10kV配电线路安装避雷器后雷电感应过电压特性分析
10kV架空线路感应雷过电压影响因素分析

10kV架空线路感应雷过电压影响因素分析作为电力系统主要组成部分的架空线,由于长期暴露在野外,极易受雷擊,造成线路故障,导致巨大的经济损失。
本文首先分析了感应雷的原理,结合常见的地形分析了架空线感应雷的受雷宽度。
其次,从闪络次数角度分析了架空线自身特性与感应雷的关系。
最后,本文分析了避雷线和避雷器降低感应雷跳闸率的效果并提出线路设计与改造的建议。
标签:架空线路;防雷;避雷线;避雷器;闪络次数;跳闸率;0 引言以广州市从化区为例,从化10kV配电网共有馈线226回,线路总长2960.8km,其中电缆线路584km,架空裸导线2198.8km,架空绝缘导线178km。
从化地区山地多,年平均雷暴日80天。
另外,线路以架空为主,容易受雷击。
2018年变电站开关总跳闸次数为263次,重合闸不成功24次,因雷击造成的跳闸事故占比5.5%。
雷击故障中,直击雷占比15%,感应雷占比85%。
因此,通过对感应雷进行分析研究,具有十分重要的意义。
1感应雷过电压的原理1.1 感应雷的形成当雷电击中架空配电线路附近的地面时,在雷电的放电过程中,空间电磁场急剧变化,是处于电磁场中的架空线路上感应出过电压。
感应雷过电压幅值的构成上,以静电分量为主。
雷电负电荷被迅速中和,使先导放电通道电场强度急剧减弱。
由于束缚导线上正电荷的电场消失,导线上的束缚电荷迅速的沿导线向两端运动,形成感应雷过电压的静电分量。
1.2 规程法计算感应雷过电压工程中实际计算按DL/T620-1997标准取值,如雷云对地放电时,落雷地点距架空导线的垂直距离S≥65m时,无避雷线的架空配电线路导线上产生的感应雷过电压最大值可按下式估算:式中:--雷击大地时感应雷过电压最大值,单位为kV;--雷电流幅值,单位为kA;--导线平均高度,单位为m;--雷击点与线路的垂直距离,单位为m。
2 10kV无避雷线线路电气几何模型原理图1为经典的EGM用于无避雷线的配电线路屏蔽保护计算时的几何模型图。
10kV配电线路的雷电感应过电压特性

大地 电导 率 减 小 时 . 线 路 感 应 电压 幅 值 也 会 随 之 减 小 . 波形 变
化 幅 度 增加 . 甚 至 可 能 会 出现 电压 的极 性 改 变的 情 况 。
速 的 中和 , 此 时 先 导通 道 中的 电场 会 迅 速 的 下 降 , 束缚 电荷 释 放 之 后 会 沿 着导 线 运 动 . 从 而 形成 雷 电感 应 过 电 压 。 一般 情 况 下 .通 过 主 放 电雷 电 流模 型 能 够将 不 同距 离位 置 处 的 电磁 场 分 布 计 算 出来 .然后 根 据 电磁 场及 线路 的耦 合 关 系 能 够将 对
1 雷 电感应过 电压特性
雷 电感 应 过 电压 指 的是 电 气设 备 附近 的地 面被 雷 电 击 中
明显 看 出 ,从 中点位 置 到 末 端 位 置 电 压 的 波 形 并 没有 太 大 的 波动 , 基本保持一致 , 由此 可见 , 大地 并 不 是 理 想 的 导体 。 研究
路 防 护 工 作 提 供 参 考
2 . 1 提 高配 电线路 的绝 缘水 平
一Leabharlann 之后 . 导 致 空 间 内的 电磁 场 突然 发 生 变 化 , 使 得 未被 雷 击 的 电 气设 备 出现 感 应 过 电 压 的现 象 。假 如 雷云 中 带有 大量 的 负 电
荷. 先 导通 道 与 雷云 的 电场 之 中存 在 线路 , 导线上形成束缚 电 荷. 此时. 先 导 通 道 并 没有 明显 的 电 流 , 但 当雷 云在 1 0 k V配 电
电 力 系统 的 安 全 稳 定 运行 对 于社 会 的稳 定 、 区域 经济 的
10kV配电线路雷击故障分析及防雷措施

10kV 配电线路雷击故障分析及防雷措施摘要:在现代的快节奏生活中,电逐渐渗透到人们的日常中,比如做饭、看电视等等,因此确保电的安全是很重要的。
这篇文章讲述的就是提高十千伏配线线路的抗雷击水平,这样才能在雷雨时候能安全使用电,给人们的生产及生命安全提供了一个重要的保障。
这篇文章就着重分析了配电线路抗击故障的原因、遭受雷击造成的危害及防雷的措施。
关键词: 10KV配电线路;雷击故障;防雷措施引言:随着我国经济实力的提高,人民的物质生活逐渐提高,对生活的质量也要求更高。
再加上现代的快节奏时代,电已经成为人们生活的一部分。
但是由于雷击天气的影响,会经常造成电路故障的发生。
现在10KV的配电网络已经是相关系统的最主要网络,正因为如此,雷击造成的影响更严重。
首先,雷击会造成线路的跳闸或者短路、断路,这直接扰乱了人们的生产生活相关的设备也有了一些的损害。
因此,必须要提高配电线路的防雷水平或者防雷设备的质量,这样才能让人们的生产生活得到一个好的保障。
1.10kV配电线路遭受雷击的形式和危害雷电是将于的水滴分布不均导致,空气对流的过程是云层上、下不部产生不等量的电荷,形成一定的电位差而形成的雷电。
10KV配电线路遭受雷击的形式大概有两种:感应雷过电压和直接雷电。
感应雷过电压又分为静电感应过电压和电磁感应雷过电压。
雷电放电时。
通道中的电荷对线路产生感应,线路上的正电荷被拉到附近的电场从而变成束缚电荷。
放电的时候又中和了导致束缚电荷又变为自由电荷,自由电话根据导线的流向而产生的电压称为静电感应过电压。
是积累,又会产生一个脉冲磁场,这个磁场线与大地之间形成回路,又形成了一个电磁感应雷过电压。
这两个电压的叠加的幅值在四五百千伏左右,已经超过了平常设备的冲击耐压,进而导致雷电事故发生。
另一种是直击雷,但是由于能直接击中配电线路情况的概率很小,所以不会在低千伏配电线路的地方设置独立的避雷装置。
由于生活中需要的各种电都是来自外部的,高压,低压、通信电缆等等一系列都是从外部引入。
10kV配电线路的雷电感应过电压特性 韩军

10kV配电线路的雷电感应过电压特性韩军摘要:当前,10kV配电线路架设过程中防护配电线路雷电过电压现象已经成为了该领域关注和研究的重点。
实验和研究的结果表明,将地线架设置在配电线路的上方可以在满足底线和导线安全距离的基础上,有效缩短底线、导线之间的距离,从而提高接地的效果。
当接地电阻率上升时,绝缘电子的电压也会相应的降低,配电线路防御雷电的能力就会显著提升。
关键词:10kV配电线路;雷电感应;过电压特性1前言感应雷过电压易造成配电线路跳闸,从而影响电力系统安全运行,而线路上感应雷过电压的影响因素较多,有必要深入研究以减少雷击事故发生。
2当前我国10KV配电线路产生雷击的原因2.1配电线路自身具有的特性我国10KV的配电线路一般是应用在中小城市或者是县级城市的电力运输,随着我国电力设施的不断完善,传统的35KV电力系统逐渐被10KV的配电网络系统代替。
当前配电线路出现雷击过电压有两种情况:其一,雷直接击中配电线路;其二,雷击中配电线路附近的物体,因为电磁感应的存在产生了过电压。
随着10KV配电线路的使用,雷击事故已经明显减少,其本身有一定的防雷能力,但是这种配电线路会受到两种雷击过电压的影响,进而对相关的电气设备产生很大的破坏作用。
配电线路中的导线和塔杆等设施有一些金属物质,使其容易吸引雷电云层中的电荷,导致雷击事故的发生。
2.2人工设计的10KV配电线路防雷设施存在漏洞在对10KV配电线路进行设计的时候没有依据当地的实际情况以及天气的特点进行设计,这使得防雷设施的作用得不到充分的发挥,甚至还有的地方没有安装相应的防雷装置,这些都造成了防雷效率降低。
3雷电感应过电压波特性影响雷电感应过电压形成的因素包括雷电与配电线路之间的距离、雷电流波动的距离、配电线路的高度等。
除了上述的主要因素外,雷电流波前时间、回波速度、大地导电率、接地电阻等都会对雷电感应过电压的形成产生影响。
在雷电感应过电压的计算过程中,接地电阻和雷电同波速度很小,因此可以忽略不计,相应的,雷电同波速度和接地电阻在雷电过电压的变化过程中所产生的影响也很小,同样的可以忽略。
10kV配电线路的雷电感应过电压特性

薛 建 华
( 国网黑龙 江省 电力有限公 司哈 尔滨供 电公司 , 黑龙江 哈 尔滨 1 5 0 0 0 1 )
摘 要: 1 0 k V配电线路具有绝缘水平低的特点 , 因此在使 用过程 中容 易遭到雷击而 出现严 重的安全事故 。当前 , 1 0 k V配 电线路架设 过程 中防护配 电线路 雷电过 电压现 象已经成为 了该领域 关注和研 究的重点 。实验和研 究的结果表 明, 将地 线架设置在配 电线路的上方可 以在满足底线和导线安全距 离的基础上 , 有效缩短底线 、 导线之 间的距 离 , 从 而提 高接地 的效果 。当接地 电阻率上升时 , 绝缘 电子的电压 也会相应的 降低 , 配电线路 防御 雷电的能力就会显著提升 。
关键词 : l O k V 配 电 线路 ; 雷 电 感应 ; 过 电压 特 性
l O k V配电线路在适用和运行 的过程 中很容 易受 到雷击而产生 会有所下 降 , 波形 则保持不变 , 最终导致 的结果是 电压正负极 的改 严重 的安 全事故 , 造成这一 问题 的主要 原因是架空线路的绝缘效果 变 。 没有 达到要求 。l O k V配 电线路 中主要 的安 全隐患来源于雷击高发 4 雷 电感 应 过 电压 的 概 率 闪 络 特 性 分 析 根据计算 结果显示 , 当大地 电导 率变大 时 , 雷电感应 过 电压 会 路段 的大地以及线 路周边的高层 建筑 在线路上产生较大 的电压 。 为 了避 免这 一问题 ,早在上个世纪 7 0年代就有相关的学者和专家提 有所下降 , 因此适 当提升大地 电导率可 以在一定程 度上降低 配电线 出通过在架 空配 电线路 中架设接地 线的方式来 预防雷 电感应 过 电 路雷击事故 的发生频率 ,相 应的闪络率 和闪络 的次 数也会 明显降 很 多配电线路的 压现 象 , 本文将根据 l O k V配 电线路雷 电感应过电压的特点和现状 , 低 。导致配电线路闪络现象 的主要 原因是直击雷 , 短路现象都是由直击 雷导致 的 , 尤其是 当配 电线路 没有 高层 建筑的 提 出 相应 的 预 防 方 法 。 保护时 , 直接雷对配 电线路 的破坏将会更加严重。 1 雷 电感 应 过 电压 当l O k V配电线路的周边 有较 多的高层建筑物时 ,由于建筑 的 5有效 防止雷 电过电压的策略 5 . 1 新 型设备材料的应用 。钢绞线具有较好的防雷性能 , 因此是 高度 高于导线的高度 ,因而会对线路 的信号产生一定 的屏蔽现 象 , 使 导线中的弧度大幅度降低 , 这样 雷电直击 导线 的现象就会 明显减 制作避 雷线 的理想材料 。避 雷线一般架构 在配 电线路 杆塔 的最 高 少 。从 这一角度来看 , 高层建筑能够在 一定 程度上气道减弱雷 电产 处 , 这样才能充分发挥避雷针的避雷作用。 当前 , 我 国配 电线路中的 生的电场 , 从 而降低局部 的总电荷量 , 当出现雷 电时可 以减 少导线 高压输 电路 和超高压输 电线 路通常会采用 专 门的镀 锌钢绞线作 为 避雷线 的材料 ,这两种线路对 避雷线的横截面积也有特殊 的要求 , 上的雷电感应过电压 。 般采用横截面积为 2 5 、 3 5 、 5 O 、 7 O平方毫米的绞线作为原 材料 。 绞 2 雷 电感 应 过 电压 的 计 算 方 式 相应 的采用 的壁垒线横截 面积也越 大。壁垒线 雷电感应过 电压的计算方 式如下 : 首先 , 根据 放 电雷 电流模型 线 的横截面积越 大 , 这会影 响线路 的稳定性 , 因此 计算 雷 电不 同通 电位 置的 电场分布情 况 ; 其次, 根 据线路 和电磁场 在风力 的影 响下会产生一定 的震动 , 需要采取防震锤 降低节点 的震动 。 随着 电力产业 的发展 以及科学技 之间的作 用关 系 , 计算不 同雷 电场在 配电线 路不 同区段上形成 的感 一些发达 国家在超高压线路 的架设过程 中已经开始应 用 应 过电压。 几年来 , 随着科学技术 的进步 , 一种新 的计算方式进入 了 术 的进步 , 良导线具有强度高 、 稳定性强 、 耐用 、 导电率高等特点 , 可以 人们 的视野 , 这种计算方式就是 F D T D计算 模式 。这种计算模式通 良导线 。 过计算 大地的有限电导率和绝缘子对雷 电过 电压 的影 响 , 有效 的提 有效提高雷电过电压 预防的效果 。 5 . 2 安装施工工艺的改进 。 保 护角的控制是 1 0 k V配 电线路雷电 高了雷电过电压的计算精度 , 弥补 了传统计算方式的缺陷和不 足。 感应过 电压预防的关键环节 。 因此 , 在配电线路的架设 过程 中 , 必须 3雷 电感应过 电压波特性 影响雷 电感应 过 电压形成 的 因素包 括雷 电与配 电线路 之间 的 重视对保护角的设置 。可 以在监 控线路 中设置小保护角避雷线 , 这 还可 以适 当的减 少保 护 距离 、 雷 电流波动 的距离 、 配电线路的高度 等。 除了上述 的主要 因素 样可以起到 良好 的规 避雷击 的作用 。此外 , 这样可 以有效 的提高导线对 雷电 外, 雷 电流波前 时间 、 回波速度 、 大地导 电率 、 接地 电阻等都会 对雷 角 的数量或增大导线 的保护 面积 , 电感 应过电压的形成产生影响 。在雷 电感应过 电压 的计算过程 中 , 的屏蔽效果 。在 配电线路 的安装 和架设 过程 中 , 必须采用科 学合 理 并 积极 的开展技术 的创新 , 尽 可能降低 避雷线 的保 接地 电阻和雷电同波速度很 小 , 因此可 以忽 略不 计 , 相应 的 , 雷 电同 的工艺 和技 术 , 这样就能预 防绕击现象的发生。 波速度和接 地电阻在雷 电过 电压 的变化 过程 中所产 生的影 响也很 护角 , 5 . 3严格技术规范。配 电线路的改造是一个复杂的过程 , 尤其 是 小, 同样的可 以忽略 。 输电线路的改造等工作具有周期长 、 涉及技术多 、 3 . 1 最大感应过 电压与雷 电流 幅度 的关 系。雷电流变化幅度与 杆塔结构的改造 、 配电线路 中最 大感 应过电压呈正比关 系。 但是 当线路 的高度和雷 电 成本高等特 点 , 在进 行这些改造 时必 须严格遵守技术 规范 , 结合 地 经济发展状况等选择合适 的技术进行线路 的改造 。 流 的增加 幅度 达到一定 的数 值时 ,配电线路会发生跳 闸的现象 , 从 理环境 、 而导致严 重的安全 事故。 这时需要 采取 的措施是立 即对雷击点附近 结 束 语 本文主要对 l O k V配电线路雷 电感应过 电压 的特点现状进行 了 的导 线进行通 道的开放 , 使 电流 能够及时 的流 出 , 这 样就能避 免绝 分析 , 并结合其特性提出了具体的措施来加强雷 电过 电压预 防的效 缘子 串出现跳 闸的现象 , 进而避免更严重的故障发生 。 3 . 2最大感应过 电压与大地 电导率 的关 系。在所 有影 响雷 电感 果。希望通过本文 的研究和 阐述 , 能够为配 电线路 的架设和改造提 从而促进 我国电力产业 的长期有序发展。 应过 电压 的因素中 , 大地 电导率是最为重要 的因素。大地 导电率直 供一定 的参考 , 接影 响着 电压 的正 负极 以及 电压 的增 长幅度 , 大地导 电率 的升高会 参 考 文 献 l 】 陈思明, 尹慧. 1 O k V 架 空 配 电线 路 感 应 雷 过 电压 暂 态特 性 分 析 [ J ] . 导致 电流增 幅以及 电压增 幅的提 升。大地具有较高的电阻率 , 并 不 【 是理想 的导体 ,因此 只能对 配电线路的局部感应过电压产生影 响, 电瓷避 雷 器 , 2 0 1 4 ( 2 ) : 9 0 — 9 6 . 2 】 甄雄辉. 1 O k V 配 电线路 架设 地 线对 雷 电感 应 过 电压 的 防 护 效 果 分 但是大地 的导 电率对高频 电磁场会产生较大的影响 。 当雷 电波在线 【 J J . 中国高新技术企业, 2 0 1 5 ( 2 9 ) : 1 3 5 — 1 3 6 . 路 中传输 时, 线路上各个节点上 的电压都会发生相应 的改 变。如果 析【 3 】 边凯, 陈 维江 . 配 电线 路 架 设 地 线 对 雷 电 感 应过 电压 的 防护 效 果 [ J ] . 将大地看做一个理想 的导体 , 虽然大地能够影 响电波在线路传 输过 【 2 0 1 3 ( 4 ) : 9 3 — 9 9 . 程 中电压的变化 幅度 , 但 是大地却无 法影响 电波 的波形 , 因此 波形 高 电压技 术, 始终是保持一致 的。 因此 , 当大地的导电率上 升时 , 电压的增加幅度
10kV配网线路防雷措施

10kV配网线路防雷措施雷云击中杆塔、电力装置等物体时,强大的雷电流流过该物体泻入大地,在该物体上产生很高的电压降称为直击雷过电压。
由于线路的引雷特性,当雷击点与线路的最近距离小于65m时,雷电直击线路概率较大[1]。
雷电直击配电线路可产生远高于线路绝缘水平的过电压,通常会导致设备损坏。
(二)感应雷过电压当雷电击线路附近的大地时,导线上由于电磁感应产生过电压称为感应雷过电压。
配网线路中,感应过电压故障一般占雷击故障的 80% 以上[1]。
根据实测数据,感应过电压峰值一般可达300kV-400kV[2]。
在开阔地区,配电线路遭受直击雷概率增加;附近有高耸建筑物、构筑物或高大树木屏蔽,遭受直击雷的概率大幅下降,遭受感应过电压的概率增大。
二、配网典型雷害(一)雷击跳闸目前10kV线路通常设置了零序保护,雷击线路发生闪络后电弧持续燃烧,线路上采集到零序电流,将导致线路跳闸。
对于同杆架设的多回配电线路,在雷电直击或较高感应过电压的作用下,容易发生多回线路同跳故障。
此外,由于各回路间距离较小,若雷击闪络后工频续流较大,持续的接地电弧将使空气发生热游离和光游离,同样会导致多回短路故障和同时跳闸。
(二)线路故障1.配电线路雷击断线线路使用绝缘导线,雷击造成单相闪络或相间短路时,绝缘击穿最易发生在靠近绝缘子的位置,被击穿的绝缘层呈针孔状,并靠近绝缘子两侧特别是负荷侧。
工频短路电流的电弧弧根受周围绝缘层阻隔,固定在击穿点燃烧,在较短时间内烧断导线。
而当线路采用裸导线时,电弧在电磁力的作用下,高温弧根沿导线表面不断滑移,直至电弧熄灭,不会集中在某一点燃弧,因此不会严重烧伤导线,通常在工频续流烧断导线或损坏绝缘子之前,就会引起断路器动作切断电弧,因此,裸导线的雷击断线故障率明显低于绝缘导线。
由于绝缘导线易断线,宜采取雷击断线保护措施,可采取加强绝缘(如采用柱式绝缘子)、装设架空地线及安装线路避雷器(无间隙、带间隙)等堵塞式防雷措施,或安装防弧金具(剥线型、穿刺型)、放电钳位绝缘子(剥线型、穿刺型)、长闪络路径熄弧装置等疏导式防雷措施。
10kV线路雷击过电压分析及防雷措施

10kV线路雷击过电压分析及防雷措施作者:何伟兵来源:《科学与财富》2019年第27期摘要:10kV配电线路在电力系统中发挥着十分重要的作用。
但是10kV配电线路的雷击过电压严重影响着配电线路的安全、稳定与可靠运行。
本文首先对10kV线路的雷击过电压形式进行了简要的阐述,其次,对10kV线路雷击过电压的原因进行了详细的分析,再次,对10kV线路雷击过电压危害进行了阐述,最后,在此基础上有针对性地提出了一些10kV线路雷击过电压的防范措施,可以为保障10kV线路的安全、稳定与可靠运行提供一定的借鉴与参考。
关键词:10kV线路;雷击过电压;防雷1引言随着社会的不断前进发展,电力在人们的日常生活中发挥着越来越重要的作用,已经成为人们日常生活中不可缺少的重要组成部分。
与此同时,社會发展与人们的生活对电力的需求在不断的增长,这对电力系统运行的安全、稳定与可靠运行提出了更高的要求与标准。
虽然,近些年来,我国的配电系统的供电质量在不断的提升,但是,线路的雷击过电压现象仍然严重威胁着电网系统运行的安全与可靠。
10kV配电线路作为我国电力系统的重要组成部分,在电力输送与电力分配中发挥着不可缺少的重要作用。
由于防雷意识的缺乏、防雷技术的不成熟及电力系统防雷工作的疏忽等原因,导致10kV配电线路雷击过电压现象时有发生,不仅给电力系统的安全、稳定与可靠运行带来了严重的威胁,甚至还有可能导致安全事故的发生,严重影响到人们的正常用电,并给电力企业带来不可估量的经济损失。
因此,本文开展10kV线路雷击过电压分析分析及防雷措施的研究具有一定的现实意义。
本文从安装架空地线、安装氧化锌避雷器和完善10kV线路的防雷设施管理三个方面提出了一系列有效防范雷击过电压现象的措施与建议。
2 10kV线路雷击过电压的形式2.1 直击雷过电压通常情况下,雷云相对于地面具有较高的电压,巨大的电压差之下,雷电很容易通过电力设备来传输到地面,例如:配电线路等。
探讨10kV配电线路雷击故障特性分析及防雷策略

探讨10kV配电线路雷击故障特性分析及防雷策略摘要:10kV配电线路在电力系统中的应用非常普遍,但其容易受到外界因素的一些影响而发生故障。
因此本文简要介绍10kV配电线路雷击事故的原因和影响并主要分析其故障特性和防雷措施,仅供相关工作人员参考借鉴。
关键词:10kV配电线路;防雷击;故障特性引言:10kV配电线路极易发生雷击事故,尤其在夏天,雷击故障会严重影响电力系统正常工作,还可能给周边人员造成人身威胁。
因此分析故障产生的原因,制定合理有效的防雷击措施非常重要。
110kV配电线路雷击事故产生的原因及影响1.1雷击事故产生的原因(1)管理制度缺失:分析大部分10kV配电线路雷击故障可以发现,很多雷击故障频发的区域,其配电线路的管理都缺乏完善的管理制度,使得10kV配电线路的防雷击工作落实不到位,且缺乏有效的监管,防雷作业到底能够发挥多大作用不能被有效保障。
(2)方案缺乏针对性:雷击事故的发生有明显的区域性特点,在制定防雷击方案时,若没有充分考虑当地的实际情况,就会影响方案的防雷效果。
(3)重视程度不足:我国10kV配电线路主要用于中小城市、乡村等地的电力系统中,相关部门对其重视程度并不高。
财政支持的缺乏就使得防雷系统升级困难,防雷设备、线路等的配置与现实需要相差甚远。
(4)维护工作疏忽:日常维护检修工作不到位,使得10kV配电线路中存在的一些问题、漏洞不能被及时发现,影响其本身的防雷性能,为事故埋下隐患。
1.2雷击事故对10kV配电线路的影响雷击是一种自然想象,无法避免,只能通过一定的手段来减轻雷击带来的伤害。
雷击会对10kV配电线路的导线、元器件、配电线缆等造成严重的影响。
雷击事故发生时,10kV配电线路会受到过高的电压,甚至可能高于电气设备的绝缘体,从而导致跳闸故障,影响周围区域的正常供电[1]。
比较严重的故障,还可能导致火灾、行人触电等,带来严重的经济损失。
210kV配电线路雷击故障特性分析雷击故障在10kV配电线路总体故障中站的比例较高,因此掌握当地发生雷击事故的特点和有效的预防措施非常关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10kV 配电线路安装避雷器后雷电感应过电压特性分析
摘要:配电网10kV 配电线路由雷电引起的绝缘子闪络或线路故障跳闸的主要因素,也称之为感应雷过电压。
感应雷过电压导致线路故障所占的比例在10kV 配网故障中非常大。
因此,本文对10kV 配电线路雷电感应过电压的特性分析,旨在提高农网配电线路的供电可靠性。
关键词:配电线路;雷电感应过电压;模型计算;特性分析
中图分类号:TM862 文献标识码:A 文章编号:1674-7712 (2015)02-0000-01
雷电是一种在大气中激烈的静电中和现象,雷电灾害是指遭受
直击雷、感应雷或雷电侵入而造成的人员事故、财产损失和供电伤害。
可以这么说,前两种危害大多数都没有什么特别的方式手段来降低它的伤害率,除了具有较强的自我安全意识和其他外界因素,没有太多的可能性做到防患于未然。
但是供电伤害这一点,供电企业还是可以通过当代技术来降低它的发生的可能性,至少可以说能够降低它的伤害性。
现在,国内外的配电线路大多数都是以架空线路为主,
这些架空路线,常年都裸露在户外,不仅要经受狂风暴雨等自然现象的洗礼,而且偶尔也会有一些鸟类等在上面栖息,或多或少都会受到一定的损害,因此,配电系统的安全运输便显得非常重要。
这不仅仅是对于广大用电居民的一种安全保护,也是对于社会的一种安全保护。
雷电放电容易引起配电线路过电压,主要包括有:雷击架空线
路附近大地时引起感应雷过电压,雷击杆塔塔顶引起反击过电压,以及雷击架空线路引起直击雷过电压。
架空配电线路绝缘水平低,导致的事故率很高,为了减少这样的危害,因此对10kV 配电线路安装避雷器后雷电感应过电压特性分析。
一、10kV 配电线路雷电感应过电压的计算关于电压的计算方式,首先要建立一个雷电回击的模拟,再建立雷电通道附近的电磁场,并计算出产生出来的电磁场,接着,建立电磁场与传输线的耦合模型,最后,用物理数学方法计算出雷电感应过电压。
雷电回击电流模型有传输线和传输电流源两大类。
在这两种雷电回击电流模型的基础上,国内外的学者对它们进行了完善和发展,又分别提出了MTLL 模型、MTLE 模型,以及DU 模型,目前我们采用最多的便是第一种MTLL 模型和第二种MTLE 模型。
用这两种模型,能够有效地再现雷电通道附近的电磁场状态,可以让运维人员较为准确地计算出雷电感应过电压。
耦合模型现下也有最为广泛的三种,分别是:Taylor 场线耦合模型、Agrawal 场线耦合模型,以及
Rachidi 场线耦合模型。
这三种模型都是同一射入电子场分量引
起的感应电压和电流对总
电压等,通过这些模型可以计算出接近实际情况中的总电压与总电流。
有了电流模型和场线耦合模型,接下来就可以来计算雷电感应过电压的数值了。
上文进行了平行多导线的FDTD 算法,根据带有支路的导体的多导体传输线MTL 系统,得出一个带有向量的MTL 方程,采用装有绝缘子的杆塔制作一个模型,将其转化为一个简易的开关,当两端的电压超过1.5 倍时,冲击闪络电压后,绝缘子闪
络,就等于开关闭合。
通过这些,再采用Rubinstein 提出的方法计算近似值,就能算出考虑有损大地时的水平电场分量,进而就能够算出雷电感应过电压的数值了。
二、雷电感应过电压波形特性在模型过程中,回波传播速率和塔杆接地电阻对最大感应过电压的影响比较小,所以在计算雷电感应过电压时可以忽略回波传播速率和塔杆接地电阻这两个的影响。
在计算过程中可以得知,回波传播的速率越大,距离雷击点最近处的电压达到峰值就会越快,并且还可以发现,峰值越大,它所对应的感应过电压也就越大。
但是如果速率不同的话,它所对应的峰值变化也不会特别大了。
另外,波前时间如果越短的话,距离雷击点最近处的电压达到峰值也会更快,并且峰值更大,不同波前对应的峰值变化也会很大。
因为考虑到大地具有一定的电阻率,在FDTD 算法分析中,
可以发现,线路末端的感应电压的波形形状基本都是一致的,
但是这对局部也有很大的影响。
如果大地电导率越低,那么电压就衰减越大,幅值也就越低。
三、雷电感应过电压的概率和闪络特性根据对雷电流幅值进行取值,采用蒙脱卡罗方法,随机选取了采集点,并且随机产生多次雷击,对这些雷击所产生的最大感应过电压的结果进行统计分析,通过这个统计结果,有n次所引起的最大感应过电压大于等于U,然后再计
算出每年每百公里配电线路产生的总次数N,当U为1.5倍CFO 时,N 就是每年每百公里配电线路的闪络次数。
同时,出于对
有损大地的考虑,对采用的MTL 模型也进行了分析,结果可以发现,随着大地电导率的增大,雷击引起的线路最大感应过电压也会随之减小,雷击次数的变化速率也会随之减小,雷击感应过电压超过某一个特定电压过电压值的次数也会随之减少。
换句话来说,就是指相应的线路中雷击故障率和闪络率降低了。
另外,在雷击事件中,直击雷占的比例比较大,与之相比,伴随着大地电导率的加大,雷电感应所引起的闪络次数减少的速率也增大,而直击雷受到大地电导率的影响却比较小,因此,直击雷所导致的闪络算是最直接最重要的因素。
四、配电线路雷电感应过电压的防护措施通过以上对雷电感应
过电压的特性分析,对症下药,来
谈一谈对它的保护措施
第一,提高线路的绝缘水平。
要提高配电线路的绝缘水平,就必须使用高质量的安全线路,不能使用劣质的绝缘子,并且要定期检查,如果发现有劣质的绝缘子要尽早更换。
从而能够提高线路的可靠性,降低因遭受雷击产生的闪络次数。
第二,要保护好间隙。
可调间隙防雷装置可以有效地保护间隙。
这也需要通过绝缘子的高压试验,选取质量较好的装置,在过电压情况下,保护间隙会先于被保护绝缘子动作,从而有效防止了线路故障。
参考文献:
[1]王希,王顺超,何金良.安装避雷器后10kV 配电线路
的雷电感应过电压特性[J]. 电网技术,2012(07):149-154.
[2]罗大强,唐军,许志荣,陈德智.10kV 架空配电线路防雷措施配置方案分析[J]. 电瓷避雷器,2012(05):113-118.
[3]王希,王顺超,何金良.10kV 配电线路的雷电感应过电压特性[J]. 高电压技术,2011(03):599-605.。