抽样误差。

9,标准误(standard error):标准误就是样本统计量的标准差,它反映了统计量间的变异程度,也间接的反映抽样误差的大小。

统计学名词解释资料

10、统计整理:根据统计研究目的和统计分析的要求,使统计调查所获得的原始资料进行科学的分类和汇 总,或对简单加工过的资料进行再加工,使之系统化、条理化,从而得出能够反映事物总体特征资料的工作过程。
11、统计分组:根据研究任务的需要和事物内在的特点,将统计总体按照一定的标志划分为若干组成部分 的一种统计方法。
假设检验:是抽样推断的一项重要内容,是利用样本的实际资料来检验事先对总体某些数量特征所作的假设 是否可信的一种统计方法。
相关关系:两种类型: 一类是函数关系,另一类是相关关系。函数关系。函数是指现象之间有一种严格的 确定性的依存关系。相关关系。相关关系是指客观现象之间确实存在的,但数量上不是严格对应的依存关系。在这种关系中,对于某一现象的每一数值,可以有另一现象的若干数值与之相对应
7、普查:专门组织的一次性的全面调查。
8、统计调查:根据统计设计的内容、指标和指标体系的要求,有计划、有目的、有组织的手机统计原始资 料的工作过程,是统计认识过程的第二个阶段,即定量认识的阶段。
9、 统计报表:按照国家统一规定的表格形式,统一规定的指标内容,统一规定的报送程序和报送时间, 由填报单位自上而下逐级提供统计资料的一种统计调查方式。
20、增长量:用来说明社会经济现象在一定时期内所增长的绝对数量的指标。
21、发展速度:以相对数形式表现的动态分析指标,是两个不同时期发展水平指标对比的结果。
22、增长速度:反映现象数量增长方向和程度的动态相对指标。
23、统计指数:指用来反映不能同度量的多种事物综合动态变化的特殊相对数。
24、个体指数:指同一种现象的报告期与基期指标数值对比得到的发展数度指标。
12、分类数列:将各组别与次数按一定的次序排列所形成的数列。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计第一章一、心理与教育统计的定义与性质定义:在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按照统计学的原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得到结论的一种研究方法。

性质:应用统计学。

二、心理与教育科学研究数据的特点(1)数据与结果多用数字呈现(2)数据具有一定的随机性和变异性(3)数据具有一定的规律性(4)通过部分数据来推测总体的特征三、心理与教育统计学的内容1、描述统计(descriptive stastics)主要研究如何整理心理与教育科学实验或调查得来的大量数据,描述一组数据的全貌,表达一件事物的性质。

包括:A、数据如何分组、使用统计图表描述一组数据的分布情况;B、计算一组数据的特征值(集中量数和差异量数),进而描述一组数据的全貌;C、表示一事物两种或两种以上属性间的相互关系(相关分析)。

2、推论统计(inferential statistics)主要研究如何通过局部数据所提供的信息,推论总体的情形。

包括:A、如何进行假设检验,如z检验、t检验、卡方检验、F检验、回归分析等;B、总体参数特征值的估计方法;C、各种非参数检验的统计方法。

3、实验设计(experimental design)主要目的在于研究如何科学地、经济地以及有效地进行实验,它是统计学近几十年发展起来的一部分内容。

四、心理与教育的基础概念数据类型1、从数据的观测方法和来源来划分计数数据(count data)是指计算个数的数据,如人口数、学校数、男女数等等。

一般取整数形式;测量数据(measurement data)是指借用一定的测量工具或具有一定的测量标准而获得的数据,如身高、考试成绩、金钱数额、智力测验等。

2、根据数据的测量水平划分:称名数据(nominal data)顺序数据(ordinal data)等距数据(interval data)比率数据(ratio data)3、根据数据是否具有连续性划分:离散数据(discrete data)连续数据(continuous data)五、变量、观测值、随机变量变量(variables)是指实验、观察、调查中想要获得的数据;而一旦确定某个值,就称这个值为某一变量的观测值(observation),即为具体的数据;在统计学中,把取值之前不能预料取到什么值的变量,称之为随机变量。

与变量相反的是常量,它在一定范围内其数值不会随意改变。

六、总体、样本与个体总体(population)又称母全体、全域,指具体有某种特征的一类事物的全体;构成总体的每个基本单元称为个体(individual);从总体中抽取一部分个体,称之为总体的一个样本(sample)。

七、次数、比率、频率与概率在一项研究中,我们对随机现象进行观察试验,在一定条件下,本质不同的事物可能出现,也可能不出现,这种事情称为随机事件;次数是指某一事件在某一类别中出现的数目,又称为频数(frequency),用f表示;两个数的比例称为比率;频率又称相对次数,即某一事件发生的次数被总的事件数目除,通常用比例或百分数表示;概率又称机率、或然率(probability)用p表示,表示一事件在无限的观测中所能预料的相对出现的次数,也就是某一事件在总体中出现的比率,通常用比例表示。

八、参数与统计量在科学研究中,我们探寻的是关于所有事物的说明和解释。

能说明和解释总体特征的那些特性称之为参数(parameter),又称为总体参数;与之相对的是,样本的那些特征值称为统计量(statistics)。

参数是从总体中计算得到;一般是个常量;一般用希腊字母表示;统计量是从样本中得到;一般随样本的变化而变化,是个变量;一般用英文字母(斜体)表示。

第二章一、统计图表统计表和统计图是对数据进行初步整理,以简化的形式加以表现的两种最简单的方式。

统计表具有简明、清晰、准确的特点,数据易于比较分析;统计图具有简明、直观、可视化等特点。

在制定统计图表时首先要完成最基本的两步:a、数据排序(sort or order)是指按照某种标准,对收集到的杂乱无章的数据按照一定的顺序标准进行排序。

升序(ascending)降序(descending)b、统计分组是指根据被研究对象的特征,将所得的数据划分到各个组别中去。

步骤:1)统计分组前的准备(进一步地核对和校检数据、删除受过失影响数据、删除3个标准差之外的数据)2)统计分组应注意事项(分组要以被研究对象的本质特性为基础;分类标志要明确,既要包含数据的所有范围,同时分类不能重合)3)分组的标志(性质类别和数量类别)二、次数分布表次数分布(frequency distribution)显示初步整理后一组数据的分布情况。

它主要表示数据在各个分组区间内的散布情况。

简单次数分布表(适用于计数数据)(simple frequency table)就是依据每一个分值在一列数据中出现的次数或总计数资料编制成的统计表。

分组次数分布表(重点)(适用于测量数据)当数据量很大时,应该把所有的数据划分若干区间,然后再按数据按其值大小划分到相应的区组内,分别统计各个组别中的个数,再用列表形式呈现出来,就构成了分组次数分布表(grouped frequency table)。

具体步骤如下:A、求全距全距(range)是指最大值和最小值两个数据之间的差距。

B、决定组距和组数组距(interval)是指任意一组的起点和终点之间的举例,用符号i 表示。

全距除以组距即为组数。

C、列出分组区间分组区间即一个组的起点值和终点值之间的距离,又叫组限。

起点值称为组下限,终点值称为组上限,组限又可以分为表述组限和精确组限。

D、登记次数E、计算次数相对次数分布表累加次数分布表双列次数分布表(难点)双列次数分布表又称相关次数分布表,是对有联系的两列变量用同一个表表示其次数分布。

编制双列次数分布表的步骤:首先按照分组次数分布表的编制方法,分布列出各变量的分组区间,将一列变量的分组区间竖列,将另一列变量为横列;然后再登记、计数。

三、次数分布图在次数分布表的基础上,若对分布进行粗略分析、动态趋势、差异细节,获得更为直观印象就要绘制次数分布图。

通常使用的主要有:1、直方图(histogram)也叫等距直方图,是以矩形的面积表示连续性随机变量次数分布的图形。

一般用纵轴表示数据的频数,横轴表示数据的等距分组点。

2、次数多边形图(frequency polygon)是一种连续性随机变量次数分布的线形图。

绘制图时,横坐标是用各分组区间组中值表示的连续变量,纵坐标是数据的频数,连接各点,就成为一条折线。

3、累加次数分布图累加次数分布图可以分为累加直方图和累加曲线。

四、其他常用的统计图表类型表:A、简单表B、分组表C、复合表图:A、条形图(bar charts)也叫直条图,主要用于表示离散型数据资料,即计数资料。

B、圆形图(circle graph)又叫饼图(pie),主要用于描述间断性的资料,目的是为了显示各部分在整体中所占有的比重大小,以及各部分之间的比较。

C、线形图(line graph)更多用于连续性资料,凡欲研究两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随着另一种现象的变化情形,用线性图表示是最后的方法。

同时还可以在图表中画两条线或多条线,用于比较两组或多组数据资料。

D、散点图(scatter plots),它是用相同大小圆点的多少或疏密表示统计资料数量大小以及变化趋势的图。

第三章一、集中趋势(central tendency)和离中趋势(divergence tendency)是次数分布的两个基本特性。

数据的集中趋势是指数据分布中大量数据向某方向集中的程度;离中趋势是指数据分布中的数据彼此分散的程度。

这两种趋势分别用集中量数(measures of central tendency)和离中量数(measures of divergence tendency)来表示。

一)、算术平均数(arithmetic average),一般简称平均数或均值(mean)。

1、平均数的计算方法(1)未分组数据的计算平均数的方法(2)用估计平均数技术平均数(3)计算次数分布表中的平均数2、平均数的特点1)一组数据中每个变量与平均数之差(离均差)的总和等于0;2)在一组数据中,每个数据都加上C,则所得的平均数为原来的平均数加上C;3)在一组数据中,每一个数都乘以一个常数C,所得的平均数为原来的平均数乘以C.3、平均数的优缺点优点:1、反应灵敏;2、计算严密;3、计算简单;4、简明易解;5、适合做进一步的代数运算;6、较少受抽样的影响;缺点:1、易受极端数据的影响;2、若出现模糊不清的数据时,无法计算平均数。

4、计算和应用平均数的原则同质性原则平均数与个体数值相结合的原则平均数与标准差、方差相结合的原则二)、中数(median),又称中点数,符合Md或Mdn,它是指按顺序排列在一起的一族数据中居于中间位置上的数,即在这组数据中,有一半的数据比它大,一半的数据比它小。

中数的优缺点优点:计算简单快捷,容易理解,概念简单明白,不受极端值的影响;缺点:没有充分利用数据,反应不够灵敏;容易受抽样的影响,不如平均数稳定;不能做进一步的代数运算;三)、众数(mode)又称范数,密集数,通常数等,用符号Mo表示,它是指在次数分布中出现次数最多的那个数的数值。

1、计算方法直接观察法利用公式求2、意义众数的概念简单明了,容易理解,但它不稳定,受样本变动的影响,不能进一步做代数运算。

四)、平均数、中数、众数三者之间的关系在一个正态分布中,平均数、中数、众数三者相等:M=Md=Mo;在正偏态数据中,三者之间的关系为:M>Md>Mo;在负偏态数据中,三者之间的关系为:M<Md<Mo。

在偏态分布中,平均数用于位于尾端,中数位于中间,众数位于首端,三者之间的关系为:M<Md<Mo第四章差异量数(measures of divergence tendency)就是对一组数据的变异性(离中趋势)特点进行度量和描述的统计量。

它反映了次数分布中数据彼此分散的程度。

一、全距全距(range)又称两极差,用符号R表示,它是说明数据离散程度最简单的统计量。

优点:计算简便缺点:是最粗糙、最不可靠的值,这种差异量数只利用了数据中的极端值,其他数据均未参与运算,因而这种差异量数不可靠、不稳定、也不灵敏,极易受到抽样变动的影响。

二、百分位数与百分位差百分位数(percentile)又叫百分位点。

它是指量尺上的一个点,在此点以下,包括数据分布中全部数据个数的一定百分比。

由于全距容易受极端数值的影响,因此有人提出取消数据两端10%的数据,即用P10与P90之间的差距作为差异量数,即为百分位差。

相关文档
最新文档