浅析电压互感器铁磁谐振过电压防范措施
[整理]铁磁谐振过电压
![[整理]铁磁谐振过电压](https://img.taocdn.com/s3/m/5119691a02d8ce2f0066f5335a8102d276a261f9.png)
电压互感器铁磁谐振过电压浅析摘要:高压系统中的铁磁谐振过电压是电力系统常见的过电压之一,是由于变电站倒闸操作或在运行时接地故障消除等原因引起的,其实质就是电磁式电压互感器励磁特性饱和,激发铁磁谐振。
发生铁磁谐振过电压,不但对大量电力设备和系统安全运行带来危害,还严重危及人身安全,必须予以足够重视和防范。
关键词:铁磁谐振过电压防范措施一、引言由于10kV设备多为高压三相设备,当单相接地时,为了保证三相电压还能继续保持平衡、对称的关系,系统能够持续运行,提高供电可靠性,因此10kV系统多采用不接地运行方式。
为了能正确识别单相接地故障,并对电网电压进行监测,这就需要10kV系统中的电压互感器中性点接地。
当母线空载或出线较少时,因合闸充电或在运行时接地故障消除等原因的激发,会使电压互感器过饱和,则可能产生铁磁谐振过电压,出现相对地电压不稳定、接地指示误动作、电压互感器高压保险丝熔断等异常现象,严重时会导致电压互感器烧毁,继而引发其它事故。
二、铁磁谐振过电压原理铁磁谐振仅发生在含有铁芯电感的电路中。
当电感元件带有铁芯时(如变压器、电压互感器等),一般都会出现饱和现象,这时电感不再是常数,而是随着电流或磁通的变化而变化,在满足一定条件时,就会产生铁磁谐振现象。
铁磁元件的饱和特性,使其电感值呈现非线性特性,所以铁磁谐振又称为非线性谐振。
为探讨铁磁谐振过电压最基本的特性,可利用图1的L-C串联谐振电路进行分析。
假设正常运行条件下,其初始感抗大于容抗(ωL > 1/ωC),电路不具备谐振的条件,而电感线圈中出现涌流时就有可能使铁芯饱和,感抗下降,使ωL = 1/ωC,满足串联谐振条件,产生谐振。
图1 串联铁磁谐振电路图2为铁芯电感和电容上的电压(U L、U C)(有效值)随电流变化的曲线。
U C为一直线;在铁芯为饱和时U L基本上是一直线,当电流增大,铁芯饱和后,电感值减小,U L不再是直线,因此两条伏安特性曲线必相交,这时产生铁磁谐振的前提。
关于谐振过电压及预防的技术措施

关于谐振过电压及预防的技术措施摘要:谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。
在电力生产和电力运行的中低压电网中,由于故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,并制订防振和消振的对策与措施。
关键词:谐振过电压;预防;技术措施1.谐振的危害性在电力供电电网上,谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。
多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。
由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。
为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以免形成严重的串联谐振回路;或采取适当的防止谐振的措施。
目前变电站大部分采用中性点不接地方式运行,而最常见的谐振过电压就是发生在中性点不接地系统中。
从电网的运行实践证明,中性点不接地系统中由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、PT高压中性点增设电阻或单只PT等,但始终没有从根本上得到解决,PT烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2小时,不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。
2.产生谐振过电压的因素2.1互感器铁磁谐振过电压的因素电压互感器伏安特性的影响。
铁芯电感的伏安特性愈好,即铁芯饱和得愈慢,也即谐振所需要的阻抗参数XC0/XL愈大;反之,谐振所需XC0/XL愈小。
浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施1. 引言1.1 电压互感器在电力系统中起着至关重要的作用电压互感器在电力系统中起着至关重要的作用。
它是电力系统中必不可少的设备之一,主要用于测量、监控和传输电力系统中的电压信号。
通过电压互感器,我们可以及时准确地获取电力系统中的电压信息,帮助运行人员了解系统运行状态,及时调整电力系统的运行参数,确保系统的安全稳定运行。
电压互感器广泛应用于电力系统的各个环节,包括高压输配电网、变电站、电力监测系统等。
它能够将高压信号转换为适合测量仪表或保护设备使用的低压信号,为电力系统的运行和管理提供了重要的技术支持。
没有电压互感器,电力系统的安全稳定运行将无法保障,难以及时有效地对系统中出现的问题做出反应和处理。
电压互感器在电力系统中的作用不容忽视。
它不仅是电力系统正常运行的关键设备,同时也是电力系统安全运行的重要保障。
只有充分认识到电压互感器的重要性,才能更好地确保电力系统的安全稳定运行。
【至关重要】。
2. 正文2.1 铁磁谐振对电压互感器的影响铁磁谐振是电力系统中常见的问题,对电压互感器会产生一定的影响。
铁磁谐振是指在电流经过互感器铁芯时,由于其自身的铁磁特性而导致的谐振现象。
这种谐振会导致互感器铁芯中的铁芯损耗增加,同时也会影响其正常的工作状态。
具体来说,铁磁谐振会导致电压互感器的性能受到影响,使其输出的信号出现波动或失真,甚至在严重的情况下可能导致互感器损坏。
对于电力系统而言,互感器是非常重要的设备,一旦出现问题可能会导致系统运行不稳定甚至发生故障。
防范铁磁谐振对电压互感器的影响是非常必要的。
采取一系列的措施来减少铁磁谐振现象的发生,可以有效地保护电压互感器的正常运行和延长其使用寿命。
在日常运行中,需要密切监测互感器的工作状态,及时发现问题并采取相应的措施进行处理,以确保电力系统的安全稳定运行。
通过不断完善措施和技术,可以有效预防铁磁谐振对电压互感器的影响,提高系统的可靠性和安全性。
浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施电压互感器是电力系统中常用的测量仪器,也是系统中的重要装置之一。
但是,在电力系统的运行中,电压互感器的使用也面临着很多问题,如铁磁谐振过电压。
铁磁谐振过电压是电压互感器在谐振情况下,长时间处于高电压状态下,容易造成设备损坏,甚至导致安全事故发生。
因此,需要采取有效措施,加强电压互感器的防范措施,以保障电力系统的安全稳定运行。
一、铁磁谐振过电压的成因及危害电压互感器中的铁芯是由硅钢片叠压而成,其导磁特性是非线性的。
一般情况下,电压互感器的负载比较小,电压互感器的电路谐振是极难发生的。
但是,如果出现负载开路(如断路器拆卸等操作),则使得电压互感器中的感应电流大幅度减小,电感值变大,当电容注入电流时,系统中的电容和电感共振,形成铁磁谐振。
当发生脉冲放电或过电流的冲击时,电感器内部的电压猛地升高,这就是铁磁谐振过电压的成因之一。
铁磁谐振过电压会造成设备局部击穿,损坏电容、电抗器等电力设备,对电力系统的可靠性和安全性造成严重威胁。
另外,如果频繁发生铁磁谐振过电压现象,还会造成电网负荷调节不稳定,导致电压波动,影响系统的稳定性。
二、电压互感器的防范措施1.调整电压互感器的谐振频率电压互感器的谐振频率是通过电容和电感器之间建立的谐振回路来实现的。
因此,在设计和安装过程中,可以调整电容和电感器之间的参数,以达到一定的谐振频率,减少铁磁谐振过电压的发生。
2.加装过电压保护装置过电压保护装置是电力系统中重要的防护装置之一,其作用是对电力系统中的过电压进行有效的控制。
在电压互感器的设计和安装过程中,可以增加过电压保护装置的投入,当电压互感器出现谐振时,过电压保护装置可以及时地将过电压抑制在一定范围内,从而保护电力系统的运行安全。
3.系统电容投入系统电容投入可以改善电网系统的功率因数和电压水平,同时还可以抑制铁磁谐振过电压的发生。
在电网系统的设计和运行中,可以根据需要增加系统电容的投入,减少电容和电感器之间的谐振,从而保护电力设备的运行安全。
电压互感器铁磁谐振的发生原因及防范措施

电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。
在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。
这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。
在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。
1、电压互感器引起铁磁谐振的发生原因分析在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。
在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。
C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。
但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。
由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。
当激磁电流过大时,铁芯饱和,则L值随之大大降低。
正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。
2、铁磁谐振的特点对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。
电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。
TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。
此外回路损耗也使谐振过电压受到阻尼和限制。
浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施电压互感器是一种用于测量电力系统中电压的设备,其作用是将高压电网的电压信号变换为低压信号,以便与保护设备或测量设备相连。
当电网中出现铁磁谐振情况时,往往会给电压互感器带来负面影响,甚至引发过电压事故。
对电压互感器的铁磁谐振过电压进行有效的防范措施,显得尤为重要。
铁磁谐振过电压是指在电网中存在电容性电压降与电容性感应电流之间的共振现象,当系统中存在频率相同的电容性电压降和感应电流时,就会形成共振。
在电网中,由于各种原因,例如电容性电压降和高电压电网中的感应电流,会引起电网中的谐振。
而电压互感器作为电力系统中的重要设备之一,其铁磁谐振过电压会导致其损坏,甚至对整个电网的稳定性和安全性造成影响。
为了有效防范电压互感器的铁磁谐振过电压,需要采取一系列的措施。
首先是合理选用电压互感器的类别和型号。
电压互感器的类别和型号应根据具体的电力系统条件和要求来选定,避免盲目选用不合适的电压互感器,导致频率与系统谐振频率相接近,从而产生谐振现象。
其次是合理设置电压互感器的接线方式。
在电网的设计和施工中,应按照要求合理设置电压互感器的接线方式,减少因连接方式不当导致的谐振风险。
还需加强对电网的监测和维护。
通过对电网的实时监测和及时维护,可以及时发现存在的谐振风险,采取相应的措施进行处理,保障电网的稳定运行。
除了以上措施外,还可以采用谐振阻抗装置来防范电压互感器的铁磁谐振过电压。
谐振阻抗装置是一种专门用于防范电网谐振现象的装置,其作用是在谐振发生时,通过调节电路的阻抗来阻止电路共振,从而有效地防范铁磁谐振过电压。
谐振阻抗装置可以根据具体的电网条件和需求设计定制,安装在电网中的关键位置,有效地避免电压互感器因谐振而产生过电压。
加强对电压互感器的维护和检修也是防范铁磁谐振过电压的重要手段。
定期对电压互感器进行检查和维护,及时清除电压互感器周围的杂物,保证电压互感器正常运行,并避免因外界物体的干扰而引起谐振现象。
浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施电压互感器是电力系统中常见的一种测量设备,其作用是将高压变电器的高电压变换为低电压用于测量和保护系统。
电压互感器在运行过程中会受到各种干扰和影响,其中铁磁谐振过电压是一个常见的问题。
本文将对电压互感器铁磁谐振过电压的原因进行分析,并提出相应的防范措施。
一、铁磁谐振过电压的原因1. 铁芯饱和电压互感器的铁芯在运行过程中,会受到系统电压的影哨,当系统电压过高时,铁芯可能会发生饱和现象。
当铁芯饱和时,会导致互感器的谐振频率发生变化,从而产生过电压。
2. 负载变化3. 保护动作在系统故障或过载状态下,保护设备会进行动作,引发短时过电压。
这种过电压也可能引起电压互感器的铁磁谐振现象。
1. 加强互感器绝缘为了防范铁磁谐振过电压的发生,首先要确保互感器的绝缘性能良好。
在选择互感器时,应选择具有较高击穿电压的绝缘材料,以提高互感器的绝缘强度。
2. 优化互感器设计在互感器的设计过程中,应该根据系统的电压和负载特性,优化互感器的结构和参数,以减少铁磁谐振过电压的可能性。
3. 使用补偿电容器在互感器的设计中,可以加入合适的补偿电容器来抵消铁磁谐振过电压。
补偿电容器的选择和布置是一个复杂的工程问题,需要根据实际系统情况进行综合考虑。
4. 定期检测为了确保电压互感器的正常运行,需要定期对其进行检测和维护。
通过定期检测,可以及时发现互感器存在的问题,并采取相应的措施进行修复。
5. 系统优化在系统设计和运行过程中,应该保持系统的稳定性,避免出现系统过载或短路等故障情况,以减少铁磁谐振过电压的发生。
电压互感器铁磁谐振过电压是一个常见的问题,但通过合理的设计和操作措施,可以有效地防范和解决这一问题,从而确保电力系统的安全稳定运行。
希望本文的分析和建议能够为电力系统工程技术人员在实际工作中提供一些参考和帮助。
浅析铁磁谐振及应对措施

浅析铁磁谐振及应对措施摘要铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用引起的持续性、高幅值谐振过电压现象。
首先简述电力系统中性点的接地方式,然后结合我公司中性点不接地系统发生的一起单相接地故障,简要分析铁磁谐振产生的原因,以及应对措施。
关键词电力系统中性点;接地;电压互感器;铁磁谐振1电力系统中性点接地方式电力系统中性点是指线路首端电压所连接的变压器绕组三相接成星形接线时绕组的末端连接点。
电力系统中性点接地是一种工作接地,接地方式通常有中性点直接接地、中性点不接地(绝缘)或经消弧线圈接地等。
1.1中性点直接接地是指电力系统中至少有一个中性点直接或经小阻抗与接地装置相连接。
这种接地方式是通过系统中全部或部分变压器中性点直接接地来实现的。
其作用是使中性点经常保持零电位。
当系统发生单相接地故障时,能限制非故障相对地电压的升高,从而可保证单相用电设备的安全。
但中性点直接接地后,单相接地故障电流较大,一般可使剩余电流保护或过电流保护动作,切断电源,造成停电;发生人身一相对地电击时,危险性也较大。
所以中性点直接接地方式不适合对连续供电要求较高及人身安全、环境安全要求较高的场合。
1.2中性点不直接接地系统是指电力系统中性点不接地或经消弧线圈、电压互感器、高电阻与接地装置相连接。
中性点不接地可以减小人身电击时流经人体的电流,降低设备外壳对地电压,单相接地故障电流也很小,且接地时三相线电压大小不变,故一般不需停电,因此供电可靠性高。
中性点不接地系统发生单相接地时,会引起三相电压不平衡:发生单相一点接地时,由于系统与地未构成回路,所以短路点流过的电流较小,主要为容性不平衡电流;发生单相一点接地时,线电压大小不变且对称,因此仍可继续运行一段时间,但一般规定不超过2小时。
1.3发生单相接地故障的危害单相接地又分为金属性接地和非金属性接地两种:金属性接地相电压为零,其他两相电压升高为相电压的1.732倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析电压互感器铁磁谐振过电压防范措施
电压互感器是电力系统中常用的电力测量装置,其主要作用是将高压电网的电压转换为低压可测量的信号。
在电力系统中,电压互感器往往会遭受谐振过电压的威胁,从而对电压互感器造成损害。
在使用电压互感器时,必须采取相应的防范措施,以保护电压互感器的安全稳定运行。
第一,选择合适的电压互感器。
在设计电力系统时,必须根据系统的运行特点和电压互感器的参数来选择合适的电压互感器。
最重要的参数是电压互感器的阻抗特性。
合适的电压互感器应该具有较大的阻抗,以减小对系统的谐振响应。
第二,合理布置电压互感器。
电压互感器在电力系统中的位置布置也对谐振过电压的防范起到重要作用。
一般情况下,电压互感器应尽量远离电力系统中可能产生谐振过电压的装置,如电容器、线路和变压器等。
电压互感器的布置还应考虑到相互之间的干扰,避免互相影响。
采取适当的绝缘措施。
电压互感器在设计和制造过程中,必须采用高强度的绝缘材料和绝缘结构,以保证其在电力系统中长期运行的安全性。
绝缘措施包括电压互感器的绕组绝缘、绝缘套管和外壳绝缘等。
还应定期检测和测试电压互感器的绝缘状况,及时发现和处理绝缘故障。
第四,加强谐振过电压监测和预警。
电压互感器的谐振过电压问题是一个长期存在的隐患,必须加强对谐振过电压的监测和预警。
监测和预警措施包括安装谐振过电压监测装置,定期对电压互感器进行检测和测试,建立健全的预警机制等。
通过监测和预警,可以及时了解谐振过电压的发展情况,并采取相应的措施进行处理。
电压互感器铁磁谐振过电压是电力系统中一个常见的问题,但通过合适的电压互感器选择、合理的布置、适当的绝缘措施和加强谐振过电压监测和预警等措施,可以有效地防范谐振过电压的威胁,保障电压互感器的安全稳定运行。