Point Process Model for Reliability Analysis of Evolutionary Designs

合集下载

汽车开发项目常用英语缩写对照[5P][259KB]

汽车开发项目常用英语缩写对照[5P][259KB]

缩写中文解释Descriptions3C 3个关键零件(缸体、缸盖、曲轴)3 Critical Parts(Cylinder-block, Cylinder-head, Crankshaft) 4 VDP四阶段的汽车发展过程Four Phase Vehicle Development ProcessA/D/V分析/发展/验证Analysis/Development/ValidationAA审批体系Approve ArchitectureABS防抱死制动系统Anti-lock Braking SystemACD实际完成日期Actual Completion DateAI人工智能Artificial IntelligenceAIAG汽车工业产业群Automotive Industry Action GroupALBS装配线平衡系统Assembly Line Balance SystemAP提前采购Advanced PurchasingAPI先进的产品信息Advanced Product InformationAPM汽车加工模型Automotive Process ModelAPQP先进的产品质量计划Advanced Product Quality PlanningAR拨款申请Appropriation RequestARP拨款申请过程Appropriation Request ProcessARR建筑必要性检查Architectural Requirements ReviewASA船运最初协议Agreement to Ship AlphaASB船运第二个协议Agreement to Ship BetaASI建筑研究启动Architecture Studies InitiationASP船运标准协议Agreement to Ship PrototypeASR建筑选择审查Architecture Selection ReviewB&U 土建公用Building & UtilityBCC品牌特征中心Brand Character CenterBEC基础设计内容Base Engineered ContentBI开始冒气泡Bubble Up InitiationB-I-S最佳分节段Best-In-SegmentBIW白车身Body In WhiteBOD设计清单Bill of DesignBOM原料清单Bill of MaterialBOP过程清单Bill of ProcessCAD计算机辅助设计Computer-Aided DesignCAE计算机辅助工程(软件)Computer-Aided EngineeringCAFÉ公司的平均燃油经济Corporate Average Fuel EconomyCAM计算机辅助制造Computer-Aided ManufacturingCAMIP持续汽车市场信息项目Continuous Automotive Marketing Information Program CARE用户接受度审查和评估Customer Acceptance Review and EvaluationCAS概念可改变的选择Concept Alternative SelectionCDD成分数据图Component Datum DrawingsCGS公司图形系统Corporate Graphic SystemCI提出概念Concept InitiationCIT隔间融合为组Compartment Integration TeamCKD完全拆缷Complete KnockdownCMM坐标测量仪Coordinate Measuring MachinesCMOP结构管理工作计划Configuration Management Operating PlanCPP关键途径Corporate Product PorefolioCPP关键途径Critical Path PlanCR&W控制/机器人技术和焊接Controls/Robotics & WeldingCRIT中心新产品展示执行组Center Rollout Implementation TeamCS合同签订Contract SigningCTS零件技术规格Component Technical SpecificationD/EC设计工程学会Design and Engineering CouncilDAP设计分析过程Design Analysis ProcessDCAR设计中心工作申请Design Center Action RequestDDP决策讨论步骤Decision Dialog ProcessDES设计中心Design CenterDFA装配设计Design for AssemblyDFM装配设计Design For ManufacturabilityDLT设计领导技术Design leader TechnicalDMA经销商市场协会Dealer Market AssociationDMG模具管理小组Die Management GroupDOE试验设计Design Of ExperimentsDOL冲模业务排行Die Operation Line-UpDQV设计质量验证Design Quality VerificationDRE设计发布工程师Design Release EngineerDSC决策支持中心Decision Support CenterDVM三维变化管理Dimensional Variation ManagementDVT动态汽车实验Dynamic Vehicle TestE/M进化的Evolutionary/MajorEAR工程行为要求Engineering Action RequestECD计划完成日期Estimated Completion DateEGM工程组经理Engineering Group ManagerELPO电极底漆Electrode position PrimerENG工程技术、工程学EngineeringEOA停止加速End of AccelerationEPC&L工程生产控制和后勤Engineering Production Cntrol &LogisticsEPL 工程零件清单Engineering Parts ListETSD对外的技术说明图Exterior Technical Specification DrawingEWO工程工作次序Engineering Work OrderFA最终认可Final ApprovalFE功能评估Functional EvaluationFEDR功能评估部署报告Functional Evaluation Disposition ReportFFF自由形态制造Free Form FabricationFIN金融的FinancialFMEA失效形式及结果分析Failure Mode and Effects AnalysisFTP文件传送协议File Transfer ProtocolGA总装General AssemblyGD&T几何尺寸及精度Geometric Dimensioning & TolerancingGM通用汽车General MotorsGME通用汽车欧洲General Motors EuropeGMIO通用汽车国际运作General Motors International OperationsGMIQ通用汽车初始质量General Motors Initial QualityGMPTG通用汽车动力组General Motors Powertrain GroupGP通用程序General ProcedureGSB全球战略部Global Strategy BoardHVAC加热、通风及空调Heating, Ventilation ,and Air ConditioningI/P仪表板Instrument PanelIC初始租约Initiate CharterICD界面控制文件Interface Control DocumentIE工业工程Industrial EngineeringIEMA国际出口市场分析International Export Market AnalysisILRS间接劳动报告系统Indirect Labor Reporting SystemIO国际业务International OperationsIPC国际产品中心International Product CenterIPTV每千辆车的故障率Incidents Per Thousand VehiclesIQS初始质量调查Initial Quality SurveyIR事故报告Incident ReportISP综合计划Integrated Scheduling ProjectITP综合培训方法Integrated Training ProcessITSD内部技术规范图Interior Technical Specification DrawingIUVA国际统一车辆审核International Uniform Vehicle AuditKCC关键控制特性Key Control CharacteristicsKCDS关键特性标识系统Key Characteristics Designation SystemKO Meeting 启动会议 Kick-off MeetingKPC关键产品特性Key product CharacteristicLLPR Ling Lead P ReleaseLOI 意向书Letter of IntentM&E 机器设备Machine & EquipmentMDD成熟的数据图Master Datum DrawingsMFD金属预制件区Metal Fabrication DivisionMFG制造过程Manufacturing OperationsMIC市场信息中心Marketing Information CenterMIE制造综合工程师Manufacturing Integration EngineerMKT营销MarketingMLBS物化劳动平衡系统Material Labor Balance SystemMMSTS制造重要子系统技术说明书Manufacturing Major Subsystem Technical Specifications MNG制造工程Manufacturing EngineeringMPG试验场Milford Proving GroundMPI主程序索引Master Process IndexMPL主零件列表Master Parts ListMPS原料计划系统Material Planning SystemMRD物料需求日期Material Required DateMRD 物料需求时间Material Required DateMSDS Material Safery Data SheetsMSE制造系统工程Manufacturing System EngineerMSS市场分割规范Market Segment SpecificationMTBF平均故障时间Mean Time Between FailuresMTS生产技术规范Manufacturing Technical SpecificationMVSS汽车发动机安全标准Motor Vehicle Safety StandardsNAMA北美市场分析North American Market AnalysisNAO北美业务North American OperationsNAOC NAO货柜运输NAO ContainerizationNC用数字控制Numerically ControlledNGMBP新一代基于数学的方法Next Generation Math-Based ProcessNOA授权书Notice of AuthorizationNSB北美业务部NAO Strategy BoardOED组织和员工发展Organization and Employee DevelopmentP.O 采购订单Purchasing OrderPA生产结果Production AchievementPAA产品行动授权Production Action AuthorizationPAC绩效评估委员会Performance Assessment CommitteePACE项目评估和控制条件Program Assessment and Control Environment PAD产品装配文件Product Assembly DocumentPARTS零件准备跟踪系统Part Readiness Tracking SystemPC问题信息Problem CommunicationPCL生产控制和支持Production Control and LogisticsPDC证券发展中心Portfolio Development CenterPDM产品资料管理Product Data ManagementPDS产品说明系统Product Description SystemPDT产品发展小组Product Development TeamPED产品工程部Production Engineering DepartmentPEP产品评估程序Product Evaluation ProgramPER人员PersonnelPET项目执行小组Program Execution TeamPGM项目管理Program ManagementPIMREP事故方案跟踪和解决过程Project Incident Monitoring and Resolution Process PLP生产启动程序Production Launch ProcessPMI加工建模一体化Process Modeling IntegrationPMM项目制造经理Program Manufacturing ManagerPMR产品制造能要求Product Manufacturability RequirementsPMT产品车管理小组Product Management TeamPOMS产品指令管理小组Production Order Management SystemPOP采购点Point of PurchasePPAP生产零部件批准程序Production Part Approval ProcessPPAP 生产件批准程序Production Parts Approval ProcessPPH百分之Problems Per HundredPPM百万分之Problems Per MillionPR绩效评估Performance ReviewPR 采购需求Purchase RequirementPR/R问题报告和解决Problem Reporting and ResolutionPSA 潜在供应商评估Potential Supplier AssessmentPSC部长职务策略委员会Portfolio Strategy CouncilPTO第一次试验Primary TryoutPUR采购PurchasingPVM可设计的汽车模型Programmable Vehicle ModelPVT生产汽车发展Production Vehicle DevelopmentQAP质量评估过程Quality Assessment ProcessQBC质量体系构建关系Quality Build ConcernQC质量特性Quality CharacteristicQFD质量功能配置Quality Function DeploymentQRD质量、可靠性和耐久力Quality, Reliability,andDurabilityQS质量体系Quality SystemQUA质量QualityRC评估特许Review CharterRCD必须完成日期Required Completion DateRFQ报价请求Request For QuotationRFQ 报价要求书Requirement for QuotationRONA净资产评估Return on Net AssetsRPO正式产品选项Regular Production OptionRQA程序安排质量评定Routing Quality AssessmentRT&TM严格跟踪和全程管理Rigorous Tracking and Throughout Managment SDC战略决策中心Strategic Decision CenterSF造型冻结Styling FreezeSIU电子求和结束Summing It All UpSL系统规划System LayoutsSMBP理论同步过程Synchronous Math-Based ProcessSMT系统管理小组Systems Management TeamSOP生产启动,正式生产Start of ProductionSOR要求陈述Statement of RequirementsSOR 要求说明书Statement of RequirementsSOW工作说明Statement of WorkSPE表面及原型工程Surface and Prototype EngineeringSPO配件组织Service Parts OperationsSPT专一任务小组Single Point TeamSQC供方质量控制Statistical Quality ControlSQIP供应商质量改进程序Supplier Quality Improvement ProcessSSF开始系统供应Start of System FillSSLT子系统领导组Subsystem Leadership TeamSSTS技术参数子系统Subsystem Technical SpecificationSTO二级试验Secondary TryoutSUW标准工作单位Standard Unit of WorkTA 技术评估Technology AssessmentTAG定时分析组Timing Analysis GroupTBD下决定To Be DeterminedTCS牵引控制系统Traction Control SystemTDMF文本数据管理设备Text Data Management FacilityTIMS试验事件管理系统Test Incident Management SystemTIR试验事件报告Test Incident ReportTLA 技术转让协议Technology License AgreementTMIE总的制造综合工程Total Manufacturing Integration EngineerTOE总的物主体验Total Ownership ExperienceTSM贸易研究方法Trade Study MethodologyTVDE整车外型尺寸工程师Total Vehicle Dimensional EngineerTVIE整车综合工程师Total Vehicle Integration EngineerTWS轮胎和车轮系统Tire and Wheel SystemUAW班组United Auto WorkersUCL统一的标准表Uniform Criteria ListUDR未经核对的资料发布Unverified Data ReleaseUPC统一零件分级Uniform Parts ClassificationVAPIR汽车发展综合评审小组Vehicle & Progress Integration Review Team VASTD汽车数据标准时间数据Vehicle Assembly Standard Time DataVCD汽车首席设计师Vehicle Chief DesignerVCE汽车总工程师Vehicle Chief EngineerVCRI确认交叉引用索引Validation Cross-Reference IndexVDP汽车发展过程Vehicle Development ProcessVDPP汽车发展生产过程Vehicle Development Production ProcessVDR核实数据发布Verified Data ReleaseVDS汽车描述概要Vehicle Description SummaryVDT汽车发展组Vehicle Development TeamVDTO汽车发展技术工作Vehicle Development Technical Operations VEC汽车工程中心Vehicle Engineering CenterVIE汽车综合工程师Vehicle Integration EngineerVIS汽车信息系统Vehicle Information SystemVLE总装线主管,平台工程师Vehicle Line ExecutiveVLM汽车创办经理Vehicle Launch ManagerVMRR汽车制造必要条件评审Vehicle and Manufacturing Requirements Review VOC顾客的意见Voice of CustomerVOD设计意见Voice of DesignVSAS汽车综合、分析和仿真Vehicle Synthesis,Analysis,and SimulationVSE汽车系统工程师Vehicle System EngineerVTS汽车技术说明书Vehicle Technical SpecificationWBBA全球基准和商业分析Worldwide Benchmarking and Business Analysis WOT压制广泛开放Wide Open ThrottleWWP全球采购Worldwide PurchasingPC项目启动Program CommencementCA方案批准Concept ApprovalPA项目批准Programe ApprovalER工程发布Engineering ReleasePPV产品和工艺验证Product & Process ValidationPP预试生产Pre-PilotP试生产PilotEP工程样车。

卿建业教授

卿建业教授

卿建业教授卿建業教授Jianye ChingProfessor學歷/ 美國加州大學柏克萊分校博士Ph.D. in Civil Engineering, U. C. Berkeley (UCB)專長/ 大地工程中不確定性量化分析期刊論文(Journal Paper)corresponding author1.Ching, J.?, Yang, Z.Y., Shiau, J.Q., and Chen, C.J. (2013). Estimation of rock pressure during an excavation/cut in sedimentary rocks with inclined bedding planes, Structural Safety, 41, 11-19. (SCI)2.Ching, J.? and Phoon, K.K. (2013). Mobilized shear strength of spatially variable soils under simple stress states, Structural Safety, 41, 20-28. (SCI)3.Jha, S.K. and Ching, J.? (2013). Simulating spatial averages of stationary random field using Fourier series method, ASCE Journal of Engineering Mechanics, 139(5), 594-605. (SCI)4.Juang, C.H.?, Ching, J., and Luo, Z. (2013). Assessing SPT-based probabilistic models for liquefaction potential evaluation:a ten-year update, Georisk, 7(3), 137-150. (ESCI)5.Wu, S.H., Ching, J.?, and Ou, C.Y. (2013). Predicting wall displacements for excavations with cross walls in soft clay, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 914-927. (SCI)6.Ching, J.? and Phoon, K.K. (2013). Quantile value method versus design value method for calibration of reliability-based geotechnical codes, Structural Safety, 44, 47-58. (SCI)7.Ching, J.? and Liao, H.-J. (2013). Re-analysis of Freeway-3dip slope failure case –a spatial variability view, Journal of GeoEngineering, 8(1), 1-10. (EI)8.Ching. J.?, Phoon, K.K., Chen, J.R., and Park, J.H. (2013). Robustness of constant LRFD factors for drilled shafts in multiple strata, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 139(7), 1104-1114. (SCI)9.Ching, J.? and Phoon, K.K. (2013). Effect of element sizes in random field finite element simulations of soil shear strength, Computers and Structures, 126, 120-134. (SCI)10.Phoon, K.K.?, Ching, J., and Chen, J.R. (2013). Performance of reliability-baseddesign code formats for foundations in layered soils, Computers and Structures, 126, 100-106. (SCI)11.Ching, J.? and Phoon, K.K. (2013). Probability distribution for mobilized shearstrengths of spatially variable soils under uniform stress states, Georisk, 7(3), 209-224. (ESCI)12.Ching, J.? and Phoon, K.K. (2013). Multivariate distribution for undrained shearstrengths under various test procedures, Canadian Geotechnical Journal, 50(9), 907-923. (SCI)13.Jha, S.K. and Ching, J.? (2013). Simplified method for reliability analysis andreliability-based design of spatially variable undrained slopes, Soils andFoundations, 53(5), 708-719. (SCI)14.Juang, C.H.?, Ching, J., Wang, L., Khoshnevisan, S., and Ku,C.S. (2013).Simplified procedure for estimation of liquefaction-inducedsettlement and site-specific probabilistic settlement hazard curve using CPT, Canadian Geotechnical Journal, 50, 1055-1066. (SCI)15.Tabarroki, M., Ahmad, F., Banaki, R., Jha, S.K., and Ching, J.? (2013).Determining safety factors of spatially variable slopes modeled by random fields, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2082-2095. (SCI)16.Ching, J.?, Phoon, K.K., and Chen, C.H. (2014). Modeling CPTU parameters ofclays as a multivariate normal distribution, Canadian Geotechnical Journal, 51(1), 77-91. (SCI)17.Hu, Y.G. and Ching, J.? (2014). The critical scale of fluctuation for active lateralforces, Computers and Geotechnics, 57, 24-29. (SCI)18.Ching, J.?, Phoon, K.K., and Kao, P.H. (2014). Mean and variance of themobilized shear strengths for spatially variable soils under uniform stress states, ASCE Journal of Engineering Mechanics, 140(3), 487-501. (SCI)19.Bahsan, E., Liao, H.J., and Ching, J.? (2014), Statistics for the calculated safetyfactors of undrained failure slopes, Engineering Geology, 172, 85-94. (SCI)20.Ching, J.? and Phoon, K.K. (2014). Reply to the discussion by Mesri on“Multivariate distribution for undrained shear strengths under various testprocedures”, Canadian Geotechnical Journal, 51(3), 348-351. (SCI)21.Ching, J.?, Phoon, K.K., and Yu, J.W. (2014). Linking siteinvestigation efforts tofinal design savings with simplified reliability-based design methods, ASCEJournal of Geotechnical and Geoenvironmental Engineering, 140(3), 04013032.(SCI)22.Ching, J.? and Lin, C.J. (2014). Probability distribution for mobilized shearstrengths of saturated undrained clays modeled by 2-D stationary Gaussian random field - A 1-D stochastic process view, Journal of Mechanics, 30, 229-239. (SCI) 23.Ching, J.? and Phoon, K.K. (2014). Transformations and correlations among some clay parameters –the global database, Canadian Geotechnical Journal, 51(6), 663-685. (SCI)24.Ching, J.? and Phoon, K.K. (2014). Correlations among some clay parameters –the multivariate distribution, Canadian Geotechnical Journal, 51(6), 686-704. (SCI) 25.Wu, S.H., Ching, J.?, and Ou, C.Y. (2014). Probabilistic observational method forpredicting wall displacements in excavations, Canadian Geotechnical Journal, 51, 1111-1122. (SCI)26.Ching, J.? and Yang, J.J. (2014). Simplified reliability-based design for axialcapacity of footings in cohesionless soils – application of the quantile valuemethod, Journal of GeoEngineering, 9(3), 95-102. (EI)27.Wu, S.H., Ou, C.Y., Ching, J.? (2014), Calibration of model uncertainties forbasal heave stability of wide excavations in clay, Soils and Foundations, 54, 1159-1174. (SCI)28.Hu, Y.G. and Ching, J.? (2015). Impact of spatial variability in soil shear strengthon active lateral forces, Structural Safety, 52, 121-131. (SCI)29.Ching, J.? and Phoon, K.K. (2015). Reducing the transformation uncertainty forthe mobilized undrained shear strength of clays, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 141(2), 04014103. (SCI)30.Wu, S.H., Ching, J.?, and Ou, C.Y. (2015). Simplified reliability-based design ofwall displacements for excavations in soft clay considering cross walls, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 141(3), 06014017.(SCI)31.Ching, J.?, Phoon, K.K., and Yang, J.J. (2015). Role of redundancy in simplifiedgeotechnical reliability-based design - a quantile value method perspective,Structural Safety, 55, 37-48. (SCI)32.Hu, Y.G. and Ching, J.? (2015). A new procedure for simulating active lateralforce in spatially variable clay modeled by anisotropic random field, Journal of Mechanics, 31(4), 381-390. (SCI)33.Ching, J.?, Wang, J.S., Juang, C.H., and Ku, C.S. (2015). CPT-based stratigraphicprofiling using the wavelet transform modulus maxima, Canadian Geotechnical Journal, 52(12), 1993-2007. (SCI)34.Ching, J.? and Wang, J.S. (2016). Application of the transitional Markov chainMonte Carlo to probabilistic site characterization,Engineering Geology, 203, 151-167. (SCI)35.Ching, J.?, Wu, S.H., and Phoon, K.K. (2016). Statistical characterization ofrandom field parameters using frequentist and Bayesian approaches, Canadian Geotechnical Journal, 53(2), 285-298. (SCI)36.Ching, J.?, Hu, Y.G., and Phoon, K.K. (2016). On characterizing spatially variablesoil shear strength using spatial average, Probabilistic Engineering Mechanics, 45, 31-43. (SCI)37.Ching, J.?, Tong, X.W., and Hu, Y.G. (2016). Effective Young’s modulus for aspatially variable elementary soil mass subjected to a simple stress state, Georisk, 10(1), 11-26. (ESCI)38.Ching, J.?, Lee, S.W., and Phoon, K.K. (2016). Undrained strength for a 3Dspatially variable clay column subjected to compression or shear, Probabilistic Engineering Mechanics, 45, 127-139. (SCI)39.Ching, J.? and S.P. Sung (2016). Simulating a curve average in a stationarynormal random field using Fourier series method, Journal of GeoEngineering, 11(1), 33-43. (EI)40.Gong, W.?, Juang, C.H., Martin, J.R., and Ching, J. (2016). New sampling methodand procedures for estimating failure probability, ASCE Journal of Engineering Mechanics, 142(4), 04015107. (SCI)41.Ching, J.?, Phoon, K.K., and Wu, S.H. (2016). Impact of statistical uncertainty ongeotechnical reliability estimation, ASCE Journal of Engineering Mechanics,142(6), 04016027. (SCI)42.Phoon, K.K.?, Retief, J.V., Ching, J., Dithinde, M., Schweckendiek, T., Wang, Y.,and Zhang, L. (2016). Some observations on ISO2394:2015 Annex D (Reliability of Geotechnical Structures), Structural Safety, 62, 24-33. (SCI)43.Ching, J.?, Phoon, K.K., and Li, D.Q. (2016). Robust estimation of correlationcoefficients among soil parameters under the multivariate normal framework,Structural Safety, 63, 21-32. (SCI)44.Ching, J.? and Hu, Y.G. (2016). Effect of element size in random field finiteelement simulation on ef fective Young’s modulus, Mathematical Problems inEngineering, Volume 2016, Article ID 8756271. (SCI)45.Chen, J.C.?, Yang, J., and Ching, J. (2016). Estimating peak flow-dischargeduring extreme rainfall events for the Gao-Ping river, Taiwan. International Journal of Safety and Security Engineering, 6(3), 663-673. (EI)46.Ching, J.?, Wu, T.J., and Phoon, K.K. (2016). Spatial correlation fortransformation uncertainty and its applications, Georisk, 10(4), 294-311. (ESCI) 47.Ching, J.?, Phoon, K.K., and Pan, Y.K. (2017). On characterizing spatiallyvariable soil Young’s modulus using spatial average, Structural Safety, 66, 106-117. (SCI)48.Ching, J.?, Lin, G.H., Chen, J.R., and Phoon, K.K. (2017). Transformation modelsfor effective friction angle and relative density calibratedbased on a multivariate database of coarse-grained soils, Canadian Geotechnical Journal, 54(4), 481-501.(SCI)49.Ching, J.? and Phoon, K.K. (2017). Characterizing uncertain site-specific trendfunction by sparse Bayesian learning, ASCE Journal of Engineering Mechanics, 143(7), 04017028. (SCI)50.Ching, J.?, Phoon, K.K., and Sung, S.P. (2017). Worst case scale of fluctuation inbasal heave analysis involving spatially variable clays, Structural Safety, 68, 28-42.(SCI)51.Ching, J.? and Wang, J.S. (2017). Discussion: Transitional Markov Chain MonteCarlo: Observations and Improvements, ASCE Journal of Engineering Mechanics, 143(9), 07017001. (SCI)52.Ching, J.?, Phoon, K.K., Beck, J.L., and Huang, Y. (2017). Identifiability ofgeotechnical site-specific trend functions, ASCE-ASME Journal of Risk andUncertainty in Engineering Systems, Part A: Civil Engineering, 3(4), 04017021.(ESCI)53.Ching, J.? and Wu, T.J. (2017). Probabilistic transformation model forpreconsolidation stress based on clay index properties, Engineering Geology, 226, 33-43. (SCI)54.Ching, J.?, Lin, G.H., Phoon, K.K., and Chen, J.R. (2017). Correlations amongsome parameters of coarse-grained soils – the multivariateprobability distribution model, Canadian Geotechnical Journal, 54(9), 1203-1220. (SCI)研討會論文(Conference Paper)1.Phoon, K.K. and Ching, J. (2013). Is site investigation an investment or expense – a reliability perspective. 18 SEAGC. (S. L. Lee Lecture paper)2.Ching, J. (2013). Preliminary study for the effective random dimension in geotechnical reliability. 18 SEAGC.3.Phoon, K.K. and Ching, J. (2013). Construction of virtual sites for reliability-based design. 18 ICSMGE.4.Ching, J. and Phoon, K.K. (2013). Construction of multivariate distribution of soil properties. 15th National Conference in Geotechnical Engineering, Taiwan.5.Ching, J. and Phoon, K.K. (2013). Cost-effective framework for simplified geotechnical reliability-based design. ISGSR 2013.6.Ching, J. and Phoon, K.K. (2014). Quantile value method for geotechnical reliability code calibration. ICVRAM 2014.7.Phoon, K.K. and Ching, J. (2014). Univariate to multivariate characterization of geotechnical variability. ISRERM 2014. (keynote paper)8.Phoon, K.K. and Ching, J. (2014). Characterization of geotechnical variability –a multivariate perspective. IACMAG 2014. (plenary speech paper)9.Phoon, K.K. and Ching, J. (2015). Is there anything better than LRFD for simplified geotechnical RBD? ISGSR 2015. (Wilson Tang Lecture)10.Ching, J., Wu, S.H., and Phoon, K.K. (2015). Quantifying statistical uncertainty insite investigation. ISGSR 2015.11.Hu, Y.G., Ching, J., and Phoon, K.K. (2015).Can the effect ofshear strengthspatial variability be summarized as the pure spatial average?15 ARC.12.Ching, J., Hu, Y.G., and Phoon, K.K. (2015). On the use of spatially averagedshear strength for the bearing capacity of a shallow foundation. ICASP 12.13.Ching, J. and Pan, Y.K. (2015). First two moments of effective Young’s modulusfor a three-dimensional spatially variable soil mass, 2015 SRES.14.Ching, J., Wang, J.S., and Phoon, K.K. (2016). Consistency of maximumlikelihood estimates for random field parameters. APSSRA 2016.15.Ching, J., Pan, Y.K., and Phoon, K.K. (2016). A unified spatial averaging modelfo r effective Young’s modulus of a three-dimensional spatially variable elementary soil mass. APSSRA 2016.16.Ching, J. and Hu, Y.G. (2017). Effective Young’s modulus for a footing on aspatially variable soil mass. Geo-Risk 2017/6th ISGSR.17.Ching, J. and Phoon, K.K. (2017). Characterizing unknown trend using sparseBayesian learning. Geo-Risk 2017/6th ISGSR.18.Ching, J., Hu, Y.G., and Tabarroki, M. (2017). Mobilization of spatially variableshear strength. ICOSSAR 2017.19.Ching, J. (2017). Construction of site-specific probabilistic transformation modelfor geotechnical design. Int. Symp. on Life-cycle Engineering and Sustainability Infrastructure. (keynote)20.Phoon, K.K. and Ching, J. (2017). Homogenization of shear strength and modulusin spatially variable soils. IACMAG 2017. (invited lecture)21.Phoon, K.K. and Ching, J. (2017). Better correlations for geotechnical design.GeoSS 10th Anniversary Conference. (State-of-the-Practice Lecture)專書及專書論文1.Ching, J.?, Phoon, K.K., and Lee, W.T. (2013). Second-moment characterization of undrained shear strengths from different test procedures, Foundation Engineering in the Face of Uncertainty, Geotechnical Special Publication honoring ProfessorF. H. Kulhawy, 308-320. (EI)2.Phoon, K.K.? and Ching, J. (2013). Multivariate model for soil parameters based on Johnson distributions, Foundation Engineering in the Face of Uncertainty, Geotechnical Special Publication honoring Professor F. H. Kulhawy, 337-353 (EI).3.Phoon, K.K.? and Ching, J. (2013). Can we do better than the constant partial factor design format? Modern Geotechnical Design Codes of Practice –Implementation, Application, and Development, IOS Press, 295-310.4.Phoon, K.K. and Ching, J. (2015). Risk and Reliability in Geotechnical Engineering. Taylor & Francis.5.Ching, J. and K.K. Phoon (2015). Constructing multivariate distributions for soil parameters. Chap. 1 in Risk and Reliability in Geotechnical Engineering (Eds.: K.K. Phoon and J. Ching). Taylor & Francis.6.Hu, Y.G., Ching, J.?, and K.K. Phoon (2016). Can a spatiallyvariable field be converted into a homogeneous spatial average over an influence zone? GSP in memory of the late Professor Wilson H. Tang.7.Phoon, K.K., Prakoso, W.A., Wang, Y., and Ching, J. (2016). Uncertainty representation of geotechnical design parameters. Chap 3 in Reliability of Geotechnical Structures in ISO2394, Eds. KK Phoon & JV Retief, CRCPress/Balkema.8.Ching, J., Li, D.Q., and Phoon, K.K. (2016). Statistical characterization of multivariate geotechnical data. Chap 4 in Reliability of Geotechnical Structures in ISO2394, Eds. KK Phoon & JV Retief, CRC Press/Balkema.9.Dithinde, M., Phoon, K.K., Ching, J., Zhang, L.M., and Retief, J.V. (2016). Statistical Characterisation of Model Uncertainty. Chap 5 in Reliability of Geotechnical Structures in ISO2394, Eds. KK Phoon & JV Retief, CRCPress/Balkema.10.Phoon, K.K. and Ching, J. (2016). Semi-probabilistic reliability-based design.Chap 6 in Reliability of Geotechnical Structures in ISO2394, Eds. KK Phoon & JV Retief, CRC Press/Balkema.。

基于DSM的设计过程模型优化算法研究进展

基于DSM的设计过程模型优化算法研究进展
[17~18]
、可达矩阵法(the Reachability Matrix Method)
[20]
[19]

路径搜索法(the Path Searching Method ) 传算法(Genetic Algorithms,GA) 将其分成了三类(如表1所示)。
[21-26]
(文献
[14]
中也称作深度优先和回溯方法)、遗
2 p11 p .p = 21 12 pn1. p1n
T (i)
(3)
是 A 的 i 次幂,如 A
[28]
(2)
=A∧A。
瓦西尔(Warshall)算法
是根据邻接矩阵 A 得到可达性矩阵 P 的一个有效算法,步
p12 . p21 p …
2 22
Q = P ⊙ PT = ( qi j ) n×n

基于 DSM 的设计过程模型优化算法研究进展1
柳玲 1,2,李百战 1,王建辉 1,杨明宇 1
1
重庆大学城市建设与环境工程学院(400044)
2
重庆大学软件学院(400044)
email:liuling@

要: 设计结构矩阵是表示设计过程中复杂任务关系的信息交换模型, 为了将它有效地应
在大型复杂项目设计中, 设计过程建模能加强项目组成员对项目过程信息流的理解, 辅 助复杂项目的规划、 调度、 运行和管理, 提高项目设计效率。 项目评审技术 (Program Evaluation
and Review Technique,PERT)[1]和关键路径法(Critical Path Method,CPM)[2]能根据项目任
n×n
其中:
1,vi 邻接v j ai j = 0,i = j或vi不邻接v j

商用堆技术的演变与革新

商用堆技术的演变与革新

EPRI URD
The US Nuclear Regulatory Commission (NRC) has been directly involved in the process by reviewing the URD, and the NRC published in 1994 a Safety Evaluation Report (SER) detailing their review of the requirements for each type of ALWRs. Through the NRC review, the URD supports improved stability in the regulatory basis for ALWRs by including agreements on outstanding licensing and severe accident issues.
EPRI URD
Published in 1990 The EPRI URD is organized in three volumes. Volume I summarizes ALWR program policy statements and top tier requirements. Volumes II and III present the complete set of top tier and detailed requirements for specific ALWR design concepts. Volume II covers “evolutionary” ALWRs. evolutionary”
当代核电存在的问题:运行的灵活性 当代核电存在的问题:运行的灵活性

基于贝叶斯网络的多阶段系统可靠性分析模型_刘东

基于贝叶斯网络的多阶段系统可靠性分析模型_刘东

第31卷 第10期2008年10月计 算 机 学 报CH IN ESE JOU RNA L OF COM PUTE RSV ol .31N o .10O ct .2008收稿日期:2007-05-21;最终修改稿收到日期:2008-06-01.本课题得到国家自然科学基金(60673148,60703073)、国家“八六三”高技术研究发展计划项目基金(2006AA704302)资助.刘 东,男,1981年生,博士,主要研究方向为计算机系统可靠性分析、容错技术.E -mail :LD5M @ .张春元,男,1964年生,教授,博士生导师,研究领域为计算机体系结构、高性能计算.邢维艳,女,1980年生,硕士,研究方向为系统可靠性分析.李 瑞,男,1977年生,博士研究生,研究方向为计算机体系结构.基于贝叶斯网络的多阶段系统可靠性分析模型刘 东1),2) 张春元1) 邢维艳3) 李 瑞1)1)(国防科技大学计算机学院 长沙 410073)2)(装备指挥技术学院国防科技重点实验室 北京 101416)3)(中国华阴兵器试验中心 陕西华阴 714200)摘 要 针对多阶段系统(P M S )的可靠性评估问题,提出了一种基于贝叶斯网络(BN )的可靠性分析模型PM S -BN .PM S -BN 模型首先为每个阶段构建各自的BN ,其结果命名为phase -BN .为了描述阶段之间的相关性,将所有phase -BN 中表示同一部件但属于不同阶段的根节点用有向边连接,并且将所有pha se -BN 中的叶节点与一个新的表示PM S 系统的节点用有向边连接,从而构建出用于刻画P M S 系统的BN ,称之为PM S -BN .将各个阶段时间离散为m 个时间段,利用BN 推理算法获得PM S 的可靠性参数.通过2个实例详细阐述P M S -BN 的建模过程.PM S -BN 模型为P M S 可靠性分析提供了一种新的策略,能够方便地实施系统可靠度计算、故障诊断、重要度分析等应用.若构建的PM S -BN 满足所有非根节点均具有2个父节点,则PM S 可靠度的求解过程仅需O (N m 3)的计算复杂度,其中N 为非根节点的个数.关键词 多阶段系统;贝叶斯网络;可靠性分析;计算复杂度;重要度分析中图法分类号T P 302Bayesian Networks Based Reliability Analysis of Phased -Mission SystemsLI U Do ng 1),2) ZHANG Chun -Yuan 1) XING Wei -Yan 3) LI Rui 1)1)(S choolo f Comp uter ,Nationa l University o f Def ense Technolog y ,Chan gsha 410073)2)(KeyLabora tory o f N ationa l Defense Technolog y ,A cademy o f Equip ment Command &Technolog y ,Beijing 101416)3)(China H uayin Ord nance Test Center ,H uayin ,S haan xi 714200)A bstract The paper presents a Bay esian netw o rks (BN )fram ew o rk fo r the reliability analysis of phased -mission system s (PM S ),named PM S -BN model .A PMS consists o f consecutive and no n -overlapping time pe rio ds ,w ith sy stem co nfiguratio n ,success criteria ,and com po nent behavio r varying fro m phase to phase .Firstly ,each phase is represented by a BN framew ork ,nam ed phase -BN .Then ,in orde r to fig ure the dependence s across the phases ,all the phase -BN arecom bined by co nnecting the ro ot no des that represent the same com po nent but belong to different phases ,and connecting the leaf nodes of phase -BN w ith a new node representing the w hole PM S mission .The new constructed BN is called PMS -BN .In PMS -BN model ,each phase time is di -vided into m segment ,and the reliability analy sis of PMS is performed by a discrete -time BN model acting o n PM S -BN .Tw o ex am ples a re used to ex patiate on the propo sed appro ach .The PMS -BN based me thod provides a new efficient w ay to analy ze the reliability of PMS ,especially fo r those with dynamic phases .M oreover ,it is also applicable to sy stem diagnosis and sensitivity analysis .If all the non -root nodes in co nstructed PMS -BN ow n not mo re than 2father nodes ,thecom putational com plexity o f evaluating the PM S reliability is O(Nm3),w here N is the num ber of no n-roo t nodes.Keywords phased-mission sy stem s;Bay esian netw o rks;reliability analy sis;com putational com-plexity;sensitivity analy sis1 引 言多阶段系统(Phased-M ission Sy stem,PM S)包含多个连续不重叠的时间区域(或称为阶段),系统配置、成功标准以及部件行为在不同阶段中各不相同.在PMS中,不仅多个部件在同一阶段内存在相关性,而且同一部件在不同阶段之间也存在相关性.这种复杂相关性的存在造成了PMS可靠性分析的困难.完全由静态阶段构成的PMS称为静态PM S,包含动态阶段的PMS称为动态PMS.目前,针对PM S的可靠性分析方法主要分成两类:基于组合模型的静态分析方法和基于状态空间的动态分析方法.最简单的静态分析方法是部件分解法[1].该方法将每个阶段内的部件分解为一系列统计独立的小部件,从而消除阶段间的相关性.然而,随着系统规模的增大,这种方法的复杂性呈指数增长.文献[2-3]提出了利用割集计算PM S可靠度的方法,通过对各阶段的割集进行不交化,并作概率求和,从而得到PM S的可靠度.割集方法是一种组合模型,具有简单、直观等特点,但仍然具有组合爆炸的隐患,因此该方法并不适合复杂系统.与基于割集的方法相比, BDD(Binary Decision Diag ram,二叉决策图)方法提供了一种快速求解静态PM S可靠度的机制,目前美国马塞诸州大学和弗吉尼亚大学正开展相关的研究工作.基于BDD的PM S可靠性分析方法将每个阶段的BDD利用阶段代数和前/后向阶段相关操作组合为整个系统的BDD(称为PMS-BDD),通过求解PM S-BDD得到PMS的可靠度[4].目前,以PM S-BDD为基础的静态PM S研究主要集中在解决不完全错误覆盖(Imperfect Fault-Coverage, IPC)、阶段组合需求(Com binato rial Phase Require-m ent,CPR)[5]、多模式失效(M ultimode Failure)[6]和共因失效(Co mmo n Cause Failure,CCF)[7]等问题.为了获得实用、可行的可靠性分析方法,人们通常对PMS进行各种假设,比如在静态PM S分析中,通常假设PMS中各个部件的失效行为是相互独立且不可维修的.然而,对于阶段内各部件失效行为相互依赖的动态PMS,静态分析方法不能很好地加以处理,此时不得不采用基于状态空间的动态分析方法.对于动态PM S,目前主要利用Markov链模型建模.M arkov链模型是可靠性工程中有效的建模工具,其优点是能够正确描述阶段内各部件之间的依赖性以及部件跨阶段的依赖性.Markov链模型独立分析每个阶段的Markov链,而每个阶段的初始状态概率来源于上一个阶段的分析结果[8].此外,也可将每个阶段的Markov链整合为单一的由状态空间组成的M arko v链联合体,PM S的可靠度即为M arko v链中所有工作状态的概率之和[9].上述两种方法在本质上均是分阶段处理各自的M arko v 链,并由最后阶段的Markov链获得PMS的可靠性参数.文献[10-11]介绍了一种模块化方法,该方法将用于描述每个阶段的故障树(Fault Trees,F T)模块化,并以模块化后的每个模块作为模块基本事件(Modular Basic Event,MBE),并由M BE构建PM S 的BDD.该方法在处理动态M BE时,则使用M arkov 链模型求解.由于系统状态规模随着系统部件数量增加呈指数增长,这导致M arkov链模型的计算量非常庞大.在动态分析方法中,通常假设PMS的阶段持续时间是确定的,阶段内的行为符合齐次马尔可夫过程特性.这些假设可以极大地简化PM S的可靠性分析.然而,对于实际中存在的不满足上述假设的PMS,即具有随机分布的阶段持续时间和非指数分布行为的PM S,还需要采用其它分析方法.在有关这方面的研究中,文献[8]在阶段内随机过程是齐次马尔可夫过程的条件下推导了阶段持续时间分布为指数分布或一般分布的PMS任务可靠度计算公式.文献[12]针对阶段持续时间为随机分布、阶段内行为是非指数分布的PM S可靠性分析提出了基于五元组的分析模型.上述方法弱化了PM S可靠性分析中的假设条件,从而能够针对特殊的情况给出满足指定精度的分析结果,具有较强的适用性.与此181510期刘 东等:基于贝叶斯网络的多阶段系统可靠性分析模型类似的研究还包括M ura等人提出的基于Petri网的PM S可靠性分析模型[13-14],他们开发的DEEP 建模工具综合了确定性分析、M arko v再生过程、随机Petri网等方法,并为PMS的可靠性分析提供了功能强大的集成环境.除此之外,Mo nte Carlo仿真方法为PM S的可靠性分析提供了另一种灵活的建模手段.仿真方法的理论基础是概率论中的基本定律———大数定律,该方法的应用范围从理论上说几乎没有什么限制[15].Murphy等人开发的Rapto r仿真工具[15]可完成对PM S可靠性的仿真,但该工具所使用的仿真方法属于粗仿真(crude simulatio n),因此仿真效率较低.总结目前有关PMS可靠性分析的研究工作,我们可以得出如下结论:(1)一般采用BDD及其扩展方法分析静态PM S的可靠性.BDD方法是一种组合模型,具有快速建模、求解迅速等优点,其缺点是无法分析动态系统,并且只适用于非维修系统.(2)一般采用M arko v链模型分析动态PMS的可靠性.M arkov链模型是描述随机过程的强有力工具.齐次M arkov链模型的研究工作比较完善,具有成熟的理论基础和应用实例.M arko v链模型能够描述顺序失效、功能相关、储备等动态特性,并且可以对可维修系统建模.由于系统的状态空间会随着部件的数量呈指数变化,因此M arkov链模型具有指数级的复杂度,在分析复杂系统时,将会面临状态空间爆炸问题.(3)静态分析方法与动态分析方法的结合可提高分析效率,这实际上是一种层次化的建模手段,能够充分利用两种分析方法的优点,避免各自的局限.例如,结合M arkov链模型,BDD方法仍旧能够对动态系统进行建模,其基本思想是:将系统中的动态部分封装为单个的模块,对单个模块利用M arkov 链模型分析,而以模块作为最基本的BDD分析单位[11].这种方法的优点是能够描述并求解动态随机过程,并可充分利用BDD的快速算法.(4)通过弱化模型假设条件,分析更一般条件下的PM S可靠性;或者为了避免复杂的M arko v链求解过程,寻找新的建模方法.随着研究的不断深入,研究人员逐渐放宽对PMS的各种假设,开始关注系统在不满足齐次Markov链模型的条件下的可靠性建模方法.典型的情况是阶段内部的随机过程服从非指数分布,阶段持续时间为非确定的随机时间.该问题可以通过基于状态空间的动态分析方法解决,例如M arkov链模型[8]和五元组分析模型[12].对于复杂的PM S,当上述模型求解困难,以至于无法获得解析解和数值解时,通常采用M onte Ca rlo 仿真方法模拟PMS的实际工作过程,利用统计参数作为可靠性分析结果.本文的研究属于上述第4类工作,即为了避免复杂的M arko v链求解过程,寻找新的PMS建模手段.通常来说,基于状态空间的动态分析方法最终需要求解复杂的状态方程(微分方程组),当PM S的阶段内随机过程服从非指数分布时,一般无法以解析的形式给出分析结果,此时需要求助于近似方法给出其数值结果.即便如此,当系统的规模庞大时,微分方程的近似求解也会异常困难,这使得PM S 的可靠性分析变成纯粹的数学问题.此外,状态空间的规模会随着系统规模呈指数增长,其建模过程也将会变得烦冗、枯燥、易出错.为了使可靠性分析过程真正落到系统的模型描述,而不是复杂数学问题的求解上,本文提出一种新的基于贝叶斯网络(Bayesian Netw orks,BN)的PMS可靠性分析模型PM S-BN,其目的在于简化PMS可靠性分析的建模过程,减小模型的计算复杂度,并支持一般条件下的PM S系统(包括静态PM S 和动态PMS)分析.PM S-BN模型将PMS描述为BN,从而能够利用高效的计算方法求解PMS可靠性.利用BN特有的推理机制,PMS-BN模型还适用于系统的故障诊断、重要度分析等更加复杂的应用.本文将首先给出基于BN的可靠性分析原理.在此基础上,通过结合BN与PM S,研究基于BN的PMS可靠性分析方法PM S-BN.最后,本文将通过用例介绍PM S-BN在可靠度计算、故障诊断、重要度分析等领域中的应用.2 贝叶斯网络及其在可靠性分析中的应用BN是一个有向无环图,其中的节点表示随机变量(在BN中,通常“节点”等同于“随机变量”),有向边表示条件独立关系.根节点是指不具有父节点的节点,叶节点指不具有子节点的节点,其它节点称为中间节点.对于由离散变量节点构成的BN,根节点拥有先验概率表(Prior Probability Table,PPT),表中的数值表示根节点处于不同状态的概率;1816计 算 机 学 报2008年非根节点拥有条件概率表(Co nditional Probability Table ,CPT ),表中的数值表示在给定父节点取值组合的情况下,该节点处于不同状态的概率.如果用节点和有向边表示系统的部件及其之间的关系,则BN 刻画了系统中变量之间存在的条件独立关系,即节点在给定其父节点的前提下与其非后代节点条件独立[16].BN 揭示出所有变量的完全联合概率分布(Full Joint Probability Distribution ,JPD ),从而能够通过边缘化求解机制推理出所有与概率相关的问题(在给定一个或多个变量的前提下获得系统中其它变量的条件概率).变量之间条件独立关系的存在减少了确定JPD 所需的参数,从而简化了系统中变量的概率模型.系统中所有变量{X 1,X 2,…,X n }的JPD 可表示为P [X 1,X 2,…,X n ]=∏ni =1P [X i pa (X i )](1)其中,pa (X i )表示节点X i 的父节点.近年来,BN 模型在可靠性分析领域中的应用逐渐得到关注.研究结果表明,无论在建模能力还是在分析能力上,BN 模型较故障树、可靠性框图等模型均具有显著的优势,并具有较小的复杂度[16].由于PMS 系统的配置会在阶段的切换时刻发生变化,我们选择离散时间贝叶斯网络(Discrete -Time Bayesian Netw orks ,DTBN )作为PM S 的建模手段.在DTBN 中,根节点表示系统部件,中间节点表示一系列部件之间的相互关系,叶节点表示整个系统.DTBN 将系统任务时间离散为m 个时间段.若系统任务时间为T ,则每个时间段的宽度为Δ=T /m .相应的,每个节点具有m +1个状态,每个状态表示节点在对应时间段内的行为.例如,如果节点表示系统中的部件,则节点处于该状态表示部件在对应时间段内发生失效;如果节点表示门,则节点处于该状态表示门在对应时间段内产生输出.系统的可靠度就是叶节点处于最后一个状态的概率.复杂系统的DTBN 中节点众多,节点之间的关联也会因系统的复杂行为而变得极其紧密.然而,与基于状态空间的建模方法相比较,DTBN 模型将系统状态的转移映射到节点附带的条件概率表中,这种利用多个局部行为描述全局状态的变迁将会在很大程度上降低模型的复杂程度.此外,DTBN 的推理方法具有直观、简洁的特点,易于用计算机实现快速分析和处理,避免了复杂微分方程的求解问题.3 PMS -BN 可靠性分析模型在本文中,对PMS 系统给出以下假设:(1)部件或系统发生失效后不可修复.由于BN 是一种有向无环图,因此无法对可维修系统建模.(2)每个阶段的持续时间相等.在本文中,每个阶段的持续时间被离散为多个时间段,从而将部件的工作过程表示为多个状态.如果每个阶段的持续时间相等,可有利于PPT 和CPT 中状态概率的形式化表示.事实上,本文的方法可以应用于阶段持续时间为任意值的PM S ,文末将会弱化这一假设,并指出这种情况下的处理方法.(3)任意阶段子任务的失败将导致整个PM S 任务的失败.大多数系统的正常运行需要经过多个连续的阶段,例如巡航导弹攻击任务可分为发射、惯性制导段、末制导段等阶段,太空飞行器本体从发射、运行、返回亦需经历不同的环境阶段等.在不考虑阶段组合需求CPR (即PMS 系统具有多个任务,每个任务都需要组合不同的阶段配置)[5]的情况下,这一假设符合实际系统的工作过程.事实上,只需修改某些节点的CPT ,本文的方法将可以直接应用于CPR 的分析.文末将弱化这一假设,并指出这种情况下的处理方法.3.1 PMS -BN 的生成方法PM S 系统的每个阶段可以用DTBN 表述,本文称这种用于表述阶段内部件相关性的DTBN 为phase -BN .与FT 类似,phase -BN 是PMS 阶段内系统行为的一种表示方法,并可由每个阶段的FT 转换得到.例如,BN 中的根节点可以表示FT 中的基本事件,中间节点表示FT 中的各种静态/动态门以及与根节点具有依赖关系的基本事件,而叶节点则表示FT 的顶事件.有关将FT 转换为BN 的相关内容可参考文献[17].为了用BN 描述整个PM S 系统,通过如下两个步骤对phase -BN 进行组合:(1)由于不同阶段间的同一部件是相关的,因此为了描述这种阶段之间的相关性,利用有向边连接那些位于不同阶段但属于同一部件的节点.(2)PM S 的任务依赖于每个阶段子任务的执行情况,即一旦任何阶段失效,PM S 将会失效.为了表示PMS 任务和各个阶段子任务之间的相关性,构建一个新的节点表示整个PM S 系统的任务,并用有向边连接phase -BN 的叶节点和新的节点.181710期刘 东等:基于贝叶斯网络的多阶段系统可靠性分析模型依照上述过程生成的BN 即为PMS -BN .图1展示了为一个2阶段PM S 构建PM S -BN 的过程,其中第2个阶段由动态故障树(Dy namic FaultT ree ,DFT )[18]表示.如图1(a )所示,在第1阶段中,部件A 和B 并联工作,只有当A 和B 同时失效时,系统才会失效.在第2阶段中,部件B 作为A 的冷储备;在A 失效后,B 才开始工作;只有当A 和B 均失效时,系统才会失效.两个阶段对应的phase -BN如图1(b )所示.利用两个phase -BN 生成的PMS -BN 如图1(c )所示,其中,T 1(T 2)代表阶段1(2)的顶事件,S 代表PMS 系统.图1 PM S -BN 的生成过程 在由phase -BN 生成PM S -BN 的过程中,应当考虑如下特殊情况:两个节点在phase -BN 中条件独立,但在PMS -BN 中却具有相关性.例如,在第2阶段中,B 是A 的冷储备,因此该阶段的子任务状态原本只由B 决定,即第2阶段的phase -BN 中,A 2和T 2之间不存在有向边.然而,考虑到B 有可能会在第1阶段中失效,因此T 2的状态实际上是由A 2和B 2共同决定,即PM S -BN 中的A 2和T 2之间存在有向边,这与第2阶段的phase -BN 不同.通常来说,对于任意3个节点X ,Y 和Z ,如果下述条件成立,则应当在PMS -BN 中用新的有向边连接X 和Z ,有向边的方向是由X 指向Z :(1)X ,Y 和Z 并不属于第1阶段,Y 在以前的阶段中曾经出现;(2)Y 是X 的冷储备;(3)Z 是Y 的冷储备,或者Z 表示X 和Y 的CSP 门[18].3.2 PMS -BN 的可靠性分析方法将每个阶段时间分为m 个时间段,从而整个任务时间分为mn 个时间段,其中n 为阶段的个数.在PM S -BN 中,第1阶段的部件节点具有m +1个状态.前m 个状态表示部件在第m 个时间段中失效,而最后一个状态(标识为m +1)表示部件在第1阶段中未发生失效.与部件节点对应,第1阶段的其它中间节点和叶节点同样具有m +1个状态.在剩余的阶段中,每个部件具有m +2个状态.第1个状态表示部件在先前的阶段中已经失效,用0标识.接下来的m 个状态表示部件在该阶段的第m 个时间段中失效,用(j -1)m +i 标识,其中i 是时间段编号,j 是阶段编号(0<i ≤m ,1<j ≤n ).最后一个状态表示部件在该阶段中未发生失效,用m j +1标识.与部件节点对应,这些阶段的其它中间节点和叶节点同样具有m +2个状态.如果部件并未从第1阶段开始工作,则该部件在第1次进入工作状态的那个阶段中具有m +1个状态,而在剩余的工作阶段中具有m +2个状态.PM S -BN 的叶节点具有(m +1)n 个状态.前m 个状态表示系统在第1阶段中的某个时间段内发生失效.随后的(n -1)(m +1)个状态被分为(n -1)组,每组对应一个阶段.例如,状态(m +1)到m +(m +1)表示系统在第2阶段内的行为,其中,状态m +1表示系统在第2阶段开始时即发生失效,随后的m 个状态表示系统在对应的时间段内发生失效.叶节点最后一个状态表示系统在任务时间内并未失效.因此,PM S 的可靠度就是PM S -BN 的叶节点处于最后一个状态的概率.每个节点与其父节点之间的概率发生关系由对应的CPT 描述,从而PM S 的可靠度可通过计算PMS -BN 叶节点的后验概率得出.由此可知,第1阶段的每个节点的CPT (对于根节点是PPT )具有m +1个状态.剩余阶段的节点的CPT 具有m +2个状态.根据BN 的结构,每个节点具有k +1维的CPT (或者PPT ),其中k 是节点的父节点个数.例如,图1中A 1,B 1,A 2和B 2均具有1维的PPT ,而1818计 算 机 学 报2008年T1,T2和S具有3维的CPT.假设所有部件的寿命服从指数分布,令A和B 的失效率λA=λB=0.02h-1,阶段内时间段的个数m=2,时间段长度Δ=1h,则A1或B1的PPT可根据下式获得Pr{A1=k}=F(k·Δ)=1-e-λA kΔ,Pr{A1=3}=1-P r{A1=1}-Pr{A1=2}(2)其中,k<3.完整的PPT如表1所示.表1 A1(B1)的PPTA1(B1)P r10.0198020.0194130.96079如果部件在前一个阶段内失效,它将不能在后续阶段中继续工作.因此,如果A1的状态为1或2,则A2处于状态0的概率为1.以部件A在第j-1阶段不失效的前提下,A在第j阶段中处于状态i 的条件概率由下式计算:P(A,i,j)=(Pr{A在[((j-1)m+i-1)·Δ,((j-1)m+i)·Δ]内失效})/(Pr{A在第j-1阶段未失效})=(F(((j-1)m+i)·Δ)-F(((j-1)m+i-1)·Δ))/(1-F((j-1)m·Δ))(3)如果部件的寿命服从指数分布,则式(3)可整理为P(A,i,j)=e -λA((j-1)m+i-1)·Δ-e-λA((j-1)m+i)·Δe-λA(j-1)mΔ=F(i·Δ)-F((i-1)·Δ)(4)上式表明,部件在第j阶段中处于状态i的条件概率等于部件在第1阶段相应时间段内的先验概率,这是由于指数分布的无记忆性决定的.因此,以A1处于状态3作为前提,A2处于状态3的条件概率等于A1处于状态1的先验概率,依次类推.因此,有Pr{A2=k A1=3}=Pr{A1=k(mod m)}(5)其中,3≤k≤5.A2的CPT如表2所示.表2 A2的C PTA2P rA1=1A1=2A1=30110 3000.019804000.019415000.96079由于B2具有两个父节点A2和B1,因此其CPT 与A2的CPT不同.在第2阶段中,B是A的冷储备,只有在A失效之后,B才开始工作.除此之外,如果B在第1阶段内失效,那么B在第2阶段也将不再工作.A也同样具有类似的特性.因此,B2的CPT将是一个3维表,表中的数值依照下式填入: P r{B2=0B1=1or B1=2}=1,P r{B2=k B1=3,A2=0}=Pr{B1=k(m od m)},P r{B2=g B1=3,A2=3}=Pr{B1=(g-1)(mod m)},P r{B2=5B1=3,A2>3}=1(6)其中,3≤k≤5,4≤g≤5.T1的CPT可以根据A1和B1的AND关系直接构建.由于T2与A2和B2连接,因此其CPT是一个3维表.如果A在第1阶段失效,则B将在第2阶段开始时便进入工作状态,而T2的状态将由B确定;如果B在第1阶段失效,则T2将只由A确定;否则,T2将由A2和B2共同确定.T2的CPT中的数值依照下式填入:P r{T2=max(k,g)A2=k,B2=g,k=0or g=0}=1, P r{T2=g A2=k,B2=g}=1(7)其中,3≤k<g≤5.由于任意阶段子任务的失败将导致PMS的任务失败,因此S的CPT可以根据T1和T2的OR关系构建:Pr{S=k T1=k,1≤k≤2}=1,Pr{S=3T1=3,T2=0}=1,Pr{S=g+1T1=3,T2=g,3≤g≤5}=1(8)在PPT和CPT构建完毕之后,节点S的状态6表示PM S未发生失效,其概率即为PM S的可靠度.本文利用开源M atlab BNT工具包①计算出图1中PMS在时刻4h的可靠度为0.9951.此外,也可以通过计算S在任意状态的概率来计算系统在任意时刻的可靠度.在上例中,假设所有阶段时间相同,而实际上,本文中的方法可应用于具有不同阶段时间的PM S (不满足假设2).此时可将每个阶段时间分为m k= T k/Δ个时间段,其中T k为第k个阶段的持续时间,Δ为某一固定的时间长度.当某一阶段子任务的失败并不导致整个PM S 任务的失败时(不满足假设3),可以更改PM S-BN 叶节点的CPT,使之满足新条件下的阶段组合.181910期刘 东等:基于贝叶斯网络的多阶段系统可靠性分析模型①http://w ww.cs.ubc.ca/~m urphyk/S oftw are/BNT/b nt.html3.3 计算复杂度分析如果仅仅计算PMS 完成任务的概率(即PMS 的可靠度),只需计算PMS -BN 的叶节点S 处于最后一个状态的概率,该过程的伪代码如下:1.result =0;2.fo r s 1=1∷N (pa 1(S ))3.fo r s 2=1∷N (pa 2(S ))4. …5. fo r s n =1∷N (pa n (S ))6. result =result +Pr {S =mn +1 pa i (S )=s i }·∏ni =1Pr {pa i(S )=s i},其中,N (pa i (S ))表示节点S 的第i 个父节点的状态个数.对于本文的PMS -BN ,有N (pa i (S ))=m +1,i =1m +2,1<i ≤n.上述代码中的第6行是最内层的循环体,利用大O 表示法表示的执行次数为O ((m +1)(m +2)(n -1))=O (m n).而构建S 的CPT 将需要填充一个具有(m +1)n个状态的n +1维表,表中具有的项的个数为O ((m +1)n (m +1)(m +2)(n -1))=O (nm (n +1)).为了简化计算,只填充S 的CPT 的最后一行即可得到PMS 的可靠度,此时,总的计算复杂度为O (m n).求解中间节点处于不同状态的概率需要构建完整的CPT ,所需的计算量为O (m (p +1)),其中p 为中间节点的父节点的个数,将由系统的结构决定.如果PMS -BN 中中间节点的最大父节点的个数为p ,则求解PM S -BN 可靠度所需的计算量应为O (m n+Nm (p +1)))=m ax (O (m n ),O (N m (p +1))),其中N 为PMS -BN 中非根节点的个数.考虑计算复杂度表达式max (O (m n),O (Nm(p +1))),在O (m n )中,n 实际上表示PMS -BN 叶节点的父节点的个数,而O (Nm (p +1))的大小也主要取决于p 的值,因此我们可以得出如下结论:父节点的个数将在很大程度上影响着PM S -BN 模型的计算效率.因此,在构建phase -BN 和PM S -BN 时,应尽可能地以级联的方式将每个节点的父节点个数保持为2,将可简化模型的复杂度.如图2所示,在将4输入AND 门转换为BN 时,最终的转换结果应当为如图2(b )所示的由级联节点构成的BN ,而不是如图2(c )所示的BN .图2 BN 的简化示例 在大多数情况下,系统的PMS -BN 均可以构建成满足上述要求的BN 拓扑结构.此时,为了获得PM S 可靠度,所需要的计算量将变为max (O (m n ),O (Nm (p +1)))=O (Nm 3).因此,PMS -BN 模型的计算复杂度并不与系统规模呈指数增长关系.与M arko v 链模型相比较,后者状态空间为2q,q 为系统中所有变量的个数.两种可靠性分析模型的比较如表3所示.表3 PMS -BN 模型与Markov 链模型的比较建模过程复杂度可维修系统求解算法精确度PM S -BN 模型简单、直观大多数情况O (Nm 3)不支持简单的DTBN 模型近似解M arkov 链模型复杂、易出错O (2q)支持复杂的微分方程解析解或数值解由表3可以看出,除了不支持可维修PM S 的可靠性分析之外,PM S -BN 模型在建模过程、复杂度、求解算法等方面均较Markov 链模型具有较大的优势.此外,PM S -BN 模型获得的可靠性分析结果的精度由参数m 确定,m 的值是计算精度与所消耗时间和空间的折中,这种折中为我们提供了一种灵活的解决方案.而求解M arko v 链模型则通常需要求解复杂的微分方程,尽管可以通过各种简化方法加1820计 算 机 学 报2008年。

翼型多目标气动优化设计方法

翼型多目标气动优化设计方法

翼型多目标气动优化设计方法王一伟钟星立杜特专(北京大学力学与工程科学系,北京 100871)摘要本文将数值优化软件modeFRONTIER同计算流体力学(CFD)软件相结合,对NACA0012翼型的气动性能进行优化。

计算采用N-S方程作为主控方程以计算翼型气动性能,分别采用多目标遗传算法(MOGA)和多目标模拟退火算法(MOSA)作为翼型的气动性能优化算法。

计算结果表明,优化后的翼型相对于优化前的翼型的气动性能有很大提高(升阻比增幅可达182%)。

关键字气动优化设计多目标NS方程遗传算法模拟退火算法Abstract: The combination of the optimization software, modeFRONTIER, and the commercial CFD software is used to optimize the aerodynamic functions of the airfoil, NACA0012.The NS equations are adopted for calculating the airfoil aerodynamic properties (Cl, Cd and etc). Two kinds of optimization algorithm, the Multi-Object Genetic Algorithm(MOGA) and the Multi-Object Simulated Annealing(MOSA), are used in the optimization process respectively. The optimized airfoils show remarkable improvement of its aerodynamic functions (The ratio of lift to drag increases up to 282%) relative to its original one.Key words Aerodynamic Optimization Design, NS Equation, Genetic Algorithm, Simulated Annealing一、研究背景翼型的气动力设计是现代飞机设计的核心技术。

软件开发英语怎么说词组是什么

软件开发英语怎么说词组是什么软件开发是根据用户要求建造出软件系统或者系统中的软件部分的过程。

那么,你知道软件开发的英语怎么说吗?软件开发的英文释义:software developmentsoftware engineering软件开发的英文例句:软件测试作为软件开发过程的重要环节,是保证软件质量,提高软件可靠性的重要手段,软件开发技术的发展,也必然会带动软件测试技术的发展。

As an important part in the software engineering, software testing is the primary instrumentality to guarantee the quality and reliability of the software.摘要软件复用技术对提高软件开发效率与质量、降低软件开发成本及缩短软件开发周期有着极其重要的作用。

The technology of software reuse plays an important role in improving efficiency and quality, reducing the cost and shortening the cycle of software development.方法,与其它敏捷软件开发方法一样,强调软件开发过程的自适应性和以人优先的价值观[1],这与传统的重量级软件开发方法强调对开发过程的控制相反。

Extreme Programming is the most popular method among all the Agile Software Development methods, which are characterized by the self-adaptive nature and people-first orientation[1].每一个软件开发人员开发包括Windows,MacOSX开发或移动设备软件开发类型的邀请。

GE燃气轮机资料

Thoroughly Tested The design, development and validation of the H System™ has been conducted under a regimen of extensive component, sub-system and full unit testing. Broad commercial introduction has been controlled to follow launch units demonstration. This thorough testing approach provides the introduction of cutting edge technology with high customer confidence.
Baglan Bay Power Station is the launch site for GE’s H System™.
RDC27903-13-03 PSP30462-05
An MS9001H is seen during assembly in the factory.
Single Crystal Materials The use of these advanced materials and Thermal Barrier Coatings ensures that components will stand up to high firing temperatures while meeting maintenance intervals.
Net Plant
Heat Rate
Net Plant GT Number
Output (MW) (Btu/kWh) (kJ/kWh) Efficiency & Type

基于广义随机空间内的结构系统可靠性分析

基于广义随机空间内的结构系统可靠性分析1余波,唐冲广西大学土木建筑工程学院 广西南宁(530004)E-mail :gxuyubo@摘 要:在结构系统的可靠度分析过程中,当变量为相关的非正态随机变量时,可以利用正交变换或Rosenblatt 变换计算其可靠指标,但计算比较繁琐。

利用广义随机空间内的验算点法计算各机构的可靠指标,结合PNET 法计算结构体系可靠度,精度高,计算量小。

关键词:结构体系可靠度;广义随机空间;PNET 法1 引言工程结构在规定的时间内,在规定的条件下完成预定功能的概率称为结构可靠度。

目前,结构点可靠度的计算方法日趋完善,并已进入实用阶段。

随着可靠度理论的进一步深入,人们发现点可靠度的计算已不能满足实际需要,人们最关心的是由众多构件组成的结构或连续体结构体系的可靠度。

研究表明,随机变量间的相关性对结构的可靠度有着明显的影响,特别是在高度正相关或高度负相关的时候。

因此,若随机变量相关时,在可靠度分析中应予以考虑。

对于相关随机变量的可靠度计算,方法一是采用Rosenblatt 变换 [1],将相关随机变量变换为线性无关的标准正态分布随机变量进行分析,尽管其理论十分严密,但由于计算复杂而很难在实际中应用。

另一方法是采用正交变换,将相关的随机变量变换为不相关的随机变量,然后用JC 法进行计算[4]。

从原理上讲,该方法是正确的,但实践表明,该方法过于繁琐[5]。

本文则直接在广义空间(仿射坐标系)内建立计算可靠指标的迭代公式,计算简便,对于大型复杂的系统可靠度计算,更具有优势[6]。

2 广义随机空间内验算点法设12,,n X X X L 为广义随机空间内的个随机变量,其平均值和标准差分别为n ,iX µ()1,2,,,iX i n σ=L i X 与j X ()i j ≠间的线性相关系数为,ijX X ρ将功能函数(12,,n )Z g X X X =L 在设计验算点()**2*1*,n x x x p L =处按泰勒级数展开,并取至线性项,可采用以下迭代计算可靠指标[2]:⑴ 假定设计验算点(一般取()****12,,nP x x x L *iiX x µ=,()1,2,i n =LL );⑵ 由设计验算点计算()****12,,nPx x x L iα值,即:1本课题得到教育部“新世纪优秀人才支持计划项目”(项目编号:NCET-04-0834)资助。

需求响应最新模型

A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamicsOnur Elma,Ugur Savas Selamogullari ⇑Yıldız Technical University,Electrical Engineering Department,34220Esenler,Istanbul,Turkeya r t i c l e i n f o Article history:Received 29November 2011Received in revised form 30January 2012Accepted 28February 2012Available online xxxxKeywords:Hybrid renewable energy systems Stand-alone house Dynamic load dataDynamic solar radiation data Dynamic wind data Sizing studya b s t r a c tSolar and wind energy use to supply the electrical demand of a stand-alone residential house is bining solar and wind energy sources provide more reliable power source for stand-alone applications since they complement each other.Backup units (battery/supercapacitor)are also needed for uninterrupted energy.For a proper backup sizing in such systems,high resolution load data,wind speed and solar radiation data must be used as compared to the use of hourly averaged data found in lit-erature.In this study,high resolution data on both load side and source side are collected experimentally.Then,collected data used as input to system simulations in Matlab/Simulink for sizing the backup in the considered hybrid power system.Backup state of the charge (SOC)is used as decision criteria.It is shown that,when load and source dynamics are considered,approximately 10%less backup size is required compared to backup size found with hourly averaged values.The study shows the importance of data res-olution on backup sizing in such systems and could be a guide for renewable energy system designers.Ó2012Elsevier Ltd.All rights reserved.1.IntroductionWith increasing concern on dependence on fossil fuels and environmental issues,the use of alternative energy sources such as solar and wind energy have been steadily increasing.Recently,stand-alone applications of such hybrid systems are widely adopted.Reviews of stand-alone PV–Wind hybrid energy systems,future state of the art developments,and simulation and optimiza-tion techniques for stand-alone hybrid systems can be found in [1–3].In this study,a hybrid power system (PV/Wind/Backup)that supplies electrical needs of a stand-alone residential house is con-sidered.As solar energy and wind energy complement each other,combining both sources will provide more reliable power source for stand-alone applications compared to a system only with either solar energy or wind energy [3,4].Since both solar energy and wind energy are highly dynamic in nature and are weather dependant,a backup unit must be employed to provide uninterrupted energy to the house.In literature,several studies on stand-alone PV–Wind–Backup hybrid system can be found.An improved evolution algo-rithm is suggested in [4]to find system sizes based on cost and reliability.The proposed algorithm can avoid local minimum traps by employing migrant operation strategy.Solar array tilt angle is also considered in the sizing study.In [5],analyses of PV only and PV–Wind stand-alone energy systems are given for Nicosia,Cyprus and Nice,France.It is shown that climatic characteristics of the specific location determine the use of solar only or PV–Wind together.In [6],design and techno-economical optimizations of a stand-alone hybrid PV–Wind system under different metrological conditions in Corsica Island are investigated to determine the size of hybrid power system that provides lowest levelized cost of en-ergy (LCE)and energy autonomy.It is shown that the LCE strongly depends on the renewable energy potential quality in considered regions.A methodology for optimal sizing of stand-alone residen-tial PV–Wind–Generator system is given in [7].A 20-year total sys-tem cost is minimized under zero load rejection using genetic algorithms.It is shown that combining PV and Wind power pro-vides lower system cost compared to using each source separately.In [8],Loss of Power Supply Probability (LPSP)is used to find opti-mum number of batteries and PV modules for a stand-alone hybrid PV–Wind system using a 30-year long hourly measured solar radi-ation and wind speed data.System cost is minimized for given LPSP and load profile.It is concluded that the number of PV panels and batteries are tied to particular site,load profile,and the desired LPSP.In [9],a numerical algorithm is given to find the optimum generation capacity and storage need for a stand-alone residential house in Montana.Three considered cases are wind only,PV only,and hybrid Wind–PV system.Generation and storage units for each system are sized in such a way that the annual load is supplied and the system cost is minimized.An economic analysis is also com-pleted to justify the use of renewable energy versus using grid puter aided design of PV–Wind hybrid system with more accurate and practical models of PV,wind turbine and0306-2619/$-see front matter Ó2012Elsevier Ltd.All rights reserved./10.1016/j.apenergy.2012.02.080⇑Corresponding author.Tel.:+902123835820;fax:+902123835858.E-mail addresses:onurelma@.tr (O.Elma),selam@.tr ,ugursavas@ (U.S.Selamogullari).battery is given in [10].A trade off curve between PV array capacity and battery bank for a fixed wind generator capacity is obtained for a given LPSP.The optimum configuration with minimum cost is se-lected using the trade off curve.An application example of hybrid system on Waglan Island in Hong Kong is given.A pre-feasibility analysis of a PV–Wind hybrid system as an alternative to grid extension for a small community in Bangladesh is given in [11].It is shown that the hybrid system is more economical below 12km than grid extension.A multi-objective optimization of stand-alone PV–Wind–Diesel systems is given in [12].System cost and life cycle emissions are minimized for two different load pro-files using Strength Pareto Evolutionary Algorithm.It is found that solar energy is more economical and environmentally friendly for Spain and Southern Europe.A techno-economic analysis of a pat-ented wind-solar hybrid system with rainwater collector for a high-rise building in Malaysia is given in [13].A special design that surrounds the wind turbine is used to improve the power output under low wind speeds and to minimize noise and vibration.Monthly solar radiation and wind speed values are used in eco-nomic analysis based on Life Cycle Cost (LCC).It is shown that hy-brid system can supply significant amount of the building energy demand.A sizing study for a stand-alone PV–Wind–Battery hybrid system supported with a diesel generator for six sites in Algeria is completed in [14].It is concluded that hybrid PV–Wind system performs better compared to a system with either solar energy or wind energy.It is also shown that energy cost depends on renewable energy quality in the considered sites.An optimal sizing method for a stand-alone PV–Wind–Battery supplied telecommu-nication station in China is given in [15].Number of PV modules,number of wind turbines,PV module slope angle,battery capacity and the installation height for the wind turbine are used in the ge-netic algorithm based optimization process that minimizes Annu-alized Cost of System (ACS)with desired 2%LPSP.It is concluded that the selected hybrid system performs well with battery SOC staying higher than 0.5most of the time for a year based on mea-sured field data.A feasibility study for a stand-alone PV–Wind–Diesel–Battery system that supplies a hypothetical community of 200families,a school and a health post in Ethiopia is given in [16].HOMER software is used to find feasible systems.Although the most cost effective system is found as Diesel–Battery system,it is concluded that renewable energy based designs should be con-sidered even with an increase in total system cost.A detailed anal-ysis of PV–Wind–Hydro–Diesel–Battery hybrid system for off-grid electrification of a site in Ethiopia is given in [17].Based on sensi-tivity analysis using HOMER software,it is concluded that Hydro–PV–Battery and Hydro–Wind–PV–Battery systems are more suit-able for higher diesel prices.In these studies,monthly/hourly wind speed,solar radiation and load data are used in system analyses.However,both wind speed and solar radiation are highly dynamic.Thus,the variability of wind speed and solar radiation will affect the system sizing [18–21].Similarly,the electrical demand of the stand-alone house is also highly dynamic [22].When hourly averaged values of load demand,solar radiation and wind speed are used for a sizing study in such hybrid systems as found in the literature,dynamic nature of the load demand,so-lar radiation and wind speed are all lost.This might results in unnecessarily oversizing the backup.The reason for this is the path dependence of the sizing problem.Therefore,both load and source dynamics must be taken into account in such a hybrid power sys-tem for a reliable sizing study.In this study,experimentally mea-sured high resolution load data,solar radiation and wind speed data are used in system analysis for the first time.System level Simulink models of each component in the hybrid power system are developed.The collected data is used as input to systems sim-ulations in Matlab/Simulink and the required backup size that sat-isfies user defined SOC minimum limit (SOCmin ),taken as 30%,isfound.Then,results are compared with a sizing study completed with hourly averaged values.This paper is organized as follows:in Section 2,experimental data collection is explained.The importance of both source and load dynamics are highlighted by comparing the measured data with hourly averaged data.In Section 3,system level Simulink models of each component in the hybrid power system are given.In Section 4,system simulations are completed in Matlab/Simulink using the models developed in Section 3.Case studies are com-pleted and backup sizes are found that satisfies user defined SOC minimum limit for each case.Then,results are compared with the backup size found with hourly averaged values.In Section 5,results and discussions are given.In Section 6,conclusions are given.2.Data collection on source side and load sideIn the stand-alone residential hybrid power system analysis,real time dynamic data collection on both load side and source side is completed to capture the important dynamics on both sides.De-tails of data collection are given below.2.1.Residential electrical demandIn literature,the residential demand is mainly modeled using hourly load profiles or assumed load profiles [4–6,9,12,18–21].However,dynamics faced by the hybrid power system will be quite different when a stand-alone house is considered.This is due to the dynamic nature of the electrical demand in a single house [22].In this study,power consumption at a 4-person house in Istanbul,Turkey are measured and stored at every second.The data collec-tion lasted for a week.Although the collected data is recorded at every second,1-min averaged data (dynamic data)is obtained since the maximum resolution of the used weather station for measuring wind speed and solar radiation is 1-min.It is assumed that the electrical load demand of the house will repeat itself weekly.The difference between the measured data and hourly averaged load data is shown in Fig.1.As seen,the dynamics cannot be taken into account with the hourly averaged values.2.2.Wind speed and solar radiation dataIn the proposed hybrid power system,wind and solar energy are considered on the source side since combining both sources provides more reliable power source as they complement each other [3,4].Both solar radiation and wind speed are weather and location dependent.Thus,solar radiation and wind speed data must be collected where these sources will be used.Solar radiation,temperature,and wind speed data are collected at Yildiz Technical University (YTU)Besiktas campus in Istanbul,Turkey using Davis VantagePro2weather station shown in Fig.2[23].The weather sta-tion can measure and store mainly solar radiation,temperature and wind speed data as well as other weather variables such as humidity,rainfall,etc .The wind speed,solar radiation,and temper-ature data are measured as 1-min averaged data (dynamic data)since the maximum sampling rate of the weather station is 1-min.Since power available form both solar panels and wind tur-bine is directly related with solar radiation and wind speed values at any instant,the collected data will be used to calculate the avail-able power from the source side.Data collection is completed from March 20to July 20,2011.The difference between the measured data and hourly averaged wind speed and solar radiation data is shown in Figs.3and 4,respectively.As seen,dynamics cannot be taken into account with the hourly averaged values.2O.Elma,U.S.Selamogullari /Applied Energy xxx (2012)xxx–xxx3.Modeling of hybrid PV/Wind/Backup power system components3.1.PV system modelingGenerally,solar panel manufacturers provides maximum power (P m),open circuit voltage(V oc)and short circuit current(I sc)of a so-lar panel under ideal test conditions(1000WmÀ2solar radiation, 25°C temperature)[24].However,in real life both the solar radia-tion and the temperature are highly dynamic.Therefore,the output power of a panel is also highly dynamic.The PV panel short circuit current and open circuit voltage depending on the solar radiation and the temperature can be calculated as[24]:I sc¼IÃscGÃG1þT cÀTÃcÀÁdI scdT c!ð1ÞV oc¼VÃocþT cÀTÃcÀÁdV ocdT cþV tÁlnGGÃð2ÞIn Eqs.(1)and(2),the letters with‘Ã’reflects the reference values.Gis the measured solar radiation.IÃscis the short circuit current andVÃocis the open circuit voltage provided by panel manufacturers. G⁄indicates the reference radiation value and is taken as1000WmÀ2.TÃcreflects the reference cell temperature which is 25°C.The V t value in the equation is constructed by theparison of dynamic data and hourly averaged data for residential electrical demand. Fig.2.Photographs of Davis VantagePro2weather station installed at YTU Besiktas campus.parison of dynamic data and hourly averaged data for wind speed.combination of constants.The temperature of a PV cell(T c)can be found using the equation given below[24]:T c¼T aþC tÁGð3ÞHere,T a is ambient temperature and C t is equation constant which can be found by:C t¼NOCTð CÞÀ20800ð4ÞThe NOCT value in Eq.(4)varies between42°C and46°C.As a re-sult,the C t value varies between0.0272and0.0321°C/(WmÀ2)[24].In real PV systems,a Maximum Power Point Tracking(MMPT) circuit is generally used to maximize the obtained energy from available solar radiation.The maximum power point(P m=V mÃI m) can be calculated based on the open circuit voltage and the short circuit current values found by Eqs.(1)and(2)[24]:V m¼V ocÁ1Àbv oc ln aÀr sð1ÀaÀbÞ!ð5ÞA Simulink block diagram is built to model the PV system basedon Equations given in this section and shown in Fig.5.The devel-oped model takes measured temperature and solar radiation dataand calculates the power available form the solar panels.An exam-ple of model power output based on measured temperature andsolar radiation data is shown in Fig.6.The developed model ison the cell level since this offer theflexibility of series and parallelconnection of solar cells.Also,the cell level model can be modifiedaccording to different company products.Here,parameters of180W ANEL solar panel given in Table1are used.3.2.Wind turbine modelIn our system analyses,we are interested with the power out-put of a wind turbine with respect to wind speed.A Zephyr windturbine is installed and operational at YTU Besiktas campus.Thewind speed versus power output characteristics of this turbine isshown in Fig.7.As seen,the turbine produces power output while the windspeed is between2.5and50msÀ1.The turbine is equipped with parison of dynamic data and hourly averaged data for solar radiation.Fig.5.Developed PV panel model.3.3.Backup modelA backup model based on power balance is developed which is suitable for system level analysis.An integrator with initial value is used to model the energy backup and to calculate the state of charge(SOC)of the backup source.The developed Simulink model is shown in Fig.10.The backup SOC is calculated based on power difference be-tween the load demand and the total of produced solar and wind power.In this calculation,the backup initial energy is defined as parameter and can be changed by the user.When the produced power is higher than the load demand,the energy backup is charged.When the produced power isthe energy backup is discharged.It is assumedSOC can be30%and maximum SOC canup energy.A control signal is produced110%to turn off both solar and wind powerauthor’s lab.In this experimental setup,the solar system and the wind turbine are combined at a common DC bus.A backup is also connected to this DC bus through a charge controller.However, there is no power conditioning equipment installed.In real resi-dential hybrid power system,however,the DC energy must be con-verted to conditioned AC through a power inverter.Thus,an inverter circuit is also included in system analyses.The inverter circuit is modeled as power versus efficiency lookup table in Sim-ulink and the measured electrical load demand is transferred to DC side using the inverter efficiency curve shown in Fig.11.As seen in Fig.11,the inverter efficiency changes with respect to processed power level.Therefore,including the inverter circuit into system analyses will provide more reliable results.Fig.6.Developed PV system model power output based on measured temperature and solar radiation data.ANEL solar panel.29.7V8.39A22.99V7.83AModule(W)180W48Fig.8.Simulink model of windour system simulations,the SOC min is evaluate whether the selected backup rupted energy.The overall Simulink block diagram is shown in Fig.13.The measured dynamic radiation,temperature and wind speed system simulations.Then,system simulations Matlab/Simulink using 1-min time step radiation,temperature and load data The purpose of the hybrid power system needs of the house without interruption.The system level simulations are based there are three possibilities that can occur Fig.9.Developed wind turbine model output power based on measured wind speed.Simulink backup model.Fig.11.Inverter efficiency curve with respect to load power [26].The produced power is lower than the load demand.In this case the backup is discharged to supply the demand.The backup can be discharged to30%of its initial energy.In our system sim-ulations,the SOC min is used as decision criteria to evaluate whether the selected backup size is good for uninterrupted energy.The produced power is equal to load demand.Then,backup is notused.In system simulations,backup initial energy value and maxi-mum power output of PV system are user defined parameters. Three different maximum power output values for PV system are considered.PV system maximum power values aremultiples of 180W since experimental solar panels are rated at180W at our laboratory.The maximum power output of the wind turbine is ta-power for both dynamic data and hourly averaged data cases (Fig.14).In Fig.14,positive power values mean backup is charging and negative power values mean backup is discharging.When hourly averaged values are used in the system analysis,all dynam-ics are lost as seen in Fig.14.However,these dynamics will provide design parameters for power conditioning equipments used in the system as well as the type of backup source to be used.The results when dynamic data is used show that large amount of power must be drawn fromFig.12.Graphical representation of considered PV/Wind/Backup hybrid power system.6.ConclusionsA backup sizing study in a renewable energy (PV–Wind)sup-plied stand-alone residential house is completed considering both demand side and source side dynamics.First,experimental data collection is completed to capture these dynamics.Then,system level models of each component in the hybrid power system are developed in Simulink.Case studies are completed to find the backup size that satisfies the user defined SOC min P 0.30,which means an uninterrupted energy to the house in this study.When hourly averaged data are used for backup sizing as reported in lit-erature,it is found that the backup is oversized by approximately 10%for the considered house.This shows the importance of data resolution on the analysis of such systems.Before analyzing such a system,experimental data must be collected with the highest resolution possible for more reliable results.Also,the dynamic re-sponse of the sub-systems (i.e.PV modules,wind turbines,backup source etc .)should be considered [30].In order to compare the computational burden when dynamic data used,an analysis is completed to find out simulation times for single SOC calculation for both dynamic data and hourly aver-aged data from March 20to July 20,2011.Calculation times for the SOC in single simulation run are found as 0.2401s for hourly averaged data and 2.8116s for dynamic data in a computer with 3GB RAM and Intel Core2Quad 2.5GHz processor.The computa-tional time with dynamic data increases 11.71times compared to the computational time with hourly averaged ing the measured data in succession,a year long data is obtained to eval-uate the computational time for a year as well.Calculation times for the SOC in single simulation run are found as 0.3367s for hourly averaged data and 8.1098s for dynamic data.The computa-tional time with dynamic data increases 24.08times compared to the computational time with hourly averaged data for a year long simulation.Also,the calculation time of the SOC in single simula-tion run for a year increases 1.402times for hourly data and 2.88times for dynamic data compared to 4-month long data use.ItTable 2Parameters for case studies.Wind turbine maximum power output (W)Maximum solar power output (W)Backup size for dynamic data (MJ)SOC min for dynamic data (%)Backup size for hourly data (MJ)SOC min for hourly data (%)Case 1 2.3kW 1980W (11Â180W)150MJ 27.73165MJ 27.622.3kW 1980W (11Â180W)165MJ 35.09180MJ 34.51Case 2 2.3kW 2520W (14Â180W)135MJ 27.53150MJ 27.342.3kW 2520W (14Â180W)150MJ 35.92165MJ 34.73Case 32.3kW 3060W (17Â180W)120MJ 27.89135MJ 27.582.3kW3060W (17Â180W)135MJ36.29150MJ35.218O.Elma,U.S.Selamogullari /Applied Energy xxx (2012)xxx–xxxshould also be noted that several simulation runs must be com-pleted based on the selected backup increments for each study to reach the backup size that satisfies SOC min P 30%.Decision criteria other than backup SOC can also be used to find the backup size.For example,loss of load supply probability can be used to find the backup value.A comparative analysis of sizing strategies under dynamic data will be completed in a future study.In this study,it is assumed that the load demand must be satis-fied at all times.However,smart house concept can be used to sup-ply the requested demand with smaller component sizes in such hybrid powered residential rmation screens can be em-ployed to warn users about the backup energy level and power production capacity of renewable sources and to suggest using the appliance at a later time.Household appliances might be turned on and off depending on the backup SOC value after the user pushes the start button.The effect of such operation on com-ponent sizes should be investigated as well.The developed system analysis method can be used for different wind turbine and solar system power levels as long as their char-acteristics are available.The demand data could also be the electri-cal demand of regional area or a group of homes.As an example,using the wind speed-power output characteristics of a 6kW wind turbine [31]and increasing the solar panel number to 34to obtain 6.12kW solar power,another case study is completed to find back-up size for both dynamic data and hourly averaged data.The load demand is assumed to be the same.Calculated backup sizes are 29.88MJ for dynamic data and 33.18MJ for hourly averaged data,which corresponds to 11.04%oversized backup value with the use of hourly averaged data.As the use of renewable energy sources is growing rapidly,sys-tem analyses must be completed for each application separately.This study will be a guide for system designers on the importance of data resolution.AcknowledgementThis study is supported by Yıldız Technical University Research Projects Fund under Grant 2010-04-02-KAP04.References[1]Nema P,Nema RK,Rangnekar S.A current and future state of art developmentof hybrid energy system using wind and PV–solar:a review.Renew Sust Energy Rev 2009;13(8):2096–3103.[2]Bernal-Agustin JL,Dufo-Lopez R.Simulation and optimization of stand-alonehybrid renewable energy systems.Renew Sust Energy Rev 2009;13:2111–8.[3]Zhou W,Lou C,Li Z,Lu L,Yang H.Current status of research on optimum sizingof stand-alone hybrid solar–wind power generation systems.Appl Energy 2010;87(2):380–9.[4]Qi Y,Jianhua Z,Zifa L,Shu X,Weiguo L.A new methodology for optimizing thesize of hybrid PV/wind system.In:IEEE ICSET;2008.p.922-7.[5]Panayiotou G,Kalogirou S,Tassou S.Design and simulation of a PV and a PV–Wind stand-alone energy system to power a household application.Renew Energy 2012;37:355–63.[6]Diaf S,Notton G,Belhamel M,Haddadi M,Louche A.Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions.Appl Energy 2008;85:968–87.[7]Koutroulis E,Kolokotsa D,Potirakis A,Kalaitzakis K.Methodology for optimalsizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms.Solar Energy 2006;80:1072–88.[8]Borowy BS,Salameh ZM.Methodology for optimally sizing the combination ofa battery bank and PV array in a Wind/PV hybrid system.IEEE Trans Energy Convers 1996;11(2):367–74.[9]Kellogg WD,Nehrir MH,Venkataramanan G,Gerez V.Generation unit sizingand cost analysis for stand-alone wind,photovoltaic,and hybrid wind/PV systems.IEEE Trans Energy Convers 1998;13(1):70–5.[10]Ai B,Yang H,Shen H,Liao puter-aided design of PV/wind hybrid system.Renew Energy 2003;28(10):1491–512.[11]Nandi SK,Ghosh HR.Prospect of Wind–PV–Battery hybrid power system as analternative to grid extension in Bangladesh.Energy 2010;35:3040–7.[12]Dufo-López R,Bernal-Agustín JL,Yusta-Loyo JM,Domínguez-Navarro JA,Ramírez-Rosado JI,Lujano J,et al.Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage.Appl Energy 2011;88:4033–41.[13]Chong WT,Naghavi MS,Poh SC,Mahlia TMI,Pan KC.Techno-economicanalysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application.Appl Energy 2011;88:4067–77.[14]Saheb-Koussa D,Haddadi M,Belhamel M.Economic and technical study of ahybrid system (wind–photovoltaic–diesel)for rural electrification in Algeria.Appl Energy 2009;86:1024–30.[15]Hongxing Y,Wei Z,Chengzhi L.Optimal design and techno-economic analysisof a hybrid solar–wind power generation system.Appl Energy 2009;86:163–9.[16]Bekele G,Palm B.Feasibility study for a standalone solar–wind-based hybridenergy system for application in Ethiopia.Appl Energy 2010;87:487–95.[17]Bekele G,Tadesse G.Feasibility study of small Hydro/PV/Wind hybrid systemfor off-grid rural electrification in Ethiopia.Appl Energy 2011./10.1016/j.apenergy.2011.11.059.[18]Roy A,Kedare SB,Bandyopadhyay S.Optimum sizing of wind–battery systemsincorporating resource uncertainty.Appl Energy 2010;87:2712–27.[19]Lujano-Rojas JM et al.Optimal sizing of small wind/battery systemsconsidering the DC bus voltage stability effect on energy capture,wind speed variability,and load uncertainty.Appl Energy 2011./10.1016/j.apenergy.2011.12.035.[20]Chen SG.An efficient sizing method for a stand-alone PV system in terms ofthe observed block extremes.Appl Energy 2012;91:375–84.[21]Kaplani E,Kaplanis S.A stochastic simulation model for reliable PV systemsizing providing for solar radiation fluctuations.Appl Energy 2011./10.1016/j.apenergy.2011.12.016.[22]SelamogullarıUS,Willemain TR,Torrey DA.A systems approach for sizing astand-alone residential PEMFC power system.J Power Sources 2007;171:802–10.[23]</manuals/VP2_Console_Manual.pdf >[Lastaccessed on 14.08.2011].[24]Luque A,Hegedus S.Handbook of photovoltaic science and engineering.WestSussex-England:Wiley;2003.[25]</img/am_printable_version.pdf >[Lastaccessed on 14.08.2011].[26]Selamogullari US,Torrey DA,Salon S.A systems approach for a stand-aloneresidential fuel cell power inverter design.IEEE Trans Energy Convers 2010;25(3):741–9.[27]Burke A.Ultracapacitors:why,how,and where is the technology.J PowerSources 2000;91:37–50.[28]Xiaolei H,Tseng KJ,Srinivasan M.Optimization of battery energy storagesystem with super-capacitor for renewable energy applications.In:IEEE 8th international conference on power electronics and ECCE,Asia;2011.p.1552–7.[29]Zhang Y,Jiang Z,Yu X.Control strategies for battery/supercapacitor hybridenergy storage systems.In:IEEE energy 2030conference;2008.p.1–6.[30]Kalantar M,Mousavi GSM.Dynamic behavior of a stand-alone hybrid powergeneration system of wind turbine,microturbine,solar array and battery storage.Appl Energy 2010;87:3051–64.[31]</DataSheets/Proven/6kwspecsheet.pdf >[Lastaccessed on 26.01.2012].O.Elma,U.S.Selamogullari /Applied Energy xxx (2012)xxx–xxx9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.
Байду номын сангаас
Introduction
Typically models used to predict system reliability based on linear combinations of component failure rates are used in isolation and do not inform the design process. This is because the impact of environmental and operating conditions on base reliabilities are difficult to assess, the assumption of statistical independence between components is unrealistic and the lack of involvement of designers. Therefore predictions are not trusted to provide useful forecasts or to provide insight into ways product reliability might be enhanced. For the case where designs are evolutionary we propose to formulate a model which captures information about novel features between design variants. Two sources of data are required: historical data concerning the performance of the earlier designs to be used as the base reliability; expert engineering judgement to assess differences between the base design and the variant currently under review. We propose a point process model. We model the reliability of the new item as a superimposition of two types of failure process. First, the failure modes within the item not removed through the evolutionary design process and so inherited from earlier designs. Second, the failure modes that have been introduced through design changes made to the existing design. The model is formulated within a Bayesian framework and is described in the following section. In part, our mode l has been motivated by earlier growth modelling reported in Meinhold and Singpurwalla (1983). We present an example of the model application and conclude by reflecting upon its use in design decision-making. 2.
N F ( t ) = ∏ E Fi ( t ) i i=1 C
= ∏ Ai (Fi (t ) )
i=1
C
2.3 Intensity Function The realisation of faults through failure can be conceptualised as a point process. Using the same assumptions as before the expected number of faults that have been realised by time t are:
The distribution function of the operational time, t, to realise a particular fault classified in category i is denoted by Fi (t). For class i, we have a prior distribution describing the experts belief in the number of faults, Ni , likely to be inherent in the design. We denote this as π i (Ni =ni ). For each prior distribution we denote its associated Probability Generating Function as Ai (z). We make use of the relationship between the theoretical distributions and the Probability Generating Functions as this provides a suitable summary of the expert judgement to use within the model. 2.2 Model Derivation The density function of the time to realise the jth fault within a particular class can be expressed as:
Ni! j-1 N i- j f ( j) t ( j) = t = E N i N i ≥ j Fi ( t ) f i ( t ) 1-Fi ( t ) ( j-1)!( N i -j)! d j A( Z) j j-1 dZ Z=1-F ( t ) F t f t ( ) ( ) i i i = × j-1 ( j-1) ! 1- ∑ π i ( N i = n i ) n i =0
Formulation of Model
2.1 Assumptions We assume a new design has a fixed but unknown number of faults, N, which will be realised as failures in operation. A failure taxonomy is defined a priori and contains C+1 classes, C of which categorise the fault according to root cause. The additional class corresponds to those failures where no underlying fault is found and is labelled ‘no fault found (NFF)’ and represents noise in the inherent hazard rate of the design. We denote the number of faults in class i as Ni .
E N ( t ) = ∑E Ni ( t )
i=1 C C
= ∑ E N i E Ni ( t ) Ni ( t ) N i
i=1 C
= ∑ E N i [ Ni ] × Fi ( t )
i=1
Assuming the no fault found failures occur according to a Homogeneous Poisson Process at rate µ then the intensity function can be simplified to:
(
)
Assuming the realisation of faults is assumed independent, the distribution function of the time to first failure of the item is:
F ( t ) = 1− Pr {all faults detected after time t and time to next NFF is after time t } = 1− (1-FNFF ( t ) ) ∏ E N i 1-Fi ( t )
i=1 C Ni
C = 1− (1-FNFF ( t ) ) ∏ Ai (1-Fi ( t ) ) i=1
The distribution of time until all faults have been realised for the C classes is constructed by a similar argument giving:
Point Process Model for Reliability Analysis of Evolutionary Designs
John Quigley Department of Management Science University of Strathclyde, Glasgow G1 1QE Scotland john@ Lesley Walls Department of Management Science University of Strathclyde, Glasgow G1 1QE Scotland lesley@
相关文档
最新文档