微波实验报告3

合集下载

微波技术实验报告

微波技术实验报告

微波技术实验指导书目录实验一微波测量仪器认识及功率测量实验目的(1)熟悉基本微波测量仪器;(2)了解各种常用微波元器件;(3)学会功率的测量。

实验内容一、基本微波测量仪器微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。

它主要包括微波信号特性测量和微波网络参数测量。

微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。

微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。

测量的方法有:点频测量、扫频测量和时域测量三大类。

所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。

图1-1 是典型的微波测量系统。

它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。

图 1-1 微波测量系统二、常用微波元器件简介微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件:(1)检波器(2)E-T接头(3)H-T接头(4)双T接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器三、功率测量在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。

微波元器件的认识螺钉调配器E-T分支与匹配双T波导扭转匹配负载波导扭转实验总结:在实验中我们认识了各种的微波元器件,让我们更好的理解课本上的知识,更是为了以后的实验做了准备。

实验二测量线的调整与晶体检波器校准实验目的(1)学会微波测量线的调整;(2)学会校准晶体检波器特性的方法;(3)学会测量微波波导波长和信号源频率。

实验原理进行微波测量,首先必须正确连接与调整微波测量系统。

图1-1 示出了实验室常用的微波测试系统。

微波实验单元项目 实验三

微波实验单元项目 实验三

电磁场与微波测量实验报告微波实验单元项目实验三定向耦合器的特性测量一、实验目的1.了解频谱分析仪的使用方法。

2.学会使用频谱分析仪对信号源提供的信号进行分析。

3.学会定向耦合器。

二、实验原理定向耦合器:定向耦合器是一种通用的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。

主要技术指标有方向性、驻波比、耦合度、插入损耗。

定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配。

定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。

但从它的耦合机理来看主要分为四种,即小孔耦合、平行耦合、分支耦合以及匹配双T。

在20世纪50年代初以前,几乎所有的微波设备都采用金属波导和同轴线电路,那个时候的定向耦合器也多为波导小孔耦合定向耦合器,其理论依据是Bethe 小孔耦合理论,Cohn和Levy等人也做了很多贡献。

随着航空和航天技术的发展,要求微波电路和系统做到小型化、轻量化和性能可靠,于是出现了带状线和微带线。

随后由于微波电路与系统的需要有相继出现了鳍线、槽线、共面波导和共面带状线等微波集成传输线。

这样就出现了各种传输线定向耦合器。

第一个真正意义上的定向耦合器由H. A. Wheeler在1944年设计实现,Wheeler使用了一对长为四分之一中心频率波长的圆柱来实现电场与磁场的能量相互耦合,遗憾的是这种方法只能实现一个倍频程的带宽。

主线中传输的功率通过多种途径耦合到副线,并互相干涉而在副线中只沿一个方向传输。

三、实验步骤1.耦合度测量(1)按照图中所示连接所使用的仪器。

(2)设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz.-20dBm)。

(3)将输入输出电缆短接。

用频谱分析仪定向耦合器输入端口1的输入信号电平,测试数据记录到表格中。

微波光学实验报告

微波光学实验报告

实验时间:2023年X月X日实验地点:微波光学实验室实验者:XXX一、实验目的1. 了解微波光学的基本原理和实验方法;2. 掌握微波分光仪的使用方法;3. 熟悉微波干涉现象,并验证干涉规律;4. 研究微波透镜的成像特性,分析其成像原理。

二、实验原理1. 微波光学是研究电磁波在传播过程中与物质相互作用规律的一门学科。

微波光学实验通常采用电磁波分光仪、透镜、波导等元件,研究微波的干涉、衍射、折射等现象。

2. 微波干涉现象是指两束相干微波相遇时,产生的加强或减弱现象。

实验中,利用微波分光仪产生两束相干微波,通过干涉条纹的观察和分析,验证干涉规律。

3. 微波透镜是一种利用电磁波聚焦原理制成的光学元件。

实验中,通过研究微波透镜的成像特性,分析其成像原理。

三、实验仪器与设备1. 微波分光仪:用于产生两束相干微波;2. 透镜:用于研究微波的成像特性;3. 波导:用于微波的传输;4. 紫外线灯:用于产生干涉条纹;5. 移动台:用于调节微波光路;6. 光电传感器:用于测量干涉条纹。

四、实验步骤1. 连接微波分光仪,设置实验参数,产生两束相干微波;2. 将微波分光仪输出的两束微波分别引入波导,使微波在波导中传播;3. 将波导输出端引入透镜,观察透镜成像特性;4. 通过移动台调节微波光路,观察并记录干涉条纹;5. 改变实验参数,分析微波干涉现象和透镜成像特性。

五、实验结果与分析1. 实验中观察到明显的干涉条纹,验证了微波干涉规律;2. 通过改变实验参数,观察到微波透镜的成像特性,分析其成像原理;3. 实验结果表明,微波透镜具有聚焦和成像功能,成像质量与透镜参数和微波光路有关。

六、实验结论1. 通过本次实验,掌握了微波光学的基本原理和实验方法;2. 熟悉了微波分光仪的使用方法,验证了微波干涉规律;3. 研究了微波透镜的成像特性,分析了其成像原理。

七、实验讨论1. 实验过程中,微波光路调节较为困难,需要精确控制微波的传播路径;2. 实验结果受实验环境和仪器精度的影响较大,需要进一步提高实验精度;3. 未来可进一步研究微波光学在通信、雷达等领域的应用。

北邮微波技术实验报告

北邮微波技术实验报告

一、实验目的1. 理解微波技术的基本原理,掌握微波的基本特性。

2. 学习微波元件和器件的基本功能及使用方法。

3. 通过实验操作,验证微波技术在实际应用中的效果。

二、实验原理微波技术是利用频率在300MHz至300GHz之间的电磁波进行信息传输、处理和接收的技术。

本实验主要涉及微波的基本特性、微波元件和器件的应用以及微波电路的搭建。

三、实验仪器与设备1. 微波暗室2. 微波信号源3. 微波功率计4. 微波定向耦合器5. 微波移相器6. 微波衰减器7. 微波测量线8. 信号分析仪9. 示波器四、实验内容1. 微波基本特性实验(1)测量微波传播速度:通过测量微波信号在实验装置中的传播时间,计算微波在空气中的传播速度。

(2)测量微波衰减:利用微波信号源和功率计,测量微波在传输过程中不同位置的衰减值。

(3)测量微波反射系数:通过测量微波信号在实验装置中的反射强度,计算微波的反射系数。

2. 微波元件和器件应用实验(1)微波移相器:通过调整移相器的相位,观察微波信号在输出端的变化。

(2)微波衰减器:通过调整衰减器的衰减量,观察微波信号在输出端的变化。

(3)微波定向耦合器:通过观察微波信号在定向耦合器两端的输出,验证其功能。

3. 微波电路搭建实验(1)搭建微波滤波器:利用微波元件和器件,搭建一个微波滤波器,并测试其性能。

(2)搭建微波天线:利用微波元件和器件,搭建一个微波天线,并测试其增益。

五、实验步骤1. 微波基本特性实验(1)连接实验装置,确保连接正确。

(2)开启微波信号源,设置合适的频率和功率。

(3)测量微波传播速度、衰减和反射系数。

2. 微波元件和器件应用实验(1)连接微波移相器、衰减器和定向耦合器。

(2)调整移相器、衰减器和定向耦合器的参数,观察微波信号在输出端的变化。

3. 微波电路搭建实验(1)根据设计要求,搭建微波滤波器和天线。

(2)测试微波滤波器和天线的性能。

六、实验结果与分析1. 微波基本特性实验(1)微波传播速度:根据实验数据,计算微波在空气中的传播速度,并与理论值进行比较。

微波测量技术实验报告

微波测量技术实验报告

一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。

二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。

实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。

矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。

其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。

三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。

五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。

2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。

六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。

微波技术实验报告

微波技术实验报告

微波技术实验报告姓名:***学院:电光学院班级:09042102学号:**********二0一二年六月实验一传输线的工作状态及驻波比测量1.实验目的了解无耗传输线(矩形波导)在终端接不同负载时的工作状态。

2.实验内容a)测量传输线终端接不同负载时传输线中的电场幅度沿传播方向的分布,判定传输线的工作状态b)求出波导波长和驻波比3.实验原理a)所使用的实验仪器及元器件信号源同轴-波导变换铁氧体隔离器频率计衰减器波导测量线选频放大器负载(短路负载,开路负载,匹配负载和任意负载)b) 原理传输线的工作状态(电场幅度分布)在无耗传输线的终端连接不同的负载时,传输线将呈现不同的工作状态。

当终端接与传输线特性阻抗相等的匹配负载时,只有入射波,没有反射波,传输线工作在行波状态。

行波状态下传输线上的电压(电流)幅度沿传输方向的分布如图1所示。

图1 传输线行波状态电压(电流)幅度沿传播方向的分布当终端接与短路,开路或纯电抗负载时,终端将发生全反射,传输线工作在纯驻波状态。

纯驻波状态下传输线上的电压(电流)幅度沿传输方向的分布如图2所示(以终端短路为例)。

I 0I 0Z 0||U||I/4λ/2λ3/4λλ5/4λ3/2λ图2 传输线纯驻波状态(终端短路)电压(电流)幅度沿传播方向的z VI分布测量传输线的工作状态(电场分布)是采用测量线技术。

测量线的主体是一段在波导宽边中间开槽的矩形波导,有一根探针通过波导的槽缝伸进波导内,并可以沿传输线移动。

当探针位于某一个位置时,与所在位置的电场发生耦合,在探针上产生感应电动势,由检波二极管转换为检波电流,并通过选频放大器指示出来。

当探针沿波导移动时,放大器读数就间接地反映了波导内电场大小的分布。

将探针位置D 与检波电流I 的测量值绘制成曲线,即为传输线上的电场幅度分布曲线,由此也就知道了传输线的工作状态。

两个相邻波节点的间距等于2gλ,因此有测出的波节点的位置可以求得矩形波导的波导波长λg 。

微波实验报告波导波长测量

微波实验报告波导波长测量

篇一:电磁场与微波实验报告波导波长的测量电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二波导波长的测量一、实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。

当矩形波导(单模传输te10模)终端(z=0)短路时,将形成驻波状态。

波导内部电场强度(参见图三之坐标系)表达式为:e =ey =e0 sin(?xa) sin?z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。

将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。

yz两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。

调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值t1和t2),就可求得波导波长为:?g = 2 tmin-tmin由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。

记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:1tmin = ? t1 ? t2 ?2最后可得?g = 2 tmin- tmin (参见图四)【方法二】间接法矩形波导中的h10波,自由波长λ0和波导波长?g满足公式:?g =???? 1 ? ? ??2a?2其中:?g=3?108/f,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式cλ0=确定出λ0,再计算出波导波长?g。

微波消解实验报告

微波消解实验报告

一、实验目的1. 熟悉微波消解仪器的操作方法;2. 掌握微波消解实验的基本原理和操作步骤;3. 了解微波消解技术在样品前处理中的应用;4. 分析实验结果,验证微波消解法的有效性。

二、实验原理微波消解是一种利用微波能对样品进行快速、高效消解的技术。

在微波场中,样品容器内的溶剂吸收微波能,产生热能,使样品迅速升温,从而实现样品的快速消解。

微波消解具有消解速度快、酸用量少、污染小、操作简便等优点,广泛应用于地质、环保、化工、医药等领域。

三、实验仪器与试剂1. 仪器:微波消解仪、分析天平、赶酸器、移液管、样品容器等;2. 试剂:硝酸(68%)、过氧化氢(30%)、氢氟酸(40%)、待测样品等。

四、实验方法1. 样品制备:将待测样品按照实验要求进行称量,精确至0.1mg,置于样品容器中;2. 消解溶液配制:根据实验要求,配制一定浓度的消解溶液;3. 样品消解:将配制好的消解溶液加入样品容器中,密封后放入微波消解仪中进行消解;4. 冷却与赶酸:消解完成后,待样品冷却至室温,打开样品容器,用赶酸器赶出多余的酸液;5. 样品定容:将赶酸后的样品转移至容量瓶中,用消解溶液定容至刻度线;6. 测定:采用适当的分析方法对样品进行测定,如原子吸收光谱法、原子荧光光谱法等。

五、实验结果与分析1. 实验结果:根据实验要求,对样品进行消解,并采用原子吸收光谱法测定样品中的待测元素含量;2. 结果分析:对比微波消解法与传统消解法,分析微波消解法的优缺点,验证微波消解法的有效性。

六、实验结论1. 微波消解法具有消解速度快、酸用量少、污染小、操作简便等优点,是一种高效、环保的样品前处理技术;2. 微波消解法在地质、环保、化工、医药等领域具有广泛的应用前景;3. 通过本次实验,掌握了微波消解实验的基本原理和操作步骤,为今后开展相关实验奠定了基础。

七、注意事项1. 操作微波消解仪时,注意安全,防止烫伤和酸液溅出;2. 消解过程中,注意观察样品容器内液体的变化,避免液体沸腾溢出;3. 样品消解完成后,待样品冷却至室温再进行赶酸,防止酸液溅出;4. 样品定容时,注意容量瓶的清洁,避免污染样品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古工业大学信息工程学院实验报告课程名称:微波技术实验名称:阻抗匹配网络的设计实验类型:验证性■综合性□设计性□实验室名称:通信与控制基础实验室成绩:实验日期:2014年月日实验三、阻抗匹配网络的设计一、实验目的1.理解阻抗匹配原理,重点掌握单支节阻抗匹配器的应用;2.熟悉阻抗圆图在阻抗测量中的应用;3.学会用阻抗匹配器对失配元件进行调配。

二、设计要求1.在给定负载情况下,利用单支节匹配器法设计阻抗匹配网络,实现无反射匹配;2.结合阻抗圆图,验证设计结果,并得出结论。

三、实验原理1.阻抗测量在微波测量技术中,阻抗测量占有很重要的地位。

微波元件的阻抗是微波系统匹配设计的依据, 也是研究复杂微波结构的微波网络中确定等效电路参数的依据。

阻抗测量不仅应用于微波器件特性阻抗的研究及微波系统的阻抗匹配,同时也是一些复杂测量(如微波网路参量的测量)的基础。

因而微波阻抗测量是一项非常重要的测量。

由波导理论可知波导中的电磁场不是均匀分布的,因而不可能像双线传输线那样用行波电压(或电场强度)对行波电流(或磁场强度)之比,来规定出一个只决定于传输线本身尺寸的特性阻抗。

波导的等效阻抗值因定义方法不同而不同,因而一般并不进行阻抗绝对值的测量。

经常遇到的实际问题是电磁波在负载与传输线不匹配的传输系统上传播而产生的问题,在这一类问题中仅需知道被测元件的归一化阻抗。

阻抗测量的方法很多,但应用较为广泛的方法是测量线法。

根据传输线理论,传输线上任一点的归一化阻抗为:在电压最小点,即L=L min 时,有ρ1Z =,代入上式可解得归一化负载阻抗为:即阻抗测量就归结为对上述三个参量的测量。

2. 确定驻波最小点位置L min 的测量原理由于测量线标尺的两端点不是延伸到线体的两端口,直接测量输入端口到第一个电压最小点的距离L min 是不可能的,但根据阻抗分布的2/g λ重复性原理,在传输线上每隔2/g λn处的阻抗相等,所以只要找到与待测阻抗相等的面作为等效参考面即可,这就是在测量中常采用的方法“等效截面法”。

实际测量过程如图3-1所示。

首先将待测元件接在测量线的输出端,其驻波分布图形如图 3-1(a )中所示,元件的输入参考面(如图中TE 截面)与第一个驻波最小点 D1 的距离为D min ,用测量线测出其输入驻波系数ρ,记录波节点在测量线上的位置D min (D min= 2/g λn +Lmin) ,然后取下待测元件,将测量线短接,这时在测量线中测得与D min 相邻的驻波节位置D T ,如图3-1(b) 所示。

从图中可以看出,因为 D T 是测量线终端短路时的驻波波节位置,所以它离终端的距离必为2/g λn ,根据2/g λn 阻抗变换原理。

D T 点的输入阻抗应等于终端所接的待测器件的阻抗。

D T 参考面则被称为测量线终端的“等效参考面”。

这样在测量线上的D min 和D T 之间的距离即为所要求的输入参考面到第一最小点的距离L min 。

如图(C )所示,(图中实线表示终端接被测元件时的驻波图形,虚线表示终端短路时的驻波图形)。

图3-1 等效面法测量L min的原理图负载阻抗可由Smith 圆图进行求解。

在查Smith 圆图时必须注意,如果D T在D min的右边,查图时要按逆时针方向转(即转向负载),反之如D T在D min的左边,则按顺时针方向转(即向信号源)。

利用圆图求输入阻抗的具体过程如图(3-2)所示。

我们知道无耗传输线接任意负载时,沿线输入阻抗的变化轨迹是一个圆,称为等ρ圆。

而波节点的输入阻抗是一个纯电阻,其轨迹为图中“0-1轴线”。

因此,等ρ线圆与“0-1”轴线交点 A 即为驻波节点阻抗值,所以,当驻波节点与等效参考面DT 的距离L min已知时,就可以按已知输入阻抗求负载阻抗的方法,求出被测器件的阻抗。

这时只需从A 点出发,沿着等ρ圆逆时针方向(即朝负载方向)转过 L min/ λg的距离到达B 点,则 B 点所代表的阻抗就是被测器件的归一化阻抗Z。

L图3-2 用阻抗圆图计算负载阻抗3. 匹配负载法测定膜片的电纳图3-3 膜片在波导中放置如图3-3 所示的开有窗口的全金属片称为膜片,当膜片的厚度满足δ<< t <<λg 时(δ为膜片的趋肤深度,λg 为波导波长),其等效电路为一并联电纳 B j G Y += ,通常膜片的损耗很小,电导G 分量可以忽略,因此有B j Y =。

膜片电纳可用驻波法测出。

但将膜片接在测量线输出端,膜片窗口将向外辐射能量,必须接一个匹配负载这时从膜片左端向终端看上去的归一化输入导纳即为:j 1in +=,从而得到膜片的归一化电纳值B ,其精度取决于匹配负载的匹配性能。

4.阻抗匹配阻抗匹配技术不仅广泛地应用在微波传输系统中,用以获得良好的工作性能及传输效率,如传输效率高,系统能传输的功率容量最大,微波源工作也较稳定等,而且对于微波测量,也是十分重要的,它直接关系到测量数据的准确度,在精密测量中,往往对阻抗匹配提出很高的要求,电压反射系数由公式:≠Zc 时,即阻抗不匹配,就会产生反射,所以掌握匹配的原理和技巧,对可知,当ZL分析和解决微波技术中的实际问题具有十分重要的意义。

图3-4 调配原理图解在小功率时构成微波匹配源的最简单的办法是在信号源的输出端口接一个衰减器或一个隔离器,使负载反射的波通过衰减进入信号源后的二次反射已微不足道,可以忽略。

匹配的基本原理是利用一个调配器,使它产生的附加反射波,其幅度和失配元件产生的反射波幅度相等,而相位相反,从而抵消失配元件在系统中引起的反射从而达到匹配。

阻抗匹配的装置与方法很多,可以根据不同的场合要求灵活选用。

对于固定的负载,通常可以在系统中接入隔离器(主要用于源端匹配)、膜片、销钉、谐振窗等以达到匹配目的;而在负载变动的情况下,可接入单螺钉调配器,EH阻抗调配器,短截线等类型的调配器,这里仅介绍实验室常用的单螺钉调配器法。

在单螺钉调配器中,一段开槽波导段宽边中心装置一个位置可移动的螺钉,而螺钉伸入波导里的深度可调,就构成可移动的单螺钉调配器,它是利用螺钉产生适当的电纳达到匹配目的,其调配原理由图3-4 说明。

设系统终端的归一化导纳为Y,在圆图上处于位置A 点,L移动单螺钉,现在要找到这样一个位置,在这个位置参考面上,向负载端看入的输入导纳为在圆图上相当于从A 点沿等ρ圆移动距离d 到等ρ圆与 1 = G 圆的交点 B(图上 B点j),在这个位置上改变螺钉深度,在螺钉插入深度 t < λg /4时,其作用导纳值为 1 ±B相当于在传输线上并联了一个正的电纳(为容性的)。

再改变螺钉的深度,即能改变容性电纳j,这相当于在输入端并联一个电纳值,使之与原来的电纳值相加抵消。

此参考面上总值B的导纳为1,实现匹配。

在圆图上相当于从 B点沿1的等G圆移动到原点,即匹配点,从而使系统达到匹配。

如果滑动单螺钉调配器的长度可以半波长范围内变化,同时调节螺钉深度提供的并联电纳可以0~∞之间任意调节,则该调配器能对任何有耗负载调配,故理想情况下没有禁区。

四、实验装置YM1123标准信号发生器,GX2B小功率计,YM3892选频放大器,TC2b波导型测量线,(TS7厘米波导精密衰减器,PX16直读式频率计),BD20-A三厘米波导系统,负载,单螺钉调配器,探头若干。

五、实验内容1.测量线连接后接匹配负载。

调整测试系统,用频率计测量并记录工作频率(9.7GHz);2.匹配负载法测量“膜片+匹配负载”总导纳,最后求出其膜片本身的归一化导纳;(a)测量线后接“膜片+匹配负载”,用交叉读数法测量测量线标尺中间部位的一个驻波波节位置D min,记录测得的数据。

(b)用直接法(或等指示度法)测量其驻波系数ρ。

(c)测量线后接“膜片+匹配负载”,用交叉读数法测量测量线相邻的右边(或左边)波节点位置DT,并另找一个与DT 相邻的波节点,以确定波导波长λg 。

(d)根据实验原理,用圆图和公式两种方法处理数据,求出膜片的归一化电纳,分析实验结果。

3.用单螺钉调配器进行调配方法(I ),用单螺钉调配器调配“膜片+匹配负载”(a)测量线后接“膜片+匹配负载”,。

(b)测量线后换接上接有匹配负载的单用直接法(或等指示度法)测量其驻波系数ρ1螺钉调配器,调节螺钉深度,使其驻波系数仍等于ρ。

(c)保持单螺钉调配器的螺钉深度1及其位置不变,测量线后依次接上单螺钉调配器,“膜片+匹配负载”,移动单螺钉调配器的螺钉位置,使其驻波系数ρ<1.05。

六、系统连接图七、数据整理测量线连接后接匹配负载。

调整测试系统,用频率计测量并记录工作频率(9.7GHz),读数为9.370 GHz。

Dmin=116.10mmρ=1.12DT1=138.66mmλg=2(138.66-116.10)=44.92mm圆图法:Z=0.75-j0.32公式法:Z=0.77-j0.28用单螺钉调配器进行调配ρ1=1.12调节螺钉深度为d=8.06mm移动单螺钉调配器的螺钉位置L=5.0cm八、思考与讨论1.测量阻抗时,驻波节点的位置DT 如何确定?为什么能用测等效参考面阻抗的方法确定待测阻抗?接待测元件,找到一个驻波最小点Dmin,取下待测元件,测量线短接,找与Dmin相邻的驻波位置既为Dt,因为阻抗分布具有0.5λg重复性.2.测量膜片电纳时,为什么后面要接匹配负载?接匹配负载时,从膜片左端看的归一化输入导纳Y=1+jB,从而得膜片归一化电纳,其精度决定于匹配负载的匹配特性。

3.为什么要进行阻抗匹配?在微波测试系统中,调配器调到什么情况时,传输到负载的功率最大?若传输负载的功率为3dB ,则测得的驻波系数应为何值?阻抗匹配可使系统获得良好的工作性能及传输特性。

相关文档
最新文档