导数 微分 积分的区别
导数 微分 积分的区别

导数微分积分的区别
导数和微分实质一样,但表达形式的不同,y等于fx为导数表达形式,而dy等于fx乘dx为微分表达形式。
导数是特殊情况下的极限,即导数是在极限的基础上进行研究。
积分和导数,可以理解为逆运算,积分是知道导数求原函数,导数是知道原函数求导数。
1、导数,曲线某点的导数就是该点切线的斜率,在物理学里体现了是瞬时速度,二阶导数则是加速度。
这个是由牛顿提出并研究的方向。
2、微分,也就是把函数分成无限小的部分,当曲线无限的被缩小后,可以近似当作直线对待,微分也就能表示为导数与dx的乘积。
这个是莱布尼兹提出并研究的方向。
3、积分,定积分就是求曲线与x轴所夹的面积;不定积
分就是该面积满足的方程式,因此后者是求定积分的一种手段,本质上来说,不定积分就是变限的定积分。
导数公式微分公式和积分公式的比较

导数公式微分公式和积分公式的比较导数、微分和积分是微积分中的三个重要概念,在求解函数的变化率、曲线的斜率、面积和定积分等方面起到了关键作用。
下面分别对导数公式、微分公式和积分公式进行比较。
1.导数公式:导数是函数在其中一点的变化率,常用于求函数的斜率和切线方程等。
导数公式主要有以下几种形式:(1)一元函数的导数公式:对于一元函数y=f(x),其导数可以通过以下公式求解:-函数的导数定义:如果y=f(x)在x点可导,那么y=f(x)在x点的导数为:f'(x) = lim(Δx→0)[(f(x+Δx) - f(x))/Δx]-幂函数的导数:若y=x^n(其中n为实数),则它的导数为:f'(x) = nx^(n-1)-常数倍法则:若y = kf(x) (k为常数) ,则它的导数为:f'(x) = kf'(x)-和差法则:若y=f(x)±g(x),则它的导数为:(f±g)'(x)=f'(x)±g'(x)-乘法法则:若y=f(x)g(x),则它的导数为:(f*g)'(x)=f'(x)g(x)+f(x)g'(x)-商法则:若y=f(x)/g(x),则它的导数为:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/[g(x)]^2-复合函数求导法则:若y=f(g(x)),则它的导数为:dy/dx = f'(g(x)) * g'(x)(2)多元函数的导数公式:对于多元函数z = f(x1, x2, ..., xn),其中x1, x2, ..., xn为自变量,z为因变量。
多元函数的偏导数求解方法如下:-偏导数定义:在函数z = f(x1, x2, ..., xn)中,若存在一个变量xi(i = 1, 2, ..., n),在它的其中一点(xi0),其它变量xj (j ≠ i) 固定不变那么关于xi 在点(xi0)的偏导数定义为:∂z/∂xi = lim(Δxi→0)[(f(x1, x2, ..., xi0 + Δxi, ..., xn) - f(x1, x2, ..., xi0, ..., xn))/Δxi]-偏导数的性质:偏导数具有和一元函数类似的性质,如常数倍法则、和差法则、乘法法则、链式法则等。
积分和微分的区别通俗易懂

积分和微分的区别通俗易懂微分和积分的区别包括:定义不同、数学表达不同、几何意义不同。
一、定义不同微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
设f是从欧几里得空间(或者任意一个内积空间)中的一个开集射到的一个函数。
对于中的一点x及其在中的邻域中的点x+h。
如果存在线性映射A使得对任意这样的x+h,那么称函数f在点x处可微。
线性映射A叫做f在点x处的微分。
积分是把微分后的结果,也就是无数无限小的东西重新集合成为一个整体。
定义积分的方法不止一种,各种定义之间也不是完全等价的。
其中的差别主要是在定义某些特殊的函数:在某些积分的定义下这些函数不可积分,但在另一些定义之下它们的积分存在。
然而有时也会因为教学的原因造成定义上的差别。
最常见的积分定义是黎曼积分和勒贝格积分。
二、数学表达不同微分:导数和微分在书写的形式有些区别,如y' =f (x),则为导数,书写成dy=f (x)dx,则为微分。
积分:设F (x)为函数f (x)的一个原函数,我们把函数f (x)的所有原函数F (x) +C (c为任意常数),叫作函数f(x)的不定积分,数学表达式为:若f' (x)=g(x),则有f g(x) dx=f(x) +c。
三、几何意义不同微分的几何意义是将线段无线缩小来近似代替曲线段;积分是需要几何形体的面积或体积。
微分的性质如果f是线性映射,那么它在任意一点的微分都等于自身。
在Rn(或定义了一组标准基的内积空间)里,函数的全微分和偏导数间的关系可以通过雅可比矩阵刻画:设f是从Rn射到Rm的函数,f=(f1,f2,...fm),那么:具体来说,对于一个改变量:,微分值:可微的必要条件:如果函数f在一点x_0处可微,那么雅克比矩阵的每一个元素都存在,但反之不真。
勒贝格积分的概念定义在测度的概念上。
测度是日常概念中测量长度、面积的推广,将其以公理化的方式定义。
微积分的应用场景及方法

微积分的应用场景及方法微积分是数学的一门重要分支,它的应用场景广泛而丰富。
无论是自然科学、工程技术还是经济管理,微积分都扮演着重要的角色。
本文将探讨微积分在不同领域中的应用场景及方法。
一、物理学中的微积分应用物理学是微积分最早应用的领域之一。
微积分帮助我们理解和描述物体的运动、力学、电磁学等现象。
例如,当我们研究一个物体的运动时,可以通过微积分来求解其速度、加速度和位移的关系。
微分和积分的概念可以帮助我们建立微分方程,从而解决复杂的物理问题。
微积分还在光学、热力学、量子力学等领域中有广泛的应用。
二、工程技术中的微积分应用在工程技术领域,微积分也扮演着重要的角色。
例如,在建筑工程中,通过微积分可以计算出复杂结构的曲线、曲面和体积,从而帮助设计师进行结构分析和优化。
在电子工程中,微积分可以用来描述电路中电流和电压的变化规律,以及信号的传输和处理。
微积分还在机械工程、化学工程等领域中有广泛的应用。
三、经济学中的微积分应用微积分在经济学中也有重要的应用。
经济学家常常使用微积分来研究市场供需关系、价格变动和消费者行为等问题。
微积分可以帮助经济学家建立数学模型,从而定量地分析经济现象。
例如,通过微分和积分可以求解边际成本、边际效用和边际收益等概念,为经济决策提供理论依据。
微积分在金融学、管理学等领域中也有广泛的应用。
四、微积分的方法和技巧微积分的方法和技巧有很多,下面列举几种常用的方法。
1. 导数和微分:导数是微积分的基本概念之一,它描述了函数在某一点的变化率。
通过导数可以求解函数的最值、判断函数的增减性等问题。
微分是导数的一种应用形式,它可以用来近似计算函数的变化量。
2. 积分:积分是微积分的另一个基本概念,它描述了函数在一定区间上的累积效应。
通过积分可以求解曲线下的面积、计算函数的平均值等问题。
积分还可以用来求解微分方程,从而解决动力学、电路等问题。
3. 极限:极限是微积分的核心概念之一,它描述了函数在某一点无限接近的性质。
大一微积分每章知识点总结

大一微积分每章知识点总结微积分是数学的重要分支之一,用于研究变化率与累积效应。
在大一微积分课程中,我们学习了许多重要的知识点,这些知识点为我们进一步学习高级数学打下了坚实的基础。
本文将对大一微积分每章的知识点进行总结,以帮助读者巩固所学内容。
第一章:函数与极限在这一章中,我们学习了函数的概念与性质,以及极限的定义与运算法则。
函数是一种将一个数集映射到另一个数集的规则,可以用数学公式或图形表示。
极限是函数在某个点无限接近于某个值的情况,是微积分的基础概念之一。
第二章:导数与微分导数是用来描述函数变化率的概念,它表示函数在某一点处的切线斜率。
我们学习了导数的计算方法,包括基本导数公式、加减乘除法则、链式法则等。
微分则是导数的应用,用于计算函数在某一点的近似值,并研究函数的局部特征。
第三章:微分中值定理与导数的应用在这一章中,我们学习了微分中值定理和导数的应用。
微分中值定理是描述函数在某个区间内存在某点的斜率等于该区间的平均斜率的定理,包括拉格朗日中值定理和柯西中值定理。
导数的应用包括函数的单调性、极值点、凹凸性等的判断与求解。
第四章:不定积分不定积分是导数的逆运算,用于求解函数的原函数。
我们学习了不定积分的基本性质和常用的积分公式,包括换元法、分部积分法、有理函数的积分等。
通过不定积分,我们可以求解函数的面积、曲线长度等问题。
第五章:定积分与定积分的应用定积分是用来计算曲线下面积的工具,也可以表示变化率与累积效应。
我们学习了定积分的定义和性质,以及计算定积分的方法,如换元法、分部积分法和定积分的几何应用等。
定积分的应用包括计算曲线的弧长、质量、物体的质心等。
第六章:微分方程微分方程是用导数和未知函数构成的方程,研究函数之间的关系。
我们学习了常微分方程的基本概念和解法,包括一阶线性微分方程和可分离变量的方程等。
微分方程是实际问题建模与求解的重要工具,应用广泛于物理、化学、工程等领域。
通过对大一微积分每章的知识点进行总结,我们回顾了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分与定积分的应用、微分方程等内容,巩固了所学知识,并为之后学习高级数学打下了坚实的基础。
微积分简介

υ
υ
5. 若y=f(x), x=g(t),则y= f [g(t)]
dy = y ' dt = ( y .x )dt = f .g dt
' x ' t ' x ' t
14四Leabharlann 微分在近似计算中的应用很小时, y ≈ dy 当∆x很小时 很小时
y = f ( x0 + x) − f ( x0 ) ≈ f '( x0 ) x f ( x) − f ( x0 ) ≈ f '( x0 )( x − x0 ) f ( x) ≈ f ( x0 ) + f '( x0 )( x − x0 )
16
积分
一、定积分
物体做匀速直线运动,路程=速度X时间,即s=v x t, 物体做匀速直线运动 如图1所示 v
v
v V(t)
图1 1
0 t
2 图2 t
0 ∆t t
t
物体做变速直线运动,速度v=v(t),如图2所示.可以把t 物体做变速直线运动 分成许多均等小段∆t,只要其充分小,每段时间中 的速率近似看成是不变的,把各小段时间内走过的 路程相加,即近似为总路程。
2. 几何意义:函数的曲线上任意一点的切线的斜率, 几何意义:函数的曲线上任意一点的切线的斜率, 就是函数在这一点的导数值。 就是函数在这一点的导数值。
y
A α β x0 x0+∆x A’ ∆y
x
y tan α = lim tan β = lim = f '( x0 ) A '→ A x →0 x
其中f(x)称为原函数。积分是导数的逆运算 积分是导数的逆运算。 积分是导数的逆运算
19
微积分中的导数与积分

微积分中的导数与积分微积分是数学中的一个重要分支,它涉及到函数的导数和积分。
导数和积分是微积分的两个核心概念,它们在数学和其他学科中都有着广泛的应用。
本文将从导数和积分的定义、性质和应用等方面进行探讨。
1. 导数的定义与性质导数是函数在某一点上的变化率,表示函数在该点附近的斜率。
导数的定义可以通过极限来描述,即函数在某一点的导数等于函数在该点的极限值。
具体而言,设函数f(x)在点x0处有定义,那么函数在该点的导数可以表示为:f'(x0) = lim(x→x0) (f(x) - f(x0))/(x - x0)导数具有一些重要的性质,包括线性性、乘法法则、链式法则等。
线性性指导数具有加法和乘法的性质,即导数的和等于函数和的导数,导数的积等于函数的导数的积。
乘法法则是指导数的乘积等于函数的导数乘以另一个函数再加上另一个函数的导数乘以原函数。
链式法则是指复合函数的导数等于外函数的导数乘以内函数的导数。
2. 导数的应用导数在数学和其他学科中有着广泛的应用。
在数学中,导数可以用来求函数的极值点和最值,通过导数的符号和变化来分析函数的增减性和凹凸性。
导数还可以用来求函数的图像的切线和法线方程,以及函数的凹凸区间和拐点等。
在物理学中,导数可以用来描述物体的运动状态。
例如,速度是位移对时间的导数,加速度是速度对时间的导数。
通过对速度和加速度的导数运算,可以得到物体的位移和速度的变化情况,从而研究物体的运动规律。
在经济学中,导数可以用来描述经济变量之间的关系。
例如,边际成本是总成本对生产数量的导数,边际收益是总收益对销售数量的导数。
通过对边际成本和边际收益的导数运算,可以确定最优的生产数量和销售数量,从而实现经济效益的最大化。
3. 积分的定义与性质积分是导数的逆运算,表示函数在一定区间上的累加和。
积分的定义可以通过极限和求和的方式来表达。
具体而言,设函数f(x)在区间[a, b]上有定义,将区间[a, b]等分为n个小区间,每个小区间的长度为Δx,那么函数在区间[a, b]上的积分可以表示为:∫[a,b] f(x)dx = lim(Δx→0) Σ[f(xi)Δx]积分也具有一些重要的性质,包括线性性、区间可加性、换元法则等。
导数与微积分

导数与微积分导函数导函数的概念涉及:的对于区间 , 上任意点处都可导,则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作 ;一、基本函数的导函数C'=0C为常数x^n'=nx^n-1 n∈Qsinx'=cosxcosx'=-sinxe^x'=e^xa^x'=a^xlnaloga,x' = 1/xlnalnx'= 1/x二、和差积商函数的导函数fx + gx' = f'x + g'xfx - gx' = f'x - g'xfxgx' = f'xgx + fxg'xfx/gx' = f'xgx - fxg'x / gx^2三、复合函数的导函数设 y=ut ,t=vx,则 y'x = u'tv'x = u'vx v'x例:y = t^2 ,t = sinx ,则y'x = 2t cosx = 2sinxcosx = sin2x一般定义设函数在点的某个邻域内有定义,当自变量在处取得增量Δ点仍在该邻域内时,相应地函数取得增量Δ;如果Δ与Δ之比当Δ时的极限存在,则称函数在点处可导,并称这个极限为函数在点处的导数,记为,即,也可记作,或;邻域数学分析的定义以a为中心的任何开区间称为点a的邻域,记作Ua设δ是任一正数,则在开区间a-δ,a+δ就是点a的一个邻域,这个邻域称为点a的δ邻域,记作Ua,δ,即Ua,δ={x|a-δ<x<a+δ};点a称为这邻域的中心,δ称为这邻域的半径;a的δ邻域去掉中心a后,称为点a的去心δ邻域,有时把开区间a-δ,a称为a的左δ邻域,把开区间a,a+δ称为a的右δ邻域;拓扑学的定义设A是拓扑空间X,τ的一个子集,点x∈A;如果存在集合U,满足①U是开集,即U∈τ,②点x∈U,③U是A的子集,则称点x是A的一个内点,并称A是点x的一个邻域;若A是开闭集,则称为开闭邻域;可导设y=fx是一个单变量函数, 如果y在x=x0处存在导数y'=f'x,则称y在x=x0处可导;如果一个函数在x0处可导,那么它一定在x0处是连续函数若将一点扩展成函数fx在其定义域包含的某开区间I内每一个点,那么函数fx在开区间内可导,这时对于内每一个确定的值,都对应着fx的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数fx的导函数,记作:y'、或者;原函数已知函数fx是一个定义在某区间的函数,如果存在函数Fx,使得在该区间内的任一点都有dFx=fxdx,则在该区间内就称函数Fx为函数fx的原函数;例:sinx是cosx的原函数;关于原函数的问题函数fx满足什么条件是,才保证其原函数一定存在呢这个问题我们以后来解决;若其存在原函数,那么原函数一共有多少个呢我们可以明显的看出来:若函数Fx为函数fx的原函数,即:F'x=fx,则函数族Fx+CC为任一个常数中的任一个函数一定是fx的原函数,故:若函数fx有原函数,那末其原函数为无穷多个.如果定义在a,b上的函数Fx和fx满足条件:对每一x∈a,b,F′x=fx则称Fx为fx的一个原函数;例如,x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数;因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的,例如:已知作直线运动的物体在任一时刻t的速度为v=vt,要求它的运动规律 ,就是求v=vt的原函数;原函数的存在问题是微积分学的基本理论问题,当fx为连续函数时,其原函数一定存在;几何意义和力学意义设fx在a,b上连续,则由曲线y=fx,x轴及直线x=a,x=x围成的曲边梯形的面积函数指代数和——x轴上方取正号,下方取负号是fx的一个原函数.若x为时间变量,fx为直线运动的物体的速度函数,则fx的原函数就是路程函数.导函数的定义表达式为:值得注意的是,导数是一个数,是指函数fx在点x0处导函数的函数值;但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点;几何意义如右图所示,设P0为曲线上的一个定点,P为曲线上的一个动点;当P沿曲线逐渐趋向于点P0时,并且割线PP0的极限位置P0T存在,则称P0T为曲线在P0处的切线;若曲线为一函数y = fx的图像,那么割线PP0的斜率为:当P0处的切线P0T,即PP0的极限位置存在时,此时,,则P0T的斜率tanα为:上式与一般定义中的导数定义是完全相同,则f'x0 = tanα,故导数的几何意义即曲线y = fx在点P0x0,fx0处切线的斜率;函数可导的条件如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢答案是否定的;函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等;这实际上是按照极限存在的一个充要条件极限存在,它的左右极限存在且相等推导而来:上式中,后两个式子可以定义为函数在x0处的左右导数:极值extremum∶数学函数的一种稳定值,即一个极大值或一个极小值,极值点只能在函数不可导的点或导数为零的点中取得;extreme value∶在给定的时期内,或该时期的一定月份或季节内观测到的气候要素的最高值或最低值;如果这个时期是整个有观测资料的时期,这个极值就是绝对极值极限在高等数学中,极限是一个重要的概念;极限可分为数列极限和函数极限,分别定义如下;首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积;为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=62的9次方边形,利用不等式An+1<A<An+2An+1-Ann=1,2,3....得到圆周率=3927/1250约等于数列极限:定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε不论它多么小,总存在正整数N,使得当n>N时,不等式|Xn - a|<ε都成立,那么就称常数a是数列|Xn|的极限,或称数列|Xn|收敛于a;记为lim Xn = a 或Xn→an→∞数列极限的性质:1.唯一性:若数列的极限存在,则极限值是唯一的;2.有界性:如果一个数列收敛有极限,那么这个数列有界;但是,如果一个数列有界,这个数列未必收敛;3.保号性:如果一个数列{xn}收敛于a,且a>0或a<0,那么存在正整数N,当n>N时,都有xn>0或xn<0;4.改变数列的有限项,不改变数列的极限;几个常用数列的极限:an=c 常数列极限为can=1/n 极限为0an=x^n 绝对值x小于1 极限为0函数极限的专业定义:设函数fx在点x;的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε无论它多么小,总存在正数δ ,使得当x满足不等式0<|x-x;|<δ时,对应的函数值fx都满足不等式:|fx-A|<ε那么常数A就叫做函数fx当x→x;时的极限;函数极限的通俗定义:1、设函数y=fx在a,+∞内有定义,如果当x→+∞时,函数fx无限接近一个确定的常数A,则称A为当x趋于+∞时函数fx的极限;记作lim fx=A ,x→+∞;2、设函数y=fx在点a左右近旁都有定义,当x无限趋近a时记作x→a,函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数fx的极限;记作lim fx=A ,x→a;函数的左右极限:1:如果当x从点x=x0的左侧即x〈x0无限趋近于x0时,函数fx无限趋近于常数a,就说a是函数fx在点x0处的左极限,记作x→x0-limfx=a.2:如果当x从点x=x0右侧即x>x0无限趋近于点x0时,函数fx无限趋近于常数a,就说a是函数fx在点x0处的右极限,记作x→x0+limfx=a.注:若一个函数在x0上的左右极限不同则此函数在x0上不存在极限注:一个函数是否在x0处存在极限,与它在x=x0处是否有定义无关,只要求y=fx在x0近旁有定义即可;函数极限的性质:极限的运算法则或称有关公式:limfx+gx=limfx+limgxlimfx-gx=limfx-limgxlimfxgx=limfxlimgxlimfx/gx=limfx/limgx limgx不等于0limfx^n=limfx^n以上limfx limgx都存在时才成立lim1+1/x^x =ex→∞无穷大与无穷小:一个数列极限无限趋近于0,它就是一个无穷小数列极限;无穷大数列和无穷小数列成倒数;两个重要极限:1、lim sinx/x =1 ,x→02、lim 1 + 1/x^x =e ,x→∞ e≈...,无理数====================================================================== ==举两个例子说明一下一、……=1以下一段不作证明,只助理解——原因:小数的加法的第一步就是对齐数位,即要知道具体哪一位加哪一位才可操作,下文中……的加法使用小数点与小数点对齐并不可以保证以上标准,所以对于无限小数并不能做加法;既然不可做加法,就无乘法可言了;谁都知道1/3=……,而两边同时乘以3就得到1=……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数;10×……—1×……=9=9×……∴……=1二、“无理数”算是什么数我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯;结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想;类似的根源还在物理中实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用,比如瞬时速度的问题;我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出;真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的;几个常用数列的极限an=c 常数列极限为can=1/n 极限为0an=x^n 绝对值x小于1 极限为0定积分定积分的几何意义众所周知,微积分的两大部分是微分与积分;微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数;所以,微分与积分互为逆运算;积分的分类实际上,积分还可以分为两部分;第一种,不定积分,也就是已知导数求原函数,而若Fx的导数是fx,那么Fx+CC是常数的导数也是fx,也就是说,把fx积分,不一定能得到Fx,因为Fx+C的导数也是fx,C是任意常数,所以fx积分的结果有无数个,是不确定的,我们一律用Fx+C代替,这就称为不定积分;这也就是说它是一组函数,而不是有限个;第二种,定积分定积分就是求函数FX在区间A,B中图线下包围的面积;即 y=0 x=a x=b y=FX所包围的面积;这个图形称为曲边梯形,特例是曲边梯形;定积分的定义:设一元函数y=fx ,在区间a,b内有定义;将区间a,b分成n个小区间 a,x0 x0,x1x1,x2 .....xi,b ;设△xi=xi-xi-1,取区间△xi中曲线上任意一点记做fξi,做和式:和式若记λ为这些小区间中的最长者;当λ→ 0时,若此和式的极限存在,则称这个和式是函数fx 在区间a,b上的定积分;记做:∫ _a^b fxdxa在∫下方,b在∫上方其中称a为积分下限,b为积分上限, fx 为被积函数,fxdx 为被积式,∫为积分号;之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数, 而不是一个函数;微分一元微分定义:设函数y = fx在x.的邻域内有定义,x0及x0 + Δx在此区间内;如果函数的增量Δy = fx0 + Δx fx0可表示为Δy = AΔx + oΔx其中A是不依赖于Δx 的常数,而oΔx0是比Δx高阶的无穷小,那么称函数fx在点x0是可微的,且AΔx 称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx;通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx;于是函数y = fx的微分又可记作dy = f'xdx;函数的微分与自变量的微分之商等于该函数的导数;因此,导数也叫做微商;当自变量X改变为X+△X时,相应地函数值由fX改变为fX+△X,如果存在一个与△X无关的常数A,使fX+△X-fX和A△X之差关于△X→0是高阶无穷小量,则称A△X是fX在X的微分,记为dy,并称fX在X可微;可导不一定可微,可微一定可导,这时A=f′X;再记A△X=dy,则dy=f′XdX;例如:dsinX=cosXdX;几何意义:设Δx是曲线y = fx上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量;当|Δx|很小时,|Δy-dy|比|Δy|要小得多高阶无穷小,因此在点M附近,我们可以用切线段来近似代替曲线段;多元微分同理,当自变量为多个时,可得出多元微分得定义;运算法则:dy=f'xdxdu+v=du+dvdu-v=du-dvduv=duv+dvudu/v=duv-dvu/v^2黎曼积分定积分的正式名称是黎曼积分,详见黎曼积分;用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间a,b上的矩形累加起来,所得到的就是这个函数的图象在区间a,b的面积;实际上,定积分的上下限就是区间的两个端点a、b;黎曼积分如果函数fX在闭区间a,b上定义,而P,ζ是这个闭区间的一个带点分割,则和σf;p,ζ:=Σ fζiΔXi叫做函数f在区间a,b上对应于带点分割P,ζ的积分和,其中ΔXi=Xi-Xi-1 存在这样一个实数I,如果对于任何ε>0可以找到一个δ>0,使对区间a,b的任何带点分割P,ζ,只要分化P的参数λP<δ,就有|I-σf;p,ζ|<ε,则称函数fX在闭区间a,b上黎曼可积,而I就成为函数fX在闭区间a,b上的黎曼积分;我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数;它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢微积分基本定理定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系;把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分;这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若F'x=fx那么∫ _a^bfx dx = Fa-Fb牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差;正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理;牛顿-莱布尼茨公式,又称为微积分基本定理,其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法;从几何上看,它在切线和面积两个看似很不相关的概念之间建立起了联系;下面就是该公式的证明全过程:我们知道,对黎曼Riemann可积函数fx于区间a,b上的定积分表达为:b上限∫a下限fxdx现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:Φx= x上限∫a下限fxdx但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的;虽然这种写法是可以的,但习惯上常把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:Φx= x上限∫a下限ftdt接下来我们就来研究这个函数Φx的性质:1.定义函数Φx= x上限∫a下限ftdt,则Φx连续;当fx连续时,有Φ’x=fx;证明:让函数Φx获得增量Δx,则对应的函数增量ΔΦ=Φx+Δx-Φx=x+Δx上限∫a下限ftdt-x上限∫a下限ftdt,利用区间可加性,x+Δx上限∫a下限ftdt-x上限∫a下限ftdt=x+Δx上限∫x下限ftdt若m和M分别是fx在区间a,b上的最小值和最大值,利用定积分第一中值定理,存在m,M中的实数η,使得ΔΦ=x+Δx上限∫x下限ftdt=ηΔx;进一步,当fx连续时存在x与x+Δx之间的常数ξ,使得η=fξ;于是当Δx趋向于0时,ΔΦ趋向于0,即Φx连续;若fx连续,那么当Δx趋向于0时,ξ趋向于x,fξ趋向于fx,故有lim Δx→0 ΔΦ/Δx=fx,从而得出Φ’x=fx;2. 若fx在a,b上连续,且Fx是fx在a,b上的一个原函数,那么b上限∫a 下限fxdx=Fb-Fa;证明:我们已证得Φ’x=fx,故Φx+C=Fx;注意到Φa=0积分区间变为a,a,故面积为0,所以Fa=C,于是有Φx=Fx-Fa,当x=b时,Φb=Fb-Fa,这就得到了牛顿-莱布尼茨公式;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数微分积分的区别
一、导数和微分的区别,导数:
导数与微分的定义可以表示为:
4.如果微分是从极限的逆命题得出,那么导数就是从极限的逆
定理得出。
在以上定义中,如果取x=0时的值为0,则称为隐函数,反之,取x=a+b时的值为0,则称为显函数,由此可见,在求函数的导数时,如果不知道具体的函数,也就无法知道其导数的具体形式。
例如,求函数y=1/x的导数时,若不知道函数的极限,则无法确定具体的取值范围,只能根据其单调性和增减性来判断取x=0还是x=a+b 时的导数为0。
二、导数和积分的区别:
5.把导数放在等式左边,表示被积函数是一次、二次或三次的
可导函数,则称这种积分为一阶导数;把导数放在等式右边,表示被积函数是多次的可导函数,则称这种积分为二阶导数。
6.在一个闭区间上定义了一个连续可导的函数,它的导数总存在,并且等于该函数的原函数。
7.有时候我们需要用导数讨论函数的近似计算,例如函数在某点取极大值时,我们需要求函数的极大值。
8.在一个函数内部,可能存在导数。
如函数y=x的导数就是指当x趋于某一数值y 时,函数值x的变化率。
三、对象不同:导数研究的是函数的局部情况,而积分研究的是整个函数。
四、作用不同:导数主要用于求函数的近似值,而积分主要用于求函数的最大(小)值。
五、应用场合不同:导数主要用于求函数的近似值,而积分主要用于求函数的最大(小)值。
六、思想方法不同:导数的思想方法是极限的思想方法,而积分
的思想方法是极限的思想方法和导数的思想方法的结合。
七、适用条件不同:导数主要用于求函数的近似值,而积分主要用于求函数的最大(小)值。
八、两者关系不同:导数是积分的逆运算,即:如果f(x)是定义在[a, b]上的连续可导的函数,那么
f'(x)=f(x)-f(a)f'(x)'(b),其中, f'(x)'是f'(x)-f(a)f'(x)'(b)在[a, b]上的积分。
九、两者联系不同:导数是积分的逆运算,即:如果f(x)是定义在[a, b]上的连续可导的函数,那么
f'(x)=f(x)-f(a)f'(x)'(b),其中, f'(x)'是f'(x)-f(a)f'(x)'(b)在[a, b]上的积分。