哈工大威海信号系统实验报告完整版

合集下载

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验一:50Hz非正弦周期信号的合成与分解一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅利叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验预习要求1、复习《信号与线性系统》中周期性信号傅利叶级数分解的内容2、认真预习本实验内容,熟悉实验步骤三、实验原理和电路说明1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。

2、不同频率的谐波可以合成一个非正弦周期波,反过来一个非正弦波也可以分解为无限个不同频率的谐波成分。

图1-1 方波频谱图3、一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表3-1,方波频谱图如图1-1表示。

表3-1 不同波形及其傅氏级数表达式实验装置的结构如图1-2所示,图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。

BP 为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。

图1-2 信号分解与合成实验装置结构框图四、实验仪器双踪同步示波器五、实验内容与步骤(一)准备工作1、观察TKSS-C型信号与系统实验箱的构成,了解各部分的作用与功能。

2、了解双踪同步示波器的使用方法。

3、熟悉用双踪同步示波器测量信号频率和幅度的方法。

(二)实验步骤1、分别观察5种信号的波形,测量并记录其频率与幅度;2、将方波接到输入端,观察经带通滤波器分解后的基波和谐波分量输出波形,测量并记录其频率与幅度;3、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观察加法器的输出波形,并记录之;4、在第3步的基础上再将5次谐波分量加到加法器,观察加法器的输出波形,并记录之;5、按照以上步骤分别将50Hz正弦半波、全波、矩形波和三角波信号接到输入端,观察各波形的基波和谐波分量的频率和幅度,并记录之;6、将50Hz正弦半波、全波、矩形波和三角波的基波和谐波分量分别接至加法器的相应输入端,观察并记录加法器的输出波形;六、实验报告1、根据实验测量所得的数据,在同一坐标纸上绘制方波及其分解后所得的基波和各次谐波的波形,画出其频谱图;2、将所得的基波和三次谐波及其合成波形一同绘制在同一坐标纸上,并且把实验3中观察到的合成波形也绘制在同一坐标纸上;3、将所得的基波、三次谐波、五次谐波及三者合成的波形一同绘画在同一坐标纸上,并把实验4中所观测到的合成波形也绘制在同一坐标纸上,便于比较;七、思考题1、为什么周期性函数没有直流分量?2、分析理论合成的波形与实验观测到的合成波形之间误差产生的原因。

信号与系统实验报告总结

信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。

实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。

方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。

方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。

方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。

幅值较一二次谐波大为减少。

方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。

幅值较三次谐波再次减小。

方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。

幅值减少到0.3以内,几乎可以忽略。

综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。

分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。

二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。

可知,方波信号可分解为多个谐波。

方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。

方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。

综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。

哈工大威海计算机操作系统原理实验报告1

哈工大威海计算机操作系统原理实验报告1

计算机操作系统原理实验报告专业: 110420x学号: 1104202xx姓名: xxx哈尔滨工业大学(威海)实验一进程同步和互斥一、实验目的1.掌握临界资源、临界区概念及并发进程互斥、同步访问原理。

2.学会使用高级语言进行多线程编程的方法。

3.掌握利用VC++或Java语言线程库实现线程的互斥、条件竞争,并编码实现P、V操作,利用P、V操作实现两个并发线程对有界临界区的同步访问。

4.通过该实验,学生可在源代码级完成进程同步互斥方案的分析、功能设计、编程实现,控制进程间的同步、互斥关系。

二、实验要求1.知识基础:学生应在完成进程和线程及调度等章节的学习后进行。

2.开发环境与工具:硬件平台——个人计算机。

软件平台-Windows操作系统,VC++语言或Java语言开发环境。

3.运用高级语言VC++或Java语言线程库及多线程编程技术进行设计实现。

三、实验内容1.实现临界资源、临界区、进程或线程的定义与创建。

2.利用两个并发运行的进程,实现互斥算法和有界缓冲区同步算法。

四、程序流程图1.2.生产者消费者问题生产者:消费者:五、实验结果1.互斥问题2.生产者消费者问题六、结果分析有上述程序运行结果可知,此次试验已经基本达到了实验要求,在互斥问题中,由于采用了“模拟一个竞争条件——全局变量”来建立互斥,所以不会明显的条件来判断2个线程是否正确、独立的运行,所以,在运行时间上加以限制,让2个线程在有序运行时只能持续15秒。

在生产者消费者问题中,生产者与消费者的最大上限为10,并且生产者只能生产“同一种物品”,而消费者也只能购买“同一种物品”。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

信号与系统实验报告模版DOC

信号与系统实验报告模版DOC

实验一信号的时域分析1.1常见信号分类观察实验1.1.1 实验目的1.了解常用信号的波形特点2.掌握信号发生器的虚拟仪器的使用方法1.1.2 实验设备PC机一台,TD-SAS系列教学实验系统一套。

1.1.3实验原理及内容信号是随时间和空间变化的某种物理量,它一般是时间变量t的函数。

信号随时间变量t 变化的函数曲线成为信号的波形。

按照不同的分类原则,信号可分为:连续信号和离散信号;周期信号和非周期信号;实数信号和复数信号;能量信号和功率信号等。

本实验中利用信号发生器我们可以观察工程实际和理论研究中经常用到的正弦波、方波、脉冲等信号。

1.1.4实验步骤1.连续周期信号的产生与测量1)在该实验箱配套软件界面中,单击“信号发生器”进入其界面。

如图1-1-1所示选择参数,(CH1通道可以选择周期或非周期信号,CH2通道只能选择周期信号)点击确定。

图1-1-1 周期信号产生界面2)在实验箱配套软件界面中,单击“示波器”进入其界面,界面如图1-1-2所示。

用探笔测量实验箱上信号发生器单元的输出1和输出2端,(分别对应信号发生器界面的CH1和CH2通道)点击“运行”测量信号。

图1-1-2 示波器界面3)在示波器测量到信号后,点击“停止”,测量两路信号的各参数,验证其频率、幅值等值与所选参数匹配。

将实验数据记录到表1-1-1中。

(具体操作方法参见TD-SAS实验系统软件的安装及操作部分)4)选取其他波形及相关参数进行测量并验证。

2.连续非周期信号的产生与测量1)重新如图1-1-3所示选择参数,(当通道1选择位非周期信号时,通道2无输出)点击确定。

图1-1-3 脉冲信号产生界面2)进入示波器界面,用探笔测量实验箱上信号发生器单元的输出1端,(非周期信号只能从实验箱信号发生器单元输出1端输出)点击“运行”。

3)在实验箱的信号发生器单元,按下单次按钮,便产生一个周期的所选波形。

(此信号在其余时间全部是零)我们可以理解每个单次信号是一个非周期信号。

信号与系统实验报告

信号与系统实验报告

信号与系统实验实验一 常用信号分类与观察一、实验目的1、了解单片机产生低频信号源2、观察常用信号的波形特点及产生方法。

3、学会使用示波器对常用波形参数的测量。

二、实验仪器1、20MHz 双踪示波器一台。

2、信号与系统实验箱一台。

三、实验容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。

2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。

四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。

1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。

其波形如下图所示:图 1 正弦信号2、指数信号:指数信号可表示为atKetf=)(。

对于不同的a取值,其波形表现为不同的形式,如下图所示:图 2 指数信号3、指数衰减正弦信号:其表达式为⎪⎩⎪⎨⎧><=-)0()sin()0()(ttKettfatω其波形如下图:图 3 指数衰减正弦信号4、抽样信号:其表达式为:sin()tSa tt=。

)(tSa是一个偶函数,t = ±π,±2π,…,±nπ时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:图4 抽样信号5、钟形信号(高斯函数):其表达式为:2()()tf t Ee-τ= , 其信号如下图所示:图 5 钟形信号6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。

7、方波信号:信号周期为T ,前2T 期间信号为正电平信号,后2T期间信号为负电平信号。

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告5

信号与系统实验报告5信号与系统实验报告5引言信号与系统是电子工程领域中的重要学科,它研究信号的产生、传输和处理过程,以及系统对信号的响应和影响。

在本次实验中,我们将探索信号与系统的一些基本概念和实际应用。

一、信号的分类与特性信号是信息的载体,可以是连续的或离散的。

根据信号的性质,我们可以将其分为模拟信号和数字信号。

模拟信号是连续变化的,可以用连续函数表示;而数字信号是离散的,以数字的形式表示。

在实验中,我们使用了示波器观察了不同类型的信号。

通过观察信号的波形、频谱和功率谱密度等特性,我们能够了解信号的频率、幅度和相位等信息。

二、系统的响应与特性系统是对信号进行处理或传输的装置或环境。

系统可以是线性的或非线性的,可以是时不变的或时变的。

在实验中,我们使用了滤波器作为系统模型来研究系统的响应和特性。

通过改变滤波器的截止频率,我们观察到不同频率的信号在系统中的响应差异。

我们还通过调整系统参数,如增益和相位延迟,来研究系统的线性性质和时不变性质。

三、信号与系统的应用信号与系统在现实生活中有着广泛的应用。

在通信领域,我们可以利用信号与系统的知识来设计和优化无线电、光纤通信和卫星通信等系统。

在音频处理领域,我们可以利用信号与系统的方法来实现音频的降噪、音效增强和语音识别等功能。

此外,信号与系统在图像处理、生物医学工程和控制系统等领域也有着重要的应用。

通过对信号的采集、处理和分析,我们能够从中提取有用的信息,并对系统进行建模和控制。

结论通过本次实验,我们深入了解了信号与系统的基本概念和实际应用。

我们学习了信号的分类与特性,系统的响应与特性,以及信号与系统在各个领域的应用。

这些知识不仅对我们理解和应用电子工程学科具有重要意义,也为我们今后的学习和研究提供了坚实的基础。

信号与系统是一门复杂而又有趣的学科,它涉及了数学、物理和工程等多个领域的知识。

通过不断学习和实践,我们能够更好地理解和应用信号与系统的理论,为解决实际问题提供有效的方法和工具。

信号与系统分析实验报告

信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。

本实验报告将对信号与系统分析实验进行详细的描述和分析。

实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。

首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。

然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。

实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。

实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。

我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。

实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。

通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。

实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。

通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。

实验结果显示,不同频率的信号在频域上有不同的分布特性。

我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。

实验四:系统辨识本实验旨在研究系统的辨识方法。

我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。

实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。

结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。

实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。

这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。

通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。

哈工大威海计算机操作系统原理实验报告4.

计算机操作系统原理实验报告
班级:1104202 学号:110420212 姓名:李敖哈尔滨工业大学(威海实验四页面置换算法
、实验目的
1•掌握内存管理基本功能和请求分页式管理的基本原理以及页面置换算法。

2.学会在Linux操作系统下使用C函数和系统调用的编程方法。

3.掌握利用C语言设计实现不同置换策略的页面置换算法。

4.验证虚存存储管理机制及其性能。

对于生成的引用串,计算、比对不同页面

换算法的缺页率。

、实验要求
1.学生应完成如下章节的学习:进程和线程、调度、存储管理。

2.安装Linux操作系统,使用C语言编程,利用相关系统调用实现设计。

三、实验内容
1•创建空闲存储管理表、模拟内存、页表等。

2.提供一个用户界面,用户利用它可输入不同的页面置换策略和其他附加参
数。

3.运行置换程序,输出缺页率结果。

四、程序流程图
1.最佳页面置换算法流程图
开始
1
2.先进先出页面置换算法流程图
开蛤
初始化进种块
3.最近最久未使用页面置换算法流程图
初縮化进出块
五、实验结果
最佳页面置换算法分区
先进先出页面置换算法
最近最久未使用页面置换算法六、结果分析本程序已基本实现了页面的置换
算法,包括最佳页面置换算法、先进先出页面置换算法和最近最久未使用页面置换算法。

页表最大空间为5,随机进程最大
序列为50。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号与系统》实验报告 姓 名: 学 号: 同组人: 无

指导教师: 成 绩: 实验一 典型连续时间信号描述及运算  实验报告要求: (1)仿照单边指数信号的示例程序,按要求完成三种典型连续信号,即:正弦信号、衰减正弦信号、钟型信号的波形绘制。(要求:要附上程序代码,以下均如此,不再说明) (2)根据《信号与系统》教材第一章的习题1.1(1,3,5,8)函数形式绘制波形。 (3)完成三种奇异信号,即:符号函数、阶跃信号、单位冲激信号的波形绘制。 (4)完成实验一中信号的运算:三、6 实验内容中的 (1)(2)(3)(4)。 (5)求解信号的直流/交流分量,按第四部分的要求完成。 正文: (1) <1>正弦信号:

代码:>> t=-250:1:250; >> f1=150*sin(2*pi*t/100); >> f2=150*sin(2*pi*t/200); >> f3=150*sin(2*pi*t/200+pi/5); >> plot(t,f1,'-',t,f2,'--',t,f3,'-.')

<2>衰减正弦信号 <3> 代码: >> t=-250:1:250; >> f1=400*exp(-1.*t.*t./10000); >> f1=400*exp(-1.*t.*t./22500); >> f1=400*exp(-1.*t.*t./62500); >> plot(t,f1,'-',t,f2,'--',t,f3,'-.') (2)习题1,3,5,8 <1> 代码:t=0:1:10; f=t; plot(t,f)

<3> 代码:t=1:1:10; f=t; plot(t,f)

<5> 代码:t=0:1:10; f=2-exp(-1.*t.); plot(t,f)

<8> 代码:t=1:0.1:2; f=exp(-1.*t.)*cos(10*pi*t); plot(t,f) (3) 三种奇异函数 <1>符号函数 代码: t=-5:0.05:5; f=sign(t); plot(t,f)

<2>阶跃信号 代码: >> t=-5:0.1:5; >> f=u(t); >> plot(t,f)

<3>单位冲激信号 代码:function chongji(t1,t2,t0) dt=0.01; t=t1:dt:t2; n=length(t); x=zeros(1,n); x(1,(-t0-t1)/dt+1)=1/dt; stairs(t,x); axis([t1,t2,0,1.2/dt]) title('单位冲激信号 δ(t) ') (4)实验三1234 <1> syms t f1=sym('(-t+4)*(u(t)-u(t-4))'); subplot(1,2,1); ezplot(f1); y1=subs(f1,t,-t); f3=f1+y1; subplot(1,2,2); ezplot(f3); function f=u(t) f=(t>0); <2>

4、 function f=u(t) f=(t>0) syms t f1=sym('(-t+4)*(u(t)-u(t-4))'); subplot(1,3,1); ezplot(f1); f2=sym('sin(2*pi*t)'); subplot(1,3,2); ezplot(f2); f6=f1.*f2; subplot(1,3,3); ezplot(f6); 5、 function f=u(t) f=(t>0) syms t f1=sym('(-t+4)*(u(t)-u(t-4))'); f2=sym('sin(2*pi*t)'); subplot(1,3,1); ezplot(f2); f6=f1.*f2; y6=subs(f6,t,t-2); subplot(1,3,2); ezplot(y6); f7=y6+f2; subplot(1,3,3); ezplot(f7); 四、 t=0:0.1:500; f=100.*abs(sin(2.*pi.*t./50)); plot(t,f,t,fD,t,fA) 调用子程序: function fD=fDC(f) fD=mean(f); function fA=fAC(f,fD) fA=f-fD; (5)求解信号的交直流分量

代码:function fD=fDC(f) fD=mean(f); function fA=fAC(f,fD) fA=f-fD; t=0:0.1:500; f(t)=100|sin(2*PI*t/50)|; plot(t,fD,t,fA) 实验二 线性系统时域分析  实验报告要求: (1)求解下面两个信号的卷积积分。

要求:1) 在实验报告中推导出这两个信号卷积积分运算表达式;(手写) 2) 利用MATLAB 进行求解验证,附程序代码和波形。

(2)已知描述系统的微分方程和激励信号如下 r(t ) 3r(t ) 2r(t ) e(t)+3 e(t) ,e(t)=u(t) 。 要求:1) 用解析法求系统的零状态响应r(t );(手写) 2)利用MATLAB绘出系统零状态响应的时域仿真波形,并验证1)的结果是否正确,附程序代码和波形; 3)利用MATLAB绘出系统的冲激响应和阶跃响应波形,附程序代码和波形。 正文: (1)求解下面两个信号的卷积积分。 <1>在实验报告中推导出这两个信号卷积积分运算表达式;(手写)

<2>利用MATLAB 进行求解验证,附程序代码和波形。 代码:p=0.01; k1=-1/2:p:1; f1=1; k2=0:p:2; f2=0.5*k2; [f,k]=sconv(f1,f2,k1,k2,p)

function [f,k]=sconv(f1,f2,k1,k2,p) f=conv(f1,f2); f=f*p; k0=k1(1)+k2(1); k3=length(f1)+length(f2)-2; k=k0:p:(k3*p+k0); subplot(2,2,1) plot(k1,f1) xlabel('t') ylabel('f1(t)') subplot(2,2,2) plot(k2,f2) ylabel('f2(t)') subplot(2,2,3) plot(k,f); h=get(gca,'position'); h(3)=2.5*h(3); set(gca,'position',h) title('f(t)=f1(t)*f2(t)') xlabel('t') ylabel('f(t)') (2)已知描述系统的微分方程和激励信号如下 r(t ) 3r(t ) 2r(t ) e(t)+3 e(t) ,e(t)=u(t) 。 要求: <1> 用解析法求系统的零状态响应r(t );(手写) <2>利用MATLAB绘出系统零状态响应的时域仿真波形,并验证<1>的结果是否正确,附程序代码和波形; 代码: >> a=[1,3,2]; >> b=[0,1,3]; >> impulse(a,b)

<3>利用MATLAB绘出系统的冲激响应和阶跃响应波形,附程序代码和波形。 代码: a=[1,3,2]; b=[0,1,3]; step(b,a)

代码; a=[1,3,2]; b=[0,1,3]; >> p=0.01; >> t=0:p:5; >> x=exp(-t); >> lsim(b,a,x,t) 实验三:实验报告内容: 对所给音频信号,进行时域压缩和扩展,画出时域波形与幅度谱,使其满足以下要求。 (1)将music1.wav的音调变低a倍(0.810%带宽(最大值10%处的带宽)的变化情况。 (2)将music2.wav的音调变化到与儿童和男声相似的声音,分析变换前后的10%带宽的变化情况(变宽或变窄多少)。 (1) ①a=[0.9 1.0 1.2]; a1=30;b=11025; [x0 b]=wavread('F:\信号与系统\music1.wav'); for m=1:3; a2=a1*a(m); x=resample(x0,a1,a2) ; wavplay(x ,b); t=0:1/b:(length(x)-1)/b; subplot(3,3,3*m-2); plot(t,x); axis([0 6 -inf inf]); title(['a=',num2str(a(m)),'的时域图']); N=(length(resample(x0,a1,a1*max(a)))); f=(-N/2:N/2-1)/N*b; X= fftshift(fft(x,N)); AMP=abs(X); AMP0=AMP/max(AMP); subplot(3,3,3*m-1); plot(f,AMP0); title(['a=',num2str(a(m)),'的频域图']); subplot(3,3,3*m); plot(f,AMP0); axis([-inf inf 0 0.1]) title(['a=',num2str(a(m)),'的10%带宽图']); end

相关文档
最新文档