浅析铁磁谐振现象产生的原因和消除措施

合集下载

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案电压互感器铁磁谐振问题一直是电力系统中一个比较棘手的问题,铁磁谐振会导致电压互感器的输出不稳定,甚至损坏整个电气设备。

为了解决这一问题,电力系统工程师们一直在探索各种解决方案。

本文将从电压互感器铁磁谐振的原因分析入手,探讨一些解决方案,并分析它们各自的优缺点。

我们来看一下电压互感器铁磁谐振的原因。

铁磁谐振是指在电力系统中,由于互感器铁芯受到谐振电容的作用,导致电压互感器输出端的短路电流急剧增大,进而引起互感器的过热、损坏甚至整个系统的故障。

其主要原因有两点:一是电力系统中的负载变化和电容负载的存在;二是电压互感器的设计和设置不当。

针对电力系统负载变化和电容负载的存在,可以采取以下解决方案之一:1.增加电压互感器的阻尼通过在电压互感器的二次侧串联阻尼电阻来提高系统的阻尼比,减小谐振电容对电压互感器的影响,从而抑制铁磁谐振的产生。

这种解决方案的优点在于成本低廉、易于实施,但缺点是阻尼电阻会降低电压互感器的测量精度。

2.在谐振电容上串联电阻在谐振电容上串联适当的电阻,减小谐振电容的充电速度,降低谐振电流的峰值,从而解决铁磁谐振问题。

这种解决方案的优点是能够有效抑制铁磁谐振的产生,但需要对系统进行重新设计,成本较高。

在实际工程中,通常会综合考虑以上各种解决方案,采取多种措施来解决电压互感器铁磁谐振问题。

可以同时增加电压互感器的阻尼和在谐振电容上串联电阻,或者优化电压互感器的设计并调整设置参数。

除了上述提到的解决方案之外,还可以考虑使用数字电压互感器来替代传统的模拟电压互感器。

数字电压互感器采用数字信号处理技术,不仅能够实现更高精度的电压测量,还能够通过数字滤波技术有效抑制谐振电流,从根本上解决铁磁谐振问题。

但数字电压互感器的成本较高,需要配合数字保护装置使用,对系统的要求也较高。

电压互感器铁磁谐振问题的解决方案需要综合考虑电力系统的实际情况、成本和技术可行性。

在实际工程中,工程师们需要结合具体情况,选择合适的解决方案,确保电压互感器能够稳定可靠地工作,为电力系统的安全运行提供保障。

浅谈电力系统中的铁磁谐振过电压及消除方法

浅谈电力系统中的铁磁谐振过电压及消除方法

浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。

关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。

这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。

2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。

铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。

正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。

铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。

当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。

电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。

在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。

35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。

据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。

铁磁谐振过电压导致故障的严重性可见一般。

铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。

电压互感器铁磁谐振的发生原因及防范措施

电压互感器铁磁谐振的发生原因及防范措施

电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。

在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。

这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。

在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。

1、电压互感器引起铁磁谐振的发生原因分析在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。

在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。

C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。

但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。

由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。

当激磁电流过大时,铁芯饱和,则L值随之大大降低。

正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。

2、铁磁谐振的特点对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。

电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。

TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。

此外回路损耗也使谐振过电压受到阻尼和限制。

浅析铁磁谐振及应对措施

浅析铁磁谐振及应对措施

浅析铁磁谐振及应对措施摘要铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用引起的持续性、高幅值谐振过电压现象。

首先简述电力系统中性点的接地方式,然后结合我公司中性点不接地系统发生的一起单相接地故障,简要分析铁磁谐振产生的原因,以及应对措施。

关键词电力系统中性点;接地;电压互感器;铁磁谐振1电力系统中性点接地方式电力系统中性点是指线路首端电压所连接的变压器绕组三相接成星形接线时绕组的末端连接点。

电力系统中性点接地是一种工作接地,接地方式通常有中性点直接接地、中性点不接地(绝缘)或经消弧线圈接地等。

1.1中性点直接接地是指电力系统中至少有一个中性点直接或经小阻抗与接地装置相连接。

这种接地方式是通过系统中全部或部分变压器中性点直接接地来实现的。

其作用是使中性点经常保持零电位。

当系统发生单相接地故障时,能限制非故障相对地电压的升高,从而可保证单相用电设备的安全。

但中性点直接接地后,单相接地故障电流较大,一般可使剩余电流保护或过电流保护动作,切断电源,造成停电;发生人身一相对地电击时,危险性也较大。

所以中性点直接接地方式不适合对连续供电要求较高及人身安全、环境安全要求较高的场合。

1.2中性点不直接接地系统是指电力系统中性点不接地或经消弧线圈、电压互感器、高电阻与接地装置相连接。

中性点不接地可以减小人身电击时流经人体的电流,降低设备外壳对地电压,单相接地故障电流也很小,且接地时三相线电压大小不变,故一般不需停电,因此供电可靠性高。

中性点不接地系统发生单相接地时,会引起三相电压不平衡:发生单相一点接地时,由于系统与地未构成回路,所以短路点流过的电流较小,主要为容性不平衡电流;发生单相一点接地时,线电压大小不变且对称,因此仍可继续运行一段时间,但一般规定不超过2小时。

1.3发生单相接地故障的危害单相接地又分为金属性接地和非金属性接地两种:金属性接地相电压为零,其他两相电压升高为相电压的1.732倍。

铁磁谐振原因及消谐措施分析

铁磁谐振原因及消谐措施分析

铁磁谐振原因及消谐措施分析发布时间:2021-12-21T10:09:23.006Z 来源:《中国电业》(发电)》2021年第15期作者:刘世杰刘照辉李童刘新宇顾尚鹏[导读] 剖析在外部因素激发下电压互感器发生铁磁谐振的根本原因,分析谐振特性,并制定相应的预防措施。

辽宁红沿河核电有限公司辽宁大连 116000摘要:剖析在外部因素激发下电压互感器发生铁磁谐振的根本原因,分析谐振特性,并制定相应的预防措施。

关键字:铁磁谐振电压互感器中性点不接地系统消谐措施0、引言电压互感器作为电力系统中重要的保护、测量元件,一旦发生故障将造成重大损失;而铁磁谐振又是引发电压互感器损坏的最常见原因,因此在使用电磁式电压互感器时应该采取相应预防措施,以保证电压互感器正常工作,确保电力系统安全稳定运行。

1、谐振条件在中性点不接地系统中,由于接地保护的需要,三相电压互感器的中点是直接接地的,因此电压互感器与电网线路对地电容并联而形成谐振回路,电磁式电压互感器的电感是非线性的,这种谐振回路为非线性谐振回路,或称铁磁谐振回路。

鉴于电磁式电压互感器的非线性励磁特性,电力系统正常运行时电压互感器不会饱和且呈现出很大的感抗。

当系统发生扰动(如投入和断开空载母线、单相接地突然消失、外界对系统干扰或系统操作产生过电压等)时,电压互感器会由于电压上升而达到饱和,电压互感器中的暂态励磁电流急剧增大,感抗下降,并且由于三相饱和程度不同而产生中性点偏移电压。

当系统的容抗和电压互感器的感抗相等或接近时容易发生分频、基频和高频谐振,电压互感器一次绕组电流远大于额定值时,会导致电压互感器高压熔丝熔断,造成电压互感器二次电压消失,引发厂用电切换,同时也易导致电压互感器因过热而爆炸。

当XC / XL<0.01时,谐振不会发生,当0.01≤XC / XL≤0.1时,会发生分频谐振,而且起振电压很低;当0.1≤XC / XL≤1时会发生工频谐振(基波),XC / XL≥1时进入高频谐振区。

浅谈电力系统中的铁磁谐振原因及消除谐振的办法

浅谈电力系统中的铁磁谐振原因及消除谐振的办法

浅谈电力系统中的铁磁谐振原因及消除谐振的办法浅谈电力系统中的铁磁谐振原因及消除谐振的办法摘要:本文主要论述了电力系统中的铁磁谐振产生的主要原因、发生谐振时的现象、危害以及消除谐振的办法前言:近年由于泸州电网的快速发展、再加上今年又是电网建设年,泸州电网也进行了大量的改造和扩建工程,大到500kV、小到10kV配网都有较大的变化,使得整个网络变得更加复杂、灵活、坚强。

但就是因为电网结构的较大变化(如中低压电网的扩大,出线回路数增多、线路增长,电缆线路的逐渐增多,中低压电网对地电容电流亦大幅度增加等)以前电网中少有发生的铁磁谐振现象,现在却时有发生,由于谐振时会产生过电压,给电网安全造成了积大的威胁,如不采取有效的消除措施,可能会造成设备损坏、甚至还会诱发产生更为严重的电力系统事故。

下面就电网中的铁磁谐振谈谈我个人的认识、见解。

一、概述铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。

电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。

二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。

浅谈电压互感器铁磁谐振产生原因及消除措施

浅谈电压互感器铁磁谐振产生原因及消除措施

浅谈电压互感器铁磁谐振产生原因及消除措施发布时间:2023-03-08T04:25:05.108Z 来源:《福光技术》2023年3期作者:周家典[导读] 本文结合新疆金晖110KV变电站项目10KV二段PT柜由于发生三相铁磁谐振而烧毁电压互感器的案例分析其铁磁谐振特点并给出其相关的抑制措施。

福建中能电气有限公司摘要:根据电压互感器在现场运行发生铁磁谐振当时的内外部电网环境,从而对其产生原理及特点进行分析,提出了5条有效的抑制方案。

关键词:电压互感器、铁磁谐振引言:本文结合新疆金晖110KV变电站项目10KV二段PT柜由于发生三相铁磁谐振而烧毁电压互感器的案例分析其铁磁谐振特点并给出其相关的抑制措施。

在电力系统的输配电回路中,由于电磁式电压互感器是非线性的铁芯电感元件,如果系统出现电力参数的突然变动,则电压互感器的铁芯就有可能饱和,从而造成LC共振回路,激发起持续的、较高幅值的过电压,这就是铁磁谐振过电压。

根据这几十年来电网运行情况表明,在 10kV及以下的中性点不接地系统中,电压互感器引起的铁磁谐振现象是一种常见的故障,严重威胁到了电网的安全运行。

由于单相铁磁谐振的电路是电力系统中最常见的铁磁谐振,因此本文结合我公司客户新疆金晖110KV变电站项目10KV二段PT柜由于发生单相铁磁谐振而烧毁电压互感器的案例,分析其铁磁谐振特点并给出其相关的抑制措施。

案例:新疆金晖工业园区采用110/10KV的供电方式,10KV供电采用电缆敷设;另外10KV采用中性点不接地的供电方式(小电流接地)。

另外发生事故时,多数线路处于空载运行状态,用电负荷很小;整个工业园区正处于紧锣密鼓的安装施工中,由于管理混乱,施工中经常出现10KV电缆被挖断的事故;110KV变电所10KV二段电压互感器柜由于发生铁磁谐振,造成电压互感器烧毁,I段10KV进线柜和110KV 1号主变出线柜失电跳闸事故(2号主变未投运)。

本次故障就现场的情况分析跟10KV电缆经常被挖断有关,造成了单相接地或弧光接地,而后值班人员发现后切除该条线路(造成单相接地或弧光接地突然消失),为铁磁谐振的形成创造了条件,从而导致发生了较为严重的铁磁谐振故障,电压互感器击穿烧毁。

铁磁谐振原因分析及预防措施

铁磁谐振原因分析及预防措施

当 电 网 运 行 正 常 时 , 电 压 互 感 器 二 次 侧 开 口三 角 处 绕 组 两 端 没 有 电压 , 或
仅 有极 小的 不对称 电压 。 当电 网发生 单
冲击 ,一 般运行 不得超 过 2 h,长 期运行 】相 接 地 故 障 时 , 由于 此 电阻 阻 值较 小 , 可 能造 成 击穿 故障 ;全绝 缘 电压 互感 器 { 故绕组 两 端近 似于 短接 ,起到 了改变 电 在 系 统 单 相 接 地 时 ,承 受 的是 额 定 电

强凝譬 髫 囊0 ≮曩 麓 叠 蠢
对铁磁 谐 振 产 生 的危 害 、原 因、 条件 、
现 象及 运 行 中发 生铁 磁 谐振 如何 处理 进 行
以上 分析可 知 .在 中性 点 不接地的 6 /l 0
能 量转 化 为其 它谐振 频 率的 能量 ,其转
了阐述 并结 合产现 场 实际 发生的 一次 钦磁 谐振 现象 ,分析 7具体 原 因 ,并制
3 铁磁谐振引起的原因及现象
电压互 感器 ;铁磁 谐振 条
3 1 拉 合闸 、倒 闸操 作 引起的铁 磁 : 性 效 应 是 产 生 铁 磁 谐 振 的 主 要 原 因 。 . ②P T感抗为容抗 的 l 0倍以内 ,即 o 谐振 } 当母 线空 载 或 出线较 少 时 ,因合 闸 参 数 匹配在 谐振 范 围 。
充 电 、倒 闸操 作 引发 引发 电流 、 电压 的 冲 击扰 动 ,就 有可 能 发生铁 磁 谐振 。 当 压互感器铁芯饱 和过 电压 ,是一种 内部过 电磁 式 电压互 感 器 发生 谐振 以后 ,铁 芯 电压现象 , 多发生干 6 5 V不接地系统 ~3 k 里 产 生零 序磁 通 ,这个 磁通 在开 I三 角 S 1 中。在开关操作或 系统发生故障时 ,系统 线 圈里 感应 出零 序 电压 ,现 行 电磁式 电 中的电感和电容元件可能形成不同 自振 频 压互感器的铁芯截面积小 ,一般运行在
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析铁磁谐振现象产生的原因和消除措施摘要:高压系统谐振过电压是电力系统常见的故障现象之一,其实质是电磁式电压互感器励磁特性饱和,在特定的运行条件下激发铁磁谐振,从而电力设备和系统安全运行带来危害。

文章从故障实例入手,分析了铁磁谐振产生的机理、类型以及铁磁谐振的特性,并提出多种消除谐振的措施。

关键词:铁磁谐振;过电压;产生条件;影响因素;消除措施高压系统谐振过电压是电力系统常见的故障现象之一,其实质是电磁式电压互感器(以下简称TV)励磁特性饱和,在特定的运行条件下激发铁磁谐振。

由于谐振时会产生很高的过电压,危及电力设备和系统安全运行,因此必须采取有效的消除和防护措施。

电力系统的铁磁谐振可分两大类:一类是在66 kV及以下中性点不接地系统中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220 kV(或110 kV)变电站空载母线上,当用220 kV、110 kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电,或切除带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象。

1故障实例佛子岭水电站地处山区,高压线路架设于崇山峻岭之中,雷雨季节遭受雷击几率较高,铁磁谐振过电压现象时有发生。

2007年7月某日,雷击后,该站发生35 kVⅡ段母线电压一相降低,另两相升高(超过线电压)现象,发“单相接地”信号并熔断2TV高压保险。

35 kV系统接线图如图1所示。

其时,35 kVⅠ、Ⅱ段母线并列运行,两回出线空载。

1TV 与2TV的型号分别为:YDJJ-35、JDJJ2-35。

2008年某日,110 kV母线停电操作过程中,当拉开最后一台高压开关时,母线电压瞬时升高,二次保护回路电压继电器线圈烧毁,如图2所示。

TV型号是JCC6-110,高压开关型号是SW4-110Ⅱ,双断口带有均压电容器。

以上两起故障是典型的铁磁谐振过电压现象,下面我们来简单分析一下故障的成因。

2铁磁谐振产生过程及其特点2.1铁磁谐振现象的基本概念我们知道,在简单的R、C、L电路中,当感抗等于容抗时,即ωL=1/ωC,即满足了串联谐振条件,在电感和电容两端便形成过电压,回路电流的相位和幅值会突变,发生谐振现象。

电力系统中,变压器、互感器和电机等铁芯电感元件,其励磁电感与磁通密度大小有关。

当外加电压超过其额定电压时,或绕组中出现涌流时,铁芯中磁通密度严重饱和,电感即呈现出非线性。

由非线性电感元件参与的谐振称为铁磁谐振。

在图3所示的简单串联谐振回路中,如电感L为非线性的铁芯电感元件,则在一定条件下即可能产生铁磁谐振。

假设在正常情况下,电感L处于线性状态,回路中的初始感抗大于容抗(ωL0>)电路不具备谐振条件。

但是,当铁芯电感L两端的电压有所升高,电感线圈出现涌流时,就有可能使铁芯饱和。

其电感值随之减小,以至可能使回路达到ωL0=,从而满足串联谐振条件,在电感和电容两端产生过电压。

回路中的电感不是常数,产生的谐振以磁饱和为特征,这就是铁磁谐振现象。

2.2铁磁谐振的特征①谐振频率。

谐振频率f由回路中电感和电容的参数决定。

铁磁谐振的频率可以等于电源频率(基波频率),也可以等于电源频率的简单倍数(高次谐波)或等于电源频率的简单分数(分次谐波)。

②谐振的必要条件。

产生铁磁谐振的必要条件是电感和电容两条伏安特性曲线必须有交点,交点处有:ωkL=,交点以前有:ωkL0>。

其中L0为铁芯尚未饱和时初始电感值。

对变压器、互感器等设备而言,一般指其在额定线电压的激磁电感值。

ωk为谐振频率。

③谐振的自保持和自消失。

铁磁谐振一旦激发起来,当短时的激发条件消失后,在较低电源电压作用下,铁磁谐振仍可能长期存能在下去,即谐振能够自保持。

同样铁磁谐振在激发因素过后也可能自行消失。

3中性点不接地系统的铁磁谐振发电厂(变电所)母线上的TV高压绕组接成星形,中性点直接接地;低压绕也接成星形,辅助绕组接成开口三角形,用于电压指示、电度计量、继电保护及故障判断指示。

TV具有很大的激磁阻抗,它与输电线路等设备的对地容抗形成特殊的单相或三相谐振电路,激发起各种谐波的铁磁谐振过电压。

3.1TV铁磁谐振的物理过程如图4所示,TV组成了三相谐振回路。

其中C0为架空线路、电缆及母线其它设备的对地电容,L为TV的激磁电感,EA、EB、EC为三相电源电势。

在正常情况下,TV三相激磁电感工作在线性状态下,可认为是三相对称的。

当某种原因激起谐振时,TV的一相、两相或三相绕组上电压升高,各相导线对地电压发生变化,表现为电源变压器中性点发生电位移,出现了一个零序电压U0。

设在某种故障情况下,电源电压A相降低,B、C两相升高,则A相TV励磁电抗仍为线性初始值,且大于容抗,它与容抗并联后使A相的对地导纳为容性,而B、C相由于电压升高,B、C相的TV励磁电抗已进入饱和区,它与容抗并联后使B、C相的对地导纳并为感性。

即:YA=+jωC0=C’,YB=YC=+jωC0=-j。

图4所示的回路转变为图5的三相等值网络。

因为I.i=(I.i+U.0)Yi(i=A、B、C),且I.=0,则得到:U.0=-,将各相导纳带入,得U.0=-。

总结以上分析,谐振过电压的产生是由于系统内出现了零序电压U.0,而U.0的产生又导致TV非线性电感的饱和。

产生谐振条件为:①电源变压器中性点不接地,使得零序性质的串联谐振回路得以形成。

即TV引起的铁磁谐振只能在中性点不接地系统才会产生。

②中性点直接接地,开口三角形负载很小,基本为开路状态。

如果TV中性点不接地,则各相绕组跨接在电源相电压上而不与对地电容并联,从而谐振回路不能形成。

另外若开口三角形绕组闭合短路,其中所感应的零序电流在三角绕组中自成回路,对TV高压侧产生去磁作用,可以抑制或消除谐振现象。

③电网的对地电容与TV励磁电感相匹配,且初始感抗大于容抗。

④一般需要外激条件,TV铁芯达到饱和,才能激起谐振。

常见激发条件有:空载母线或线路的突然合闸、雷击、线路瞬时弧光接地、电源变压器高压侧的传递过电压等等。

3.2TV铁磁谐振的影响因素①TV特性的影响。

TV特性不好,铁芯容易饱和,在谐振时绕组中将流过很大的电流,导致熔丝熔断、TV烧毁。

在电网中,由于往往有很多台TV并联运行。

在谐振回路综合激磁阻抗由每台TV并联而成,故并联TV台数越多综合激磁阻抗越小,越容易激发谐振。

因此,要消除谐振,不但要用特性较好的TV,而且尽可能减少并联台数。

②电网对地电容的影响。

电网对地电容参数发生变化时,直接影响产生谐振的性质。

当该值变化(增大或减小)到某一值时,可使谐振不能发生。

③其它影响因素。

激发因素对于谐振的产生与否、谐振的性质有着较大的关系。

回路电阻、TV高压绕组的损耗电阻、TV开口三角形的电阻以及TV高压侧线端及中性点的电阻等,对谐振都具有阻尼作用,可使谐振区域缩小。

3.3中性点直接接地系统铁磁谐振产生的原因由前面的分析得知,对中性点直接接地系统,TV绕组分别与各相电源电势相连,电网中各点电位被固定,不会出现中性点位移过电压,因此不会发生铁磁谐振。

但是,在某些条件下,由于操作不当或某些倒闸过程,也会形成局部电网在中性点不接地方式下短时运行。

在中性点直接接地电力系统中,一般铁磁谐振的激发因素为合刀闸和开关分闸。

在进行此操作时,由于电路内受到足够强烈的冲击扰动,使得电感L两端出现短时间的电压升高、大电流的振荡过程或铁芯电感的涌流现象。

这时候很容易和高压开关的均压电容Ck一起形成铁磁谐振。

4消除铁磁谐振的措施从原理上说欲消除谐振,就必须设法破坏谐振条件。

通过前面的分析,我们可以从两个方面采取措施:改变电网电气参数及接入阻尼电阻。

常见的消谐措施有以下几种。

4.1中性点不接地系统的消谐措施采用励磁特性较好的TV,这是一种治本的措施,但TV的励磁特性越好,产生TV谐振的电容参数范围就越小,虽可降低谐振发生的概率, 但一旦发生,过电压、过电流更大,可能会带来更大的危害;在母线上装设中性点接地的三相星形电容器组,增加对地电容;TV一次侧中性点经零序电压互感器接地,此类型接线方式的TV称为抗谐振电压互感器;TV二次侧开口三角形绕组接入阻尼电阻,其电阻值越小,越能抑制谐振的发生。

常见的方式是接入一只500~1 000 W白炽灯泡或消谐器来消除谐振。

佛子岭水电站即采用后者。

从实际运行效果来看,该装置对消除高次谐波和分次谐波谐振效果明显,但对消除基波谐振作用不大;变压器中性点经消弧线圈接地;TV高压侧中性点经阻尼电阻接地;减少系统中TV中性点接地台数。

4.2中性点直接接地系统的消谐措施尽量保证开关动作时三相同期性,防止非全相运行;改用电容式电压互感器,从根本上消除了产生谐振的条件,但是电容式电压互感器价格高、带负载能力差;母线TV高压绕组串接或并接一个阻尼绕组;在开口三角形回路中接入消谐装置。

在上述各种消谐方法中,多数需要加装设备和增加投资,或者受现场运行条件所限而难以实现。

因此,应根据各厂(站)的实际情况,尽量采取最简单有效的措施。

以本文中佛子岭水电站实发故障为例,对35 kV系统,可采取母线分段运行或解除一组TV中性点接地的措施;发生谐振时,可迅速短接TV二次侧开口三角形绕组或拉开一回空载线路。

对110 kV系统,最可行的方式是改变倒闸操作程序:停运母线时,先拉开母线TV,再拉开线路开关。

综上所述,铁磁谐振现象在电网运行中容易发生并且具有相当的危害性。

我们必须加强对现场运行人员的技术培训,使其掌握一些谐振产生的条件、特征,在系统发生异常时,及时判断并采取正确的措施,从而避免和限制事故的发生。

参考文献:[1] 周泽存.高电压技术.北京:水利电力出版社,1994.[2] 李坚.电网运行及调度技术.北京:中国电力出版社,2004.[3] 万千云,梁惠盈,齐立新,等.电力系统运行实用技术.北京: 中国电力出版社,2005.。

相关文档
最新文档