煤气脱硫技术方案
固定床脱硫工艺方案

固定床脱硫工艺方案是一种常见的烟气脱硫技术,主要用于燃煤电厂、工业锅炉等排放的烟气中去除硫氧化物(SOx)。
以下是固定床脱硫工艺的一些基本组成部分和工艺流程:
1.吸收剂准备:
•通常使用石灰石(CaCO3)或生石灰(CaO)作为吸收剂。
•吸收剂被磨碎到一定的粒度,以增加其表面积,提高脱硫效率。
2.吸收塔(固定床反应器):
•烟气进入吸收塔,与吸收剂充分接触。
•在吸收塔内,烟气中的SO2与吸收剂发生化学反应,生成硫酸钙(CaSO4),从而实现脱硫。
3.脱硫反应:
•主要反应为:SO2 + CaCO3 → CaSO4 + CO2
•反应过程中,吸收剂逐渐消耗,需要定期补充新的吸收剂。
4.副产品处理:
•生成的硫酸钙(石膏)可以作为副产品收集,用于建筑材料等行业。
•需要对石膏进行脱水、干燥和包装处理,以便运输和销售。
5.清洁烟气排放:
•经过脱硫处理后的烟气,其SO2含量大大降低,可以满足环保排放标准。
•烟气在排放前可能还需要经过除尘和脱硝处理。
6.工艺控制和监测:
•通过在线监测设备,实时监控烟气中SO2的浓度和脱硫效率。
•根据监测数据调整吸收剂的投加量和补充频率,确保脱硫效果。
7.废渣处理:
•脱硫过程中产生的废渣需要进行妥善处理,避免对环境造成污染。
固定床脱硫工艺的优点包括技术成熟、脱硫效率高、运行成本相对较低。
然而,也存在一些缺点,如占地面积大、副产品处理复杂、对吸收剂质量要求高等。
因此,在选择脱硫工艺时,需要根据具体情况综合考虑各种因素。
60万吨年兰炭煤气脱硫工程简单方案

60万吨/年兰炭煤气脱硫工程简单方案本公司年产兰炭共60万吨,每小时产气量约为11×104m3/h,自用大约为4.5×104m3/h,剩余煤气量大约为 6.5×104m3/h根据此公司的实际情况,脱硫采用湿法氧化脱硫方式,下面把工艺流程简要介绍如下:1、工艺流程1.1脱除焦油待处理荒煤气通过气体分离器进入洗焦塔,上升的气液混合物高速穿过旋流板分离器而产生旋转、液体雾珠被加速,飞向塔壁,被塔壁拦截聚集,达到气液分离。
被分离的液体沿筒壁流入降液管达到气液分离的目的。
除去焦油的气体进入脱硫塔。
液体由塔底部进入洗液罐,之后去污水处理装置处理。
1.2荒煤气脱硫除去焦油之后的气体由洗焦塔顶部进入脱硫塔下部,与塔顶喷淋下来的脱硫液接触洗涤后,煤气中硫(以二氧化硫计)降至200ppm以下,脱硫后的煤气经塔后分离器除去雾滴后送去金属镁工段。
1.3富液再生从脱硫塔中吸收了H2S和SO2的脱硫富液从脱硫塔底部由富液循环泵送至喷射脱硫再生槽(塔)喷射器中,喷射器在喷射富液时带入空气,富液中吸收了硫的液体,在催化剂的催化下,与带入富液内的氧反应,把硫再生出来,溶液得到再生,再生后的脱硫贫液利用高位差自流贫液槽,新生成的硫在空气从液体上升的过程中被带到液体表面,升到再生槽的顶端,贫液用泵送至脱硫塔塔顶循环喷淋脱硫。
1.4硫泡沫的过滤硫泡沫则由再生槽顶部扩大部分排至硫泡沫槽,由硫泡沫泵加压送至硫泡沫过滤系统中的沉淀槽沉淀,沉淀后的清液用请液泵打到地下溶液槽中,剩余的浊液搅拌均匀之后用进料泵送至硫泡沫过滤机过滤。
1.5硫磺制备过滤之后的硫磺含水量小于40%,已经是半干固体,经过埋刮板输送机送至储料槽,储料槽的物料经过关风阀进入熔硫釜熔硫,湿的硫中水被蒸发,剩下硫被熔融,杂质被除去,熔融的硫磺放到成品槽,冷却后为硫磺块市售。
整个工艺流程出口的压力大于5.3Kpa。
脱硫之后的净化气含硫(以二氧化硫计)小于200ppm。
焦化厂焦炉煤气精脱硫工艺分析与设计技术实施方案

焦化厂焦炉煤气精脱硫工艺分析与设计技术实施方案1.总则:关键词:一级脱硫;二级脱硫;脱硫剂;催化剂;脱硫效果;热平衡在焦炉煤气制甲醇工艺中,由于合成甲醇所用的铜系催化剂对原料气中的硫很敏感,极易发生硫中毒影响活性和使用寿命。
因此焦炉煤气在经焦化化产车间的湿法脱硫后,需进一步精细脱硫,使焦炉气中的总硫含量<0.1×10-6,以满足工艺生产的需要。
所采用的精脱硫工艺均为中温干法脱硫工艺,其主要特点为“两级有机硫加氢转化+两级硫化氢脱除”。
主要流程如下:压缩工段来的焦炉煤气经加热达到催化剂的活性温度后进入一级加氢转化器,在此焦炉气中大部分的有机硫加氢转化为硫化氢,后经一级脱硫槽将硫化氢脱除;然后经二级加氢转化器将焦炉煤气中剩余的少量有机硫进一步加氢转化为硫化氢,再通过二级脱硫槽脱除,最终使出工段的焦炉气中总硫<0.1×10-6。
设计上一、二级的脱硫负荷约为6∶1。
2.一级加氢转化:一级加氢转化器设计上为1台,在此焦炉煤气中大部分的有机硫在催化剂的作用下转化为硫化氢,在整个脱硫工艺中起着基础性作用。
设计上一级加氢转化器选用的催化剂是铁钼加氢转化催化剂,其活性成分是氧化钼和少量的氧化铁,使用前需预先进行升温硫化才能有较好的催化活性。
实际运行表明,只要对催化剂硫化充分,生产中温度控制合适,一级加氢转化器即能够将焦炉煤气中大部分的有机硫进行加氢转化生成硫化氢,满足生产需要。
目前存在的主要问题是,大部分的甲醇生产厂家都反映催化剂的使用寿命不够理想:好的状况下可使用2年,一般的在使用1年后催化剂活性就会大大削弱,有机硫加氢转化能力降低甚至会消失,即使提高催化剂床层的运行温度也不会有大的改观。
如此增加了催化剂的更换频率和脱硫成本。
理论上催化剂的活性是不会下降或消失的,造成这种现象有多方面原因。
催化剂的生产厂家认为是催化剂在使用前硫化不彻底所致,但这并非主要原因:因为催化剂在使用过程中始终是处在一个多硫和强还原性的氛围中,即使在投用前预硫化不十分彻底,但在使用过程中也会不断地有硫化反应发生,直至硫化彻底。
煤气脱硫方法

煤气脱硫方法
煤气脱硫是一种重要的环保技术,它可以有效地减少燃煤过程中产生
的二氧化硫排放,从而降低大气污染。
目前,常用的煤气脱硫方法主
要有湿法脱硫和干法脱硫两种。
湿法脱硫是指将煤气与一定量的水接触,利用水中的氢氧化物或碳酸
盐等化学物质与二氧化硫反应生成硫酸盐,从而达到脱硫的目的。
常
用的湿法脱硫方法有石灰石-石膏法、海水脱硫法、氨法等。
其中,石灰石-石膏法是最常用的湿法脱硫方法之一。
该方法的原理是将煤气与石灰石和水混合,生成硫酸钙,再与水混合生成石膏,从而达到脱硫
的目的。
该方法具有脱硫效率高、操作简单等优点,但也存在着废水
处理难度大、设备占地面积大等缺点。
干法脱硫是指将煤气与一定量的固体吸附剂接触,利用吸附剂表面的
化学反应或物理吸附作用将二氧化硫吸附下来,从而达到脱硫的目的。
常用的干法脱硫方法有活性炭吸附法、氧化钙吸附法、氧化铁吸附法等。
其中,活性炭吸附法是最常用的干法脱硫方法之一。
该方法的原
理是将煤气与活性炭接触,利用活性炭表面的孔隙结构和化学反应将
二氧化硫吸附下来,从而达到脱硫的目的。
该方法具有脱硫效率高、
设备占地面积小等优点,但也存在着吸附剂再生难度大、吸附剂成本
高等缺点。
总的来说,湿法脱硫和干法脱硫各有优缺点,具体选择哪种方法需要根据实际情况进行综合考虑。
未来,随着环保技术的不断发展,煤气脱硫技术也将不断完善和创新,为保护环境、减少污染做出更大的贡献。
焦炉煤气DDS脱硫技术(简装)

焦炉煤气DDS脱硫技术二零一八焦炉煤气DDS脱硫技术1、DDS脱硫技术简介1.1 概述DDS脱硫技术是“铁-碱溶液催化法煤气脱硫技术”的简称,是一种全新的湿法生物化学脱硫技术,用含DDS脱硫催化剂和亲硫耗氧性耐热耐碱菌及有关辅助材料的碱性溶液吸收煤气中的无机硫、有机硫、HCN和极少量的CO2,进行脱硫。
其脱硫原理和概念与传统的湿法脱硫技术有所不同。
1.2 DDS脱硫反应原理DDS脱硫剂是模仿人体正常血红蛋白的载氧性能研制出来的脱硫催化剂,它是含有铁的有机络合物的多聚合物。
DDS催化剂既能脱除无机硫又能脱除少量有机硫。
同时在吸收过程中会产生一些不溶性铁盐沉淀,好氧菌在DDS络合铁配体的协助下可以将这些不溶性铁盐瓦解,使之以活性铁离子的形式返回溶液中,保证溶液中各种形态铁离子的稳定存在。
DDS脱硫液在酚类物质与铁离子的共同催化下,用空气氧化再生,副产硫膏,再生DDS脱硫液循环使用。
其反应过程可归纳为:吸收反应、再生反应、生物降解反应。
1)吸收反应可以简单归结如下为五类反应:(1) H2S、CO2与碱及铁离子的反应。
(2) CS2、COS的水解反应。
(3) R-SH、 SH 与铁离子的反应。
(4) SO2与H2S的氧化还原反应。
(5) 少量铁离子在碱性溶液中的降解反应。
2)再生反应可以简单归结为如下三类反应:(1) NaHCO3与Na2CO3的转换过程(2) Fe3+氧化溶液中的S2-及HS-离子自身被还原为Fe2+,Fe2+再被空气中的氧及醌类物质氧化为Fe3+的反应。
(3) 醌氧化溶液中的S2-、HS-及Fe2+离子自身被还原为酚,酚再被氧化为醌的酚醌转换的过程。
3)生物降解过程的降解反应可以简单归结为如下三类反应:(1) 细菌与不溶性铁盐[Fe(OH)2、FeCO3、FeO、FeS]结合并返回到溶液中。
(2) 在DDS配体作用下瓦解不溶性铁,重新结合为DDS铁的形式。
(3) 载氧菌氧化溶液中的S2-及HS-离子。
高炉煤气精脱硫技术介绍

1.高炉煤气精脱硫背景简介
目前的技术路线主要包括源头控制和燃烧后的末端治理。 采用末端治理方式,需在多点设置脱硫设施;同时,煤气燃烧
后的废气量大,处理设施规模变大,造成投资增加。
★ 源头治理的煤气量只有燃烧后烟气量的60%左右。
相较于燃烧后脱硫工艺,燃烧前精脱硫工艺具有以下优势: 1) 降低煤气中因H2S溶于煤气冷凝水后形成氢硫酸对管道的腐蚀 作用,提高煤气输送的安全性;2)可在前端工序一次性集中 将硫脱去,便于全厂的SO2排放管控,甚至可省掉末端治理设 施;3)采用前脱硫工艺,方便后续对烟气进行脱硝,避免SO2 影响脱硝催化剂,并且可降低使用催化剂的成本。
平原等大气污染防治重点区域率先推进,其中烧结、自备电厂二氧化硫 排放限值为35mg/m3,炼铁热风炉、轧钢热处理炉、炼焦的干法熄焦二氧 化硫排放限值为50mg/m3,炼焦焦炉烟囱二氧化硫的排放限值为30mg/m3。
河北唐山、邯郸等地区结合钢铁行业超低排放,提出了高炉煤气、焦 炉煤气H2S浓度小于20mg/m3。
单独脱除一种形态的硫化物, 当进气硫含量甚低时, 可用吸收 型脱硫剂(单脱H2S)或转化吸收型脱硫剂(脱COS和CS2) 一次达到精脱硫的要求。
进气H2S 含量足够低 , COS、CS2稍高时 , 可采用水解吸收两 段精脱硫工艺。
进气H2S、COS、CS2含量均较高时, 可采用吸收-水解- 吸收或 吸收- 水解-转化吸收工艺。
3.高炉煤气精脱硫典型工艺简介
—工艺(一)
工艺系统:
有机硫水解:在水解反应器内采用高效水解催化剂,在高H2S 浓度情况下,将有机硫催化水解为H2S,反应过程如下:
水解工艺根据原料气组成及实际应用, COS、CS2转化率可 达90%以上。
煤气脱硫施工方案

煤气脱硫施工方案1. 引言煤气脱硫是指将煤燃烧产生的煤气中的二氧化硫(SO2)等有害物质去除的过程。
煤气脱硫施工方案是指在实施煤气脱硫工程时所采取的一系列措施和步骤。
本文档将介绍煤气脱硫施工方案的各项内容,包括工程概述、施工步骤、关键技术等。
2. 工程概述煤气脱硫施工工程的目标是通过适当的工艺和设备,在煤气中去除含硫物质。
施工方案应考虑工程的规模、工期、成本等因素,并以达到国家环保标准为前提。
本工程的施工内容包括但不限于以下方面: - 选择合适的脱硫工艺:常见的脱硫工艺包括湿法脱硫、干法脱硫等,根据具体情况选择合适的工艺。
- 安装脱硫设备:根据工艺选择合适的设备,并进行安装和调试。
- 建设配套设施:包括水处理系统、废水处理系统等,确保脱硫工程的正常运行。
- 施工期间的协调与管理:确保施工进度与质量控制,减少施工对正常生产的影响。
3. 施工步骤本工程的施工步骤分为以下几个阶段:3.1 准备工作•调研和设计:进行现场调研,根据调研结果制定脱硫工程设计方案。
•采购和运输:根据设计方案确定所需设备和材料,进行采购和运输准备工作。
3.2 设备安装和调试•设备安装:根据设计方案进行设备的安装工作,包括设备的定位、固定和连接等步骤。
•管道连接和调试:对煤气输送管道进行连接,进行系统打压试验,确保系统能正常运行。
3.3 配套设施建设•建设水处理系统:根据脱硫工艺的需要,建设与之配套的水处理系统,包括水供应、循环和废水处理等。
•建设废水处理系统:建设符合环保要求的废水处理系统,确保废水的排放符合相关法规。
3.4 施工调试和试运行•脱硫系统调试:进行脱硫系统的调试工作,包括反应器温度、压力等参数的调试。
•试运行和调优:进行煤气脱硫系统的试运行,并根据运行情况进行适当的调整和优化。
4. 关键技术煤气脱硫施工工程中的关键技术包括以下几个方面:4.1 脱硫工艺选择根据煤气中的硫含量和其他化学成分,选择合适的脱硫工艺,如湿法脱硫、干法脱硫等。
焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析焦炉煤气脱硫工艺中常用的方法有吸收法、催化氧化法和膜法等。
其中,吸收法是一种较常用的脱硫技术,其主要原理是通过将煤气经过吸收液(如碱液或氨液)进行接触,使H2S被吸收并转化为硫化物,从而达到脱硫的目的。
催化氧化法则是利用催化剂将H2S氧化为硫,达到脱硫的效果。
膜法则是通过膜的选择性透过性,将H2S从煤气中分离出来,实现脱硫。
吸收法中较为常用的是碱液吸收法。
碱液吸收法的优点是操作简单、脱硫效果较好,但对于含有高浓度的H2S的煤气来说,在吸收液中可能会生成大量的硫化物,导致液氨浴中硫化物过多,降低硫吸收效果。
为解决这一问题,可以通过加入硝酸铁和硝酸铝等添加剂,改善液氨浴的性质,提高脱硫效果。
催化氧化法主要是通过催化剂(如氧化铁、氧化锌等)将H2S氧化为硫,其中反应产物为SO2、在焦炉煤气中,SO2含量较高,通过反应器中催化剂的作用,可以将H2S和SO2相互转化,使SO2被还原为硫,并回收利用。
这种方法适用于H2S含量较高的煤气,可以有效地将H2S转化为有价值的硫。
膜法则是利用特定的膜材料,通过选择性透过性将煤气中的H2S分离出来。
膜法具有操作简单、能耗低、脱硫效果好等优点,但因为膜材料对不同的气体有不同的透过性,所以需要选择合适的膜材料来实现脱硫。
在焦炉煤气脱硫的基础上,硫回收技术可以有效地利用焦炉煤气中的硫资源。
目前常用的硫回收技术有硫磺回收、硫纵向深度利用和硫脱硫液回收等。
硫磺回收是将焦化炉煤气中的SO2和氢气反应生成硫磺,然后收集硫磺进行回收利用。
硫纵向深度利用是将硫经过高温和高压加工,制成硫酸、硫酸铵和硫化铵等化工产品。
硫脱硫液回收则是利用含氢气的溶液将气中的硫含量吸收,生成硫酸铵和硫化铵等化学品。
综上所述,焦炉煤气脱硫及硫回收工艺分析主要包括吸收法、催化氧化法和膜法等不同的脱硫工艺。
根据不同的情况,可以选择适合的工艺来降低煤气中的硫含量,并对焦炉煤气中的硫进行回收利用,以实现资源的可持续利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤气脱硫技术方案 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256) 目录
一、概论 SO2是一种酸性气体,在大气中易形成酸雨,威胁生态环境及公众健康。SO2已成为大气环境污染中首要污染物。根据国家“节能减排”方针政策,对大气中首要污染物SO2的排放实行总量控制,曾经在“十一五”期间全国SO2排放量削减10%,随着国家经济发展进入十二五,对于二、三类地区的工业窑炉SO2的排放量将进行严格的限制。 以煤作为燃料,即以煤为原料转换为粗煤气,煤中大部分硫组分同期转换为H2S,煤气燃烧后,硫化物以SO2形式排放,将对大气环境造成污染。 煤气中硫化氢的脱除可分为湿法脱硫与干法脱硫。 湿式氧化法脱硫:以碱性溶液吸收酸性气体硫化氢,生成硫氢酸盐,同时选择适当的氧化催化剂,将溶液中吸收硫化氢后的硫氢酸盐氧化成单体硫,从而使脱硫溶液得到再生,并获得副产品硫磺。此后,还原态的氧化剂可由空气氧化成氧化态再循环使用。此法采用溶液吸收,且氧化再生是其特点,故将此脱硫方法称为湿式氧化法脱硫,因加入不同的催化剂分为各种方法,目前常用有氨水氧化法、改良ADA法、栲胶法、PDS法、KCA法、MSQ法、888法、DDS法、ISS法和络合铁法等。实际生产中也可同时加入两种催化剂而达到较好脱硫效率。制成的碱性溶液一般采用碳酸钠(纯碱),也有采用稀氨水,但由于稀氨水对环境有一定的污染,故建议不采用稀氨水。 化学反应: (1)无机反应 H2S+ Na2CO3= NaHS+ NaHCO3
(2)有机反应
CS 2+ 2Na2CO3+ H2O = Na2COS2+ 2NaHCO3
COS+ 2Na2CO3+ H2O = Na2CO2S+ 2NaHCO3
(3)溶液氧化与再生
2NaHS+O2=2NaOH+2S↓ 2Na2CO2S+O2= 2Na2CO3+2S↓ Na2COS2+O2= Na2CO3+2S↓ 湿法脱硫的特点: (1)湿式氧化法脱硫的工艺成熟,技术可靠,操作稳定,但技术复杂,专业性强,处理设施应进行专业化设计和管理。 (2)大部分设备为非标设备,装置可根据不同处理规模进行设计,尤其适应于大规模煤气脱硫工程。 (3)设备操作弹性大,对气量波动和H2S浓度变化适应能力强。 (4)脱硫效率一般高于95%以上,并可根据需要,调整溶液配比和控制操作参数,实现不同的脱硫效果,以满足不同的用气要求。 (5)工艺流程长、设备多,工艺技术水平高,装置投资高,设备维修量大,动力消耗量大,但原辅材料消耗低。 干法脱硫:采用固体吸收剂或吸附剂来脱除硫化氢或机硫的方法称为干法脱硫,干法脱硫具有流程短、设备结构简单、气体净化高、操作平稳的优点。但此法通常使用固定层反应器,需要定期更换脱硫剂,不能连续,由于受脱硫剂硫容量(单位质量脱硫剂能脱除硫的最大数量)的限制,干法脱硫一般用于含硫量较低的情况或用于气体的精脱硫;干法脱硫根据固体脱硫剂的种类不同分为多种脱硫方法,发生炉煤气脱硫常采用活性炭法和氧化铁法。 煤气脱硫一般选择氧化铁干法脱硫。气体由上而下通过干法脱硫塔,在脱硫塔中与塔内装填的固体氧化铁脱硫剂接触,硫化氢与脱硫剂中氧化铁(Fe2O3)的α—水合物和γ—水合物发生下列脱硫反应: +3H2S= +3H2O
+3H2S=2 FeS+S+4H2O 通过如上化学反应,气相中的硫化氢被脱除,气体得到净化;固相脱硫剂中有效组分氧化铁α—水合物和γ—水合物被消耗,当出口硫化氢超标时,此时便要与系统隔离用空气进行再生;按如下反应进行:
+3/2O2= +3S 2FeS + H2O +3/2O2= +2S 经过多次脱硫再生,当硫容大于30%后便报废,更换新脱硫剂。 初步设计采用湿法脱硫采用栲胶法(或888法)脱硫,自吸空气再生及硫分离新工艺。 二、脱硫工艺方案 1、工艺流程简介 气体流程: 来自流化床煤气5Kpa左右,温度50℃左右的煤气送至冷去器内将煤气温度降低至40-45℃然后进入脱硫塔,由下部进入脱硫塔,在脱硫塔内煤气与脱硫液逆流接触,气体中的硫化氢被吸收,?脱除硫化氢的气体(硫化氢≤50mg/ Nm3)经过上部分离层初步捕除雾状脱硫液,在通过捕分离器分离气体中夹带一些微量的单体硫颗粒与雾沫状的脱硫液,合格洁净的煤气去后工段。 脱硫液流程: 由脱硫塔底部出来的脱硫液(俗称富液),经塔出口调节阀到富液槽,在富液槽内脱硫液降压闪蒸出少量溶解的气体,同时脱硫富液经过一定时间的缓冲熟化,被再生泵加压至0. 5Mpa送到氧化槽顶部空气喷射器,空气喷射器将空气吸引入喷射器内与脱硫富液混合进入氧化槽下部,在氧化槽内脱硫富液中的HS与氧发生析硫反应,生成的单质硫聚合并被空气浮选出来,同进利用吸入的空气将还原态的脱硫催化剂氧化成氧化态,溶液得以再生。再生合格的脱硫液(俗称贫液)从氧化槽中部出来去贫液槽,贫液槽中的贫液经脱硫泵加压后送入脱硫塔顶部循环使用。由氧化槽顶部浮选出来的硫泡沫溢流至硫泡沫收集槽,经泡沫泵加压后去硫泡沫过滤系统,然后通过压滤机将过滤的硫膏进行压滤成块。出来后的 硫块可以外供出售,作为脱硫系统的附价值产品。过滤后的脱硫清液经沉淀池沉淀后,返回溶液系统。 2、脱硫规模 基本情况 根据招标书要求处理气量为35000Nm3,全部经过脱硫处理,脱硫设计处理气量最大富裕值为10%。 总体设计方案 结合发生炉煤气的特点,并在设计上作到方便操作,方便维修,该煤气脱硫采用如下总体设计: 1.采用湿式氧化法脱硫,能满足用户对脱硫精度的要求; 2.为节省场地,方便生产平衡,脱硫、再生、硫泡沫的处理各设置一套; 3.为了减小对环境的污染,脱硫液封闭运行,硫泡沫采用机械过滤法,无脱硫残液产生,整个脱硫系统无废水外排; 4.采用专用硫泡沫过滤机处理硫泡沫,过滤后的硫膏成块状,含水量在25%左右,过滤后的清液悬浮硫低于%。 三、设备技术规格及功能描述 1、脱硫塔 本装置是进行脱硫反应设备,气体由下而上,经过塔内装填的填料,充分与分散到填料表面的脱硫液接触进行化学吸收反应,气体中的硫化氢被脱除,硫化氢被转化为硫氢酸盐,存在液相中,被脱除硫化氢的气体从塔顶出去;液体从塔顶加入,经过良好的分布装置,分散到填料上,从上到下,最后从塔底排出进入再生系统。 2、氧化槽(再生器) 经脱硫塔内吸收了硫化氢的脱硫液,硫化氢转化为硫氢酸盐存在液相中,在催化剂的催化氧化作用下,生成单体硫,同时催化剂由氧化态变为还原态;溶液中的单体硫如何“取”出来?还原态的催化剂如何变为氧化态循环使用?——这都是通过氧化槽来实现;从塔底出来的脱硫液到再生泵,通过泵加压到0. 5Mpa,进入氧化槽顶部的喷射器,通过喷射器的自吸作用,吸入足量的空气,由上至下气液混合物共同进入氧化槽的底部,液体由氧化槽中部溢流出来,由底到中部的过程中,通过布气板作用使气液充分接触,还原态的催化剂被氧化成氧化态,同时单体硫聚合并被吸入的空气形成硫泡沫从溶液中浮选出来,浮选出来的硫泡沫由氧化槽上部溢流堰溢流进入硫泡沫槽。 3、贫液槽(池) 从再生器出来的脱硫液已再生合格,进入贫液槽(池)通过脱硫泵加压送到脱硫塔循环使用;贫液槽(池)起液体缓冲作用。 4、富液槽(池) 从脱硫塔出来的脱硫液需进行再生,脱硫液通过富液槽(池)经再生泵加压送到再生器进行再生;富液槽(池)起液体缓冲闪蒸和提高脱硫液“熟化程度”的作用; 5、脱硫泵、再生泵 脱硫泵是将氧化槽再生好的脱硫液加压输送到脱硫塔; 再生泵是脱硫塔内脱除硫化氢的脱硫液加压送到氧化槽; 硫泡沫泵将硫泡沫送至硫泡沫过滤系统。 清液泵将各类排放液和配制液送入系统。 6、硫泡沫过滤系统 脱除硫化氢后脱硫液再生将产生大量硫泡沫,通过该系统可将其分离为含水量小于30%的硫膏付产物外售,并将过滤后的清液回收回系统。 7、工艺管网 脱硫岛内设煤气管网,蒸汽管网,站内水管网,站内软水管网,脱硫液管网; 8、防腐、保温 所有设备外保温部分刷防锈漆两遍;无保温外表刷防锈漆两遍,面漆两遍;面漆颜色按规定或由业主确定。 所有碳钢设备内部作人工电动工具除锈,环氧树脂防腐。 站内蒸汽管线、脱硫水管线等采用玻璃丝布外保温。 9、工艺布置 各运转泵、过滤系统、地下槽、溶液配制系统、电仪控制采取室内布置,其余设备均在室外露天布置。 10、建筑结构 脱硫厂房为钢筋混凝土框架结构或者钢结构;属乙类火灾危险的生产厂房,耐火等级不低于二级。 11、主要技术经济指标 序号 项目 单位 数量 备注
1 处理煤气量 m3/h 35000 标况 2 入口H2S浓度 mg/Nm3 5000 3 脱硫效率 % ≥98 4 脱除H2S量 kg/h 171 5 出口H2S浓度 mg/Nm3 ≤100 6 入口煤气温度 ℃ 50 7 出口煤气温度 ℃ 42 8 系统压力损失 Pa ≤2000 9 PH值 8-9 10 硫磺产量 kg/天 4100 11 年运行费用 万元
12 脱硫成本 元//Nm3煤
气
13 年利用数 天 300 14 装置负荷适应范围 % 40~110 15 装置使用寿命 年 15 16 装置可利用率 % 98 四、电气控制方案 1、概述 脱硫站控制系统全部设置二层,采用工控机控制,实时显示整体运行和设备运行情况。