二次函数实际问题之拱桥问题
2022年中考数学专题复习:二次函数实际问题(拱桥问题)

2022年中考数学专题复习:二次函数实际问题(拱桥问题)一、单选题1.如图,一座拱桥的纵向截面是抛物线的一部分,拱桥的跨度为4.9m ,当水面宽4m 时,拱顶离水面2m ,如图,以拱顶为原点,抛物线的对称轴为y 轴,建立平面直角坐标系,抛物线的函数表达式为( )A .22.45y x =-B .22y x =-C .212y x =-D .214y x =- 2.如图,某涵洞的截面是抛物线形,现测得水面宽AB =1.6m ,涵洞顶点O 与水面的距离CO 是2m ,则当水位上升1.5m 时,水面的宽度为( )A .0.4mB .0.6mC .0.8mD .1m 3.如图所示,一座抛物线形的拱桥在正常水位时,水而AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A. B .10米 C. D .12米 4.如图所示,一座抛物线形的拱桥在正常水位时,水面AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米 D .12米 5.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽 1.6m AB 时,涵洞顶点与水面的距离是2m .这时,离开水面1.5m 处,涵洞的宽DE 为( )ABC .0.4D .0.8 6.有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A .y =125x 2+58xB .y =-125x 2+85x C .y =-58x 2-125x D .y =-125x 2+85x +16 7.如图是抛物线形拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降2.5m ,那么水面宽度为( )m .A .3B .6C .8D .98.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m二、填空题 9.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是___________米.10.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 达到警戒水位时,水面CD 的宽是10m .如果水位以0.25m/h 的速度上涨,那么达到警戒水位后,再过________h 水位达到桥拱最高点O .11.某桥梁的桥洞可视为抛物线,12m AB =,最高点C 距离水面4m ,以AB 所在直线为x 轴(向右为正向),若以A 为原点建立坐标系时,该抛物线的表达式为21493y x x =-+,已知点D 为抛物线上一点,位于点C 右侧且距离水面3m ,若以点D 为原点,以平C 行于AB 的直线为x 轴(向右为正向)建立坐标系时,该物线的表达式为___________.12.赵州桥的桥拱横截面是近似的抛物线形,其示意图如图所示,其解析式为y =﹣125x 2.当水面离桥拱顶的高度DO 为4m 时,水面宽度AB 为____m .。
中考数学高频考点突破:实际问题与二次函数——拱桥问题

中考数学高频考点突破:实际问题与二次函数——拱桥问题一、选择题1.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( )A.2.76米B.7米C.6米D.6.76米2.如图是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=−0.01(x−20)2+4,桥拱与桥墩AC的交点C恰好位于水面,且AC⊥x轴,若OA=5米,则桥面离水面的高度AC为( )A.5米B.4米C.2.25米D.1.25米3.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面 1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4√3米B.5√2米C.2√13米D.7米二、填空题4.如图所示是一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的髙度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.5.一个拱形桥架可以近似看做是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成的.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45∘,AC1=4米,点D2的坐标为(−13,−1.69),则桥架的拱高OH=米.6.闵行体育公园的圆形喷水池的水柱(如图1),如果曲线APB表示落点B离点O最远的一条水流(如图2),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式,那么圆形水池的半径至少为米时,才能使喷出的水流不落在为y=−x2+4x+94水池外.三、解答题7.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1) 求抛物线的解析式;(2) 一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?8.如图是一个抛物线形拱桥示意图,已知河床宽度AB=40米,拱桥高度为10米.(1) 建立适当的坐标系,并求出抛物线的解析式;(2) 若测量得拱桥内水面宽度为28米,求拱桥内的水深.9.已知一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,且矩形的一条边长为2.5m.(1) 写出隧道截面的面积y(m2)与截面上部半圆的半径x(m)之间的函数表达式;(2) 当隧道截面上部半圆的半径为2m时,隧道截面的面积约是多少(精确到0.1m2)?10.桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A,C,B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立平面直角坐标系,已知此桥垂直于桥面的相邻两柱之间的距离为2米(图中用线段AD,FG,CO,BE等表示桥柱),CO=1米,FG=2米.(1) 求经过A,B,C三点的抛物线的函数解析式;(2) 求桥柱AD的高度.11.有一个抛物线形蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为9米.4(1) 求该抛物线的解析式;(2) 若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,则横梁DE的长度是多少米?12.如图,在喷水池的中心A处竖直安装一个水管AB.水管的顶端安有一个喷水管,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m.水柱落地点D离池中心A处3m,建立适当的平面直角坐标系,解答下列问题.(1) 求水柱所在抛物线的函数解析式;(2) 求水管AB的长.13.如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.(1) 建立平面直角坐标系,并求该抛物线的函数表达式.(2) 若水面上升1m,水面宽度将减少多少?14.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,以AB的中点O为原点,按如图②所示建立平面直角坐标系.(1) 求该抛物线对应的函数关系式;(2) 通过计算说明该货车能安全通过的最大高度.15.秋风送爽,学校组织同学们去颐和园秋游,昆明湖西堤六桥中的玉带桥非常令人喜爱,如图所示,玉带桥的桥拱是抛物线形,水面宽度AB=10m,桥拱最高点C到水面的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式;(2) 现有一艘游船高度是 4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,通过计算说明这艘游船能否安全通过玉带桥.16.如图是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1) 经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填“方案一”“方案二”或“方案三”),则B点坐标是,求出你所选方案中的抛物线的表达式.(2) 因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.17.如图,隧道的截面由抛物线ADC和矩形AOBC构成,矩形的长OB是12m,宽OA是4m.拱顶D到地面OB的距离是10m.若以O原点,OB所在的直线为x轴,OA所在的直线为y轴,建立直角坐标系.(1) 画出直角坐标系xOy,并求出抛物线ADC的函数表达式;(2) 在抛物线型拱壁E,F处安装两盏灯,它们离地面OB的高度都是8m,则这两盏灯的水平距离EF是多少米?18.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起,据试验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1) 求足球开始飞出到第一次落地时,该抛物线的解析式.(2) 足球第一次落地点C距守门员多少米?(取4√3≈7)(3) 运动员乙要在第二个落地点D抢到足球,他应再向前跑多少米?(取2√6≈5)答案一、选择题1. 【答案】D【解析】设该抛物线的表达式为 y =ax 2,把 x =10,代入表达式得 −4=a ×102,解得 a =−125,故此抛物线的表达式为 y =−125x 2,∵ 桥下水面宽度不得小于 18m ,∴ 令 x =9 时,可得 y =−125×81=−3.24(m ), 此时水深 6+4−3.24=6.76(m ), 即桥下水深 6.76m 时正好通过, ∴ 超过 6.76m 时则不能通过.2. 【答案】C3. 【答案】B【解析】建立如图所示的平面直角坐标系,则 MN =4 米,EF =14 米,BC =10 米,DO =32 米,设大孔所在抛物线的解析式为 y =ax 2+32(a ≠0),∵BC =10 米, ∴ 点 B (−5,0),∴0=a ×(−5)2+32, ∴a =−350,∴ 大孔所在抛物线的解析式为 y =−350x 2+32,设点 A (b,0),则设顶点为 A 的小孔所在抛物线的解析式为 y =m (x −b )2, ∵EF =14 米,∴ 点 E 的横坐标为 −7, ∴ 点 E 的坐标为 (−7,−3625),当 m (x −b )2=−3625 时,解得 x 1=65√−1m +b ,x 2=−65√−1m +b , ∵MN =4 米, ∴∣∣∣∣65√−1m +b −(−65√−1m +b)∣∣∣∣=4, ∴m =−925,∴ 顶点为 A 的小孔所在抛物线的解析式为 y =−925(x −b )2,∵ 大孔水面宽度为 20 米,∴ 当 x =−10 时,y =−92, ∴−92=−925(x −b )2, ∴x 1=5√22+b ,x 2=−5√22+b ,∴ 当大孔水面宽度为 20 米时,单个小孔的水面宽度 =∣∣∣(5√22+b)−(−5√22+b)∣∣∣=5√2(米). 故选B .二、填空题4. 【答案】 36【解析】如图所示:设在 10 秒时到达 A 点,在 26 秒时到达 B , ∵10 秒时和 26 秒时拱梁的高度相同,∴A ,B 关于对称轴对称,则从 A 到 B 需要 16 秒,则从 A 到 D 需要 8 秒, ∴ 从 O 到 D 需要 10+8=18 秒, 从 O 到 C 需要 2×18=36 秒.5. 【答案】 7.24【解析】设抛物线 D 1OD 8 的解析式为 y =ax 2,将 x =−13,y =−1.69 代入,可得 a =−1100.因为横梁 D 1D 8=C 1C 8=AB −2AC 1=36 m ,所以点 D 1 的横坐标是 −18,代入 y =−1100x 2,得 y =−3.24. 因为 ∠A =45∘,所以 D 1C 1=AC 1=4 m ,所以 OH =3.24+4=7.24 m .6. 【答案】 92三、解答题7. 【答案】(1) 根据题意,A (−4,2),D (4,2),E (0,6),设抛物线的解析式为 y =ax 2+6(a ≠0),把 A (−4,2) 或 D (4,2) 代入得 16a +6=2,得 a =−14,抛物线的解析式为 y =−14x 2+6.(2) 根据题意,把 x =±1.2 代入解析式,得 y =5.64, ∵5.64>4.5,∴ 货运卡车能通过.【解析】(1) 方法二:设解析式为y=ax2+bx+c,代入A,D,E三点坐标得{16a−4b+c=216a+4b+c=2c=6,得{a=−14b=0c=6,抛物线的解析式为y=−14x2+6.8. 【答案】(1) 建立如图所示坐标系,设抛物线铁板式为y=ax2;由题意得,B(20,−10),∴−10=202a,解得a=−140,∴y=−140x2.(2) 由题意得,点D横坐标为28÷2=14,当x=14时,y=−140×142=−4.9,−4.9−(−10)=5.1.∴拱桥内的水深5.1米.9. 【答案】(1) y与x之间的函数表达式是y=12πx2+5x;(2) 当x=2时,y=12π×22+5×2=2π+10≈16.3(m2).所以隧道截面上部半圆的半径为2m时,隧道截面的面积约是16.3m2.10. 【答案】(1) 由题意可知:点C的坐标为(0,1),点F的坐标为(−4,2).设抛物线的函数解析式为y=ax2+c,所以{1=c,2=16a+c,解得{a=116,c=1.所以抛物线的函数解析式为y=116x2+1.(2) 点A的横坐标为−8,当x=−8时,y=5,所以桥柱AD的高度为5米.11. 【答案】(1) 由题意可得,抛物线经过(2,94),(8,0),故{64a+8b=0,4a+2b=94,解得{a=−316,b=32,故拋物线的解析式为y=−316x2+32x.(2) 由题意可得,当y=1.5时,1.5=−316x2+32x,解得x1=4+2√2,x2=4−2√2,故DE=x1−x2=4+2√2−(4−2√2)=4√2(米).12. 【答案】(1) 以池中心A为原点,竖直安装的水管为y轴,与水管垂直的方向为x轴建立平面直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为y =a (x −1)2+3,代入 (3,0),求得 a =−34, 故所求的函数解析式为 y =−34(x −1)2+3(0≤x ≤3).(2) 令 x =0,则 y =94=2.25.故水管 AB 的长为 2.25 m .13. 【答案】(1) 以 C 为坐标原点建立坐标系,则 A (−6,−4),B (6,−4),C (0,0),设 y =ax 2,把 B (6,−4) 代入上式,36a +4=0,解得:a =−19,∴y =−19x 2.(2) 令 y =−3 得:−19x 2=−3,解得:x =±3√3, ∴ 若水面上升 1 m ,水面宽度将减少 12−6√3.14. 【答案】(1) 如图,A (−4,0),C (0,4),设抛物线的解析式为 y =ax 2+k (a ≠0),由题意,得 {16a +k =0,k =4,解得 {a =−14,k =4,∴ 抛物线的解析式为 y =−14x 2+4.(2) 2+0.42=2.2,当 ∣x ∣=2.2 时,y =−14×2.22+4=2.79,2.79−0.5=2.29(m ).答:该货车能够安全通行的最大高度为 2.29 m .15. 【答案】(1) 以 AB 的中点为原点,建立如下的坐标系, 则点 C (0,6),点 B (5,0).设函数的表达式为 y =ax 2+c =ax 2+6(a ≠0),将点 B 的坐标代入上式,得 0=25a +6,解得 a =−625,故抛物线的表达式为 y =−625x 2+6.(2) 设船从桥的中心进入,则其最右侧点的横坐标为 2,当 x =2 时,y =−625x 2+6=−625×4+6=12625=5.04,船的顶部高为 4.5,4.5+0.5=5<5.04,故顶部通过符合要求,故这艘游船能安全通过玉带桥.16. 【答案】(1) 方案二;(10,0);由题意知,抛物线的顶点坐标为 A (5,5),且经过点 O (0,0),B (10,0), 设抛物线的解析式为 y =a (x −5)2+5(a ≠0),把点 (0,0) 代入,得 0=a (0−5)2+5,解得a=−15.∴抛物线的解析式为y=−15(x−5)2+5.(2) 在方案二的前提下,由题意知,当x=5−3=2时,−15(x−5)2+5=165,所以水面上涨的高度为165米.17. 【答案】(1) 画出直角坐标系xOy,如图:由题意可知,抛物线ADC的顶点坐标为(6,10),A点坐标为(0,4),可设抛物线ADC的函数表达式为y=a(x−6)2+10,将x=0,y=4代入得:a=−16,∴抛物线ADC的函数表达式为y=−16(x−6)2+10.(2) 由y=8得:−16(x−6)2+10=8,解得:x1=6+2√3,x2=6−2√3,则EF=x1−x2=4√3,即两盏灯的水平距离EF是4√3米.18. 【答案】(1) 根据题意,可设足球开始飞出到第一次落地时,抛物线的解析式为y=a(x−6)2+4,将点A(0,1)代入,得36a+4=1,解得a=−112,∴足球开始飞出到第一次落地时,该抛物线的解析式为y=−112(x−6)2+4.(2) 令y=0,得−112(x−6)2+4=0,解得x1=4√3+6≈13,x2=−4√3+6<0(舍去),∴足球第一次落地点C距守门员13米.(3) 如图,足球第二次弹起后的水平距离为CD,根据题意知CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴−112(x−6)2+4=2,解得x1=6−2√6,x2=6+2√6,∴CD=x2−x1=4√6≈10(米),∴BD=13−6+10=17(米).答:运动员乙要在第二个落地点D抢到足球,他应再向前跑17米.。
实际问题与二次函数——拱桥问题 初中初三九年级数学教学课件PPT 人教版

(X2,-3)D
解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中
的一个交点(如左边的点)为原点,建立平面直角坐标系.
此时,抛物线的顶点为(2,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
y a( x 2 )2 2
∵抛物线过点(0,0)
0 a ( 2 )2 2
a 0.5
(3)若正常水位时,有一艘宽8米,高2.5米的小船
能否安全通过这座桥?
C
D
A
20m
B
谈谈你的学习体会
实际问题 抽象 数学问题 运用 问题的解决
转化
数学知识
解题步骤: 1、分析题意,把实际问题转化为数学问题,画出图形。 2、根据已知条件建立适当的平面直角坐标系。 3、选用适当的解析式求解。 4、根据二次函数的解析式解决具体的实际问题。
解:如图,以AB所在的直线为x轴, 以AB的垂直平分线为y轴,建立平面 直角坐标系.
∵AB=4 ∴A(-2,0) B(2,0)
∵OC=4.4 ∴C(0,4.4) 设抛物线所表示的二次函数为
y ax2 4.4
∵抛物线过A(-2,0)
4a 4.4 0 a 1.1
∴抛物线所表示的二次函数为 y 1.1x2 4.4
∴这条抛物线所表示的二 次函数为:
y 0.5( x 2 )2 2
当水面下降1m时,水面的 纵坐标为y=-1,这时有:
1 0.5( x 2 )2 2
x1 2 6 , x2 2 6
∴这时水面的宽度为:
x2 x1 2 6m
∴当水面下降1m时,水面宽度
增加了 ( 2 6 4 )m
面2m。已知桥洞的拱形是抛物线,(1)求该抛物线的
函数解析式。(2)若水面下降1米,水面宽增加多少米?
二次函数拱桥应用题doc

二次函数拱桥应用题.doc 二次函数拱桥应用题拱桥是一种常见的建筑结构,在城市和乡村中都可以见到。
它不仅能够承载重量,还可以美化环境。
在设计和建造拱桥时,数学是一个重要的工具。
其中二次函数在解决与拱桥相关的问题时起到了重要的作用。
二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是实数,且a不等于0。
二次函数的图像是一个抛物线,具有对称轴和顶点。
在拱桥的设计中,二次函数可以用来描述桥梁的曲线形状。
例如,我们可以用二次函数来描述一座拱桥的高度与横轴距离之间的关系。
假设我们要设计一座拱桥,使得拱桥的高度在横轴距离的不同位置上都能达到最大值,那么我们可以使用二次函数来描述这个关系。
首先,我们需要确定二次函数的顶点位置。
顶点是二次函数的最高点或最低点,它位于对称轴上。
对于拱桥来说,我们希望拱桥的高度在横轴距离的不同位置上都能达到最大值,因此我们需要找到二次函数的最高点。
假设拱桥的起点为原点(0,0),终点为坐标为(x,y)的点。
我们可以通过求解二次函数的顶点来确定拱桥的最高点。
顶点的横坐标可以通过求解二次函数的对称轴方程得到,对称轴方程为x=-b/(2a)。
将这个值代入二次函数的表达式中,我们可以求得顶点的纵坐标。
拱桥的高度与横轴距离之间的关系可以用二次函数来描述。
这个二次函数的顶点就是拱桥的最高点,拱桥的形状由这个二次函数的图像来表示。
在实际的拱桥设计中,我们需要考虑到许多因素,如桥梁的承重能力、材料的强度、施工的成本等。
因此,我们需要在满足这些要求的前提下,选择一个合适的二次函数来描述拱桥的形状。
例如,我们可以选择一个顶点为(0,0)的二次函数y=ax^2来描述拱桥的形状。
在确定a的值时,我们需要考虑到桥梁的承重能力。
如果a的值过大,那么拱桥的曲线将会很陡峭,不利于行人和车辆的通行。
如果a的值过小,那么拱桥的曲线将会很平缓,可能无法承受桥梁的重量。
因此,我们需要在满足这些要求的前提下,选择一个合适的a的值。
二次函数拱桥问题技巧

二次函数拱桥问题技巧拱桥是一种古老而又美丽的建筑结构,广泛应用于城市的交通建设中。
在设计和建造拱桥的过程中,我们必须考虑多个因素,包括拱桥的高度、跨度、荷载以及拱线形状等。
在解决这些问题时,二次函数成为了一种能够帮助我们分析和建模的重要工具。
首先,我们需要明确二次函数的定义。
二次函数是一个以$x$的平方项为最高项的多项式函数。
其一般形式可以表示为$f(x) = ax^2 + bx + c$,其中$a$、$b$和$c$是常系数。
二次函数图像呈现出一条平滑的曲线,其形状可以是开口向上或开口向下的拱形。
在拱桥问题中,我们常常需要根据已知条件建立二次函数模型,以分析和解决实际问题。
例如,假设我们想要设计一座拱桥,使得桥面的高度达到最大值,同时考虑到桥面的跨度应满足一定的要求。
这时,我们可以利用二次函数来描述桥面的高度,并通过优化方法来求解。
为了建立二次函数模型,我们需要首先确定函数的自变量和因变量。
在拱桥问题中,通常$x$轴表示桥面的宽度或跨度,$y$轴表示桥面的高度。
然后,我们需要考虑到已知条件。
例如,已知拱桥的两个支点之间的距离为$d$,那么我们可以设$x$的取值范围为$[0, d]$。
另外,对于一个平滑的拱形,我们可以假设二次函数在两个支点处的斜率为零。
这一条件可以转化为函数的导数为零的条件。
通过求解这些已知条件,我们可以确定二次函数的参数$a$、$b$和$c$的值。
在确定二次函数模型之后,我们可以利用这个模型来解决具体问题。
例如,我们可以利用二次函数模型来求解桥面的最大高度。
首先,求出二次函数的导函数$f'(x)$,然后令其等于零,解得极值点$x_0$。
接下来,我们计算$f(x_0)$,这就是桥面的最大高度。
除了求解最大高度,我们还可以利用二次函数模型来计算拱桥的其他性质。
例如,可以通过求解二次函数的零点来计算拱桥的支点位置。
在这个过程中,我们将二次函数设为零,并解得$x$的值。
这些值就是拱桥的支点的位置。
实际问题与二次函数拱桥问题

解:如图,以AB所在的直线为x轴,以
AB的垂直平分线为y轴,建立平面直角
坐标系∵.AB=4 ∴A(-2,0) B(2,0) ∵OC=4.4 ∴C(0,4.4
运行的轨迹为抛物线,篮圈中心距离地面3米。
问此球能否投中?
4米
3米
20
9
4米
0
8米
y (4,4)
20 9
a 1
4
0
如图,建立平面
3
8
x
直角坐标系,
9
y 1 x 42 4
9
当x 8时,y
(0≤x≤8)
20 9
点(4,4)是图中这段抛物 ∵篮圈中心距离地面3米
线的顶点,因此可设这段抛
设y抛物a线x所2 表4)示.4的二次函数为
∵抛物线过A(-2,0)
4a 4.4 0 a 1.1
∴抛物线所表示的二次函数为 y 1.1x2 4.4
当x 1.2时,y 1.1 1.22 4.4 2.816 2.7
∴汽车能顺利经过大门.
小结反思
解二次函数应用题的一般步骤: 1 . 审题,弄清已知和未知。 2 . 将实际问题转化为数学问题。建立适
y
解:设抛物线的函数解析式为
y ax2
由抛物线经过点(4,-12),可得
a3 4
0
x
A
B
所以,这条抛物线的二次函数为:
y 3 x2 4
21.4_二次函数的应用(2)拱桥问题

某公园草坪的护栏由50段形状相同的抛物线形不 锈钢管组成,如果每段护栏都按0.4m间距加装不 锈钢管(如图的立柱),那么制作这些立柱共需 要多少米的不锈钢管?(精确到1m)
y A
O
C D xBFra bibliotek收获与反思
实际问题
抽象
转化
运用 数学问题 问题的解 数学知识 返回解释
检验
如图,有一座抛物线形拱桥,在正常水位时水面 AB的宽为20m,如果水位上升3m达到该地警戒水 位时,水面CD的宽是10m.
l
1
4
请同学们自学课本第37页的例2, 学会利用二次函数解决实际生活中具 有抛物线形的问题,尝试总结解题的 一般步骤。
y 0 x
y
坐标系的建立可有不同的 0 方法,会得到不同的函数关 系式,但不同的方法得到的 结果是一致的.
y ① (2,2) y ②
x
0 -1 ③
(4,0) x 0 0 ④
x
有关抛物线形的实际问题的一般解题思路: 1.建立适当的平面直角坐标系 2.根据题意找出已知点的坐标 3.求出抛物线解析式 4.直接利用图象解决实际问题. 通过建立平面直角坐标系,可以将有关抛物
1 2 y x 25
C O
5 10 D
x
A
B
试一试
(3)现有一辆载有救灾物资的货车,从甲地出发经过此桥开 往乙地,已知甲地距离此桥280千米(桥长忽略不计),货车 正以40千米/时的速度开往乙地,当行驶1小时时,忽然接 到紧急通知“前方连降暴雨,造成水位以0.25米/时的速 度持续上涨”(货车接到通知时水位在CD处,当水位达到 桥拱最高点O时,禁止通行).试问:如果货车按原来的速度 行驶,能否安全通过此桥?若能,请说明理由;若不能,要使 货车安全通过此桥,速度应超过每小时多少千米?
二次函数与拱桥的问题的经典问题解析(同步学习)

二次函数与拱桥的问题的经典问题解析(同步学习)=4412+-x∴能通过.,2. 同步学习54页例:2: 有一座抛物线型拱桥,正常水位时,桥下水面宽度为20m ,拱顶距水面4m .(1)如图所示的直角坐标系中,求出该抛物线的关系式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h的函数关系式.(3)设正常水位时,桥下的水深为2m,为保证过往船只的顺利通过,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?3.同步学习课堂过关2某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面3点评:此题考查待定系数法求函数解析式以及利用图象上的点解决实际问题.4.同步学习55页第3题:如图,有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为46m ,水位上升3m 就到达警戒线CD ,这时水面的宽为43m ,若洪水到来时,水位以每小时0.25m 的速度上升,测水过警戒线后几小时淹没到拱桥顶端M 处?先运用待定系数法求出函数的解析式,根据解析式就可以求出OM 的值,根据时间=路程÷速度就可以得出结论.解:设函数的解析式为y=a 2x +k,把B (26,0),D (23,3)由题意,()()⎪⎩⎪⎨⎧=+=+33206222k a k a 得解得a=-41,k=6 则y=-41x 2+6. 当x=0时, y=6,则OM=6.则水过警戒线后淹没到拱桥顶端M 处的时间为:(6-3)÷0.25=12小时. 答:水过警戒线后淹没到拱桥顶端M 处的时间为12小时.本题考查了待定系数法求二次函数的解析式的运用,行程问题时间=路程÷速度的数量关系的运用,解答时求出解析式是关键.5.同步学习56页第3题某菜农搭建了一个横截面为抛物线的大棚,有关尺寸如图所示.(1)求抛物线的解析式;(2)若菜农身高 1.6米,则他在不弯腰的情况下,横向活动的范围有几米(结果精确到0.01米;)?(1)如图可设函数y=ax2+2 因为过点(2,0),所以代入可得a=-,即解析式:y=-x2+2. (2)当y=1.6时,即1.6=-x2+2 解得x=±,所以横向活动范围为×2=≈1. 79(m).6同步学习56页第4题某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安装在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线的形状如图(1)和(2)所示,建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=-x2+2x +,请你寻求:(1)柱子OA的高度为多少米?(2)喷出的水流距水平面的最大高度是多少?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数实际问题之拱桥问题
拱桥是一种常见而美丽的建筑形式,它不仅具备实用功能,还能展示
人类的工程智慧和美感。
在数学中,我们可以通过二次函数来研究拱
桥的形状和特性。
在本文中,我将探讨二次函数在拱桥问题中的应用,并深入分析拱桥的建设、维护和设计过程。
1. 什么是二次函数?
二次函数是一种常见的函数形式,它的一般表达式为f(x) = ax^2 +
bx + c,其中a、b、c为常数。
二次函数的图像呈现出拱形或倒U形,其特点是在抛物线的顶点处有极值,也就是最高点或最低点。
这个性
质使得二次函数在拱桥的研究中十分有用。
2. 拱桥问题的背景
拱桥是一种由石头、混凝土等材料构成的桥梁,它通常被用于跨越河流、道路等障碍物。
拱桥在建筑和土木工程领域中扮演着重要的角色,因为它具备良好的承重能力和抗压性能。
为了确保拱桥的稳定和安全,工程师需要对其结构进行精确的设计和分析。
3. 拱桥的建设和维护
拱桥的建设需要考虑许多因素,包括地理条件、基础设施、荷载等。
为了使拱桥具备足够的承重能力,工程师需要合理地确定拱的形状和
高度。
在这个过程中,二次函数可以帮助我们建立与拱桥形状相关的方程。
通过研究这个方程,我们可以了解拱桥的强度和稳定性,并做出相应的调整和改进。
4. 二次函数在拱桥设计中的应用
在拱桥设计中,二次函数可以帮助我们确定拱桥的最高点、最低点和抛物线的形状。
通过调整二次函数的参数,工程师可以得到不同形状和高度的拱桥。
二次函数还可以帮助我们计算拱桥的支持点位置、曲率和承重能力。
通过分析二次函数的图像和方程,我们可以预测拱桥在不同荷载下的行为,并为拱桥的设计提供指导。
5. 个人观点和理解
作为一个写手,我对拱桥问题有着浓厚的兴趣。
通过研究二次函数在拱桥设计中的应用,我深刻意识到数学在工程中的重要性。
二次函数不仅能描述拱桥的形状和特性,还可以帮助我们预测和优化拱桥的结构。
在今后的工作中,我希望能继续深入研究拱桥问题,并与工程师们合作,为建设更安全、美观的拱桥贡献自己的力量。
总结回顾:
通过本文的探讨,我们了解了二次函数在拱桥问题中的重要应用。
二次函数能够帮助我们研究拱桥的形状、高度和承重能力,为拱桥的设计和维护提供重要的指导。
在拱桥的建设过程中,工程师们需要合理地利用二次函数,并结合实际情况做出决策。
通过深入研究和理解二
次函数在拱桥问题中的应用,我们可以为拱桥的建设和设计提供更全面、深入和灵活的解决方案。
拱桥不仅是一种实用的工程结构,更是一种艺术形式,通过数学的力量,我们可以创造出更加稳定、美观的拱桥,为人类建设美丽家园做出贡献。
续写:
6. 创新设计与应用
随着科学技术的不断发展,拱桥的设计也在不断创新和演变。
除了使用二次函数进行拱桥的形状分析和计算外,工程师们还开始利用其他数学模型和技术来优化拱桥的结构。
随着计算机技术的进步,工程师们可以借助数值模拟和最优化算法来设计拱桥。
他们可以将拱桥的问题抽象化为数学模型,并使用计算机进行大规模的计算和优化。
通过这种方式,工程师们可以更好地掌握拱桥的特点和性能,并使其更加稳定和耐久。
工程师们还可以利用三维建模和虚拟现实技术来进行拱桥的设计和评估。
通过创建真实比例的三维模型,工程师们可以更直观地观察和分析拱桥的结构和受力分布。
而利用虚拟现实技术,他们甚至可以模拟拱桥的使用情景,进一步验证其性能和安全性。
另外,为了提高拱桥的适应性和灵活性,工程师们还开始探索使用可伸缩材料和智能结构来设计拱桥。
可伸缩材料具有较高的可塑性和耐变形性,可以在桥梁的受力情况改变时进行自适应调整,从而提高了
拱桥的承重能力和稳定性。
而利用智能结构技术,工程师们可以使拱桥具备自动检测和调整的能力,从而实现实时的结构监测和维护。
拱桥的设计不仅依赖于二次函数的应用,还需要借助其他数学模型和技术的支持。
工程师们需要不断探索创新的设计理念和技术手段,以应对日益复杂和严苛的建筑需求。
通过结合数学、计算机和工程学的力量,我们可以创造出更加安全、可持续和美观的拱桥,为人类的交通和生活提供便利和舒适。
7. 面临的挑战与解决方案
然而,在拱桥设计和建设的过程中,仍然存在一些挑战需要我们面对和解决。
拱桥的建设成本较高。
由于拱桥的结构复杂且对材料的要求较高,导致了建设成本的增加。
为了降低成本,工程师们可以采用更合理的材料和结构设计,优化拱桥的形状和支撑方式,并使用先进的建筑工艺和技术。
拱桥的维护和修复也是一个不容忽视的问题。
长期的使用和自然因素的影响可能会导致拱桥出现结构破坏和安全隐患。
为了保证拱桥的安全和可持续运营,工程师们需要定期进行结构检测和维护,并及时修复和更新受损部分。
拱桥的设计和建设过程需要考虑环境保护和可持续发展的问题。
工程
师们需要遵循环境保护的原则,选择对生态环境影响较小的建设方案,并在桥梁使用过程中节约能源和资源。
总结起来,拱桥设计和建设面临着诸多挑战,但通过合理应用数学模
型和技术手段,我们可以找到解决方案。
工程师们需要不断钻研拱桥
问题,并与相关领域的专家和研究人员进行合作,共同推动拱桥技术
的发展和进步。
通过持续的创新和努力,我们有信心为人类建设更加
安全、美丽的拱桥贡献自己的智慧和力量。