化工热力学习题 冯新主编第7章习题及答案打印版
化工热力学课后习题答案

化工热力学课后习题答案化工热力学课后习题答案解析与实践化工热力学是化学工程专业中的重要课程,它涉及到热力学原理在化工过程中的应用。
课后习题是学生巩固知识、提高能力的重要途径。
本文将针对化工热力学课后习题答案进行解析,并结合实际工程案例进行讨论。
第一题:某化工过程中,液体从100°C冷却至30°C,求其冷却前后的焓变化。
解析:根据热力学知识,焓变化可以通过温度变化和相变潜热来计算。
在这个过程中,液体从100°C冷却至30°C,因此焓变化可以表示为:ΔH = mcΔT + mL其中,m为液体的质量,c为液体的比热容,ΔT为温度变化,L为相变潜热。
实际案例:在化工生产中,液体冷却过程常常会伴随着热量的释放。
比如在冷却塔中,热水经过冷却塔顶部的喷淋装置,通过与空气的接触,将热量传递给空气,使水的温度降低。
这个过程中,热水的焓发生了变化,而释放的热量则被转化为冷却塔底部的冷却水。
第二题:某反应器中,气体从1MPa膨胀至0.1MPa,求其膨胀过程中的焓变化。
解析:气体的膨胀过程可以看作是绝热膨胀,根据绝热过程的热力学关系,焓变化可以表示为:ΔH = C_pΔT其中,C_p为气体的定压比热容,ΔT为温度变化。
实际案例:在化工生产中,气体的膨胀过程常常会伴随着功的输出。
比如在天然气输送管道中,高压天然气经过减压阀膨胀至低压,释放出的能量可以用来驱动压缩机或者发电机,实现能量的转换和利用。
通过以上两个习题的解析和实际案例的讨论,我们可以看到化工热力学的知识在实际工程中的重要性。
掌握热力学原理和应用是化学工程师必备的基本能力,通过课后习题的答案解析和实践案例的讨论,可以帮助学生更好地理解和应用这些知识,提高工程实践能力,为将来的工程实践打下坚实的基础。
化工热力学习题及详细解答

化工热力学习题及详细解答习题 (2)第1章绪言 (2)第2章 P-V-T关系和状态方程 (4)第3章均相封闭体系热力学原理及其应用 (8)第4章非均相封闭体系热力学 (13)第5章非均相体系热力学性质计算 (19)第6章例题 (27)答案 (40)第1章绪言 (40)第2章 P-V-T关系和状态方程 (44)第3章均相封闭体系热力学原理及其应用 (51)第4章非均相封闭体系热力学 (68)第5章非均相体系热力学性质计算 (87)附加习题 (103)第2章 (103)第3章 (104)第4章 (107)第5章 (109)习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
2. 封闭体系的体积为一常数。
3. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
4. 理想气体的焓和热容仅是温度的函数。
5. 理想气体的熵和吉氏函数仅是温度的函数。
6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
8. 描述封闭体系中理想气体绝热可逆途径的方程是γγ)1(1212-⎪⎪⎭⎫ ⎝⎛=P P T T (其中ig Vig P C C =γ),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
9. 自变量与独立变量是一致的,从属变量与函数是一致的。
10. 自变量与独立变量是不可能相同的。
二、填空题1. 状态函数的特点是:___________________________________________。
化工热力学4-7章答案

(3)
= 50 + 49x1 −12x12 + 3x13
课后答案网
( ) dH
dx1
d =
dx1
50 + 49x1 −12x12 + 3x13
= 49 − 24x1 + 9x12
H1
=
H
+
(1−
x1
)
dH dx1
( ) = 50 + 49x1 −12x12 + 3x13 + (1− x1 ) 49 − 24x1 + 9x12
= 9x1 −12x12 + 3x13
( ) = 3x1 3 − 4x1 + x12
(5) 当 x1 = 0.5 时, H1 = 99 + 24x1 − 21x12 − 6x13
课后答案网
=
99
−
24
×
1 2
+
21×
⎛ ⎜⎝
1 2
2
⎞ ⎟⎠
−
6
×
⎛ ⎜⎝
1 2
3
⎞ ⎟⎠
hd x1d ⎡⎣α x22 + β x22 (3x1 − x2 )⎤⎦ + x2d ⎡⎣α x12 + β x12 (x1 − 3x2 )⎤⎦ ( ) ( w( .k) ) = x1 2α x2 + 6β x2 −12β x22 + x2 −2α x1 + 3β 1− x2 2 (−1) − 3β +12β x2 − 9β x22 ww ( ) = 2 α x1x2 + 6β x1x2 −12β x1x22 − 2α x1x2 − 3β x2 1− x2 2 − 3β x2 +12β x22 − 9β x23
化工热力学 第七章习题答案

习 题 七 及 答 案一、问答题7-1. Rankine 循环与卡诺循环有何区别与联系? 实际动力循环为什么不采用卡诺循环?答:两种循环都是由四步组成,二个等压过程和二个等熵(可逆绝热)过程完成一个循环。
但卡诺循环的二个等压过程是等温的,全过程完全可逆;Rankine 循环的二个等压过程变温,全过程只有二个等熵过程可逆。
卡诺循环中压缩机压缩的是湿蒸汽,因气蚀损坏压缩机;且绝热可逆过程难于实现。
因此,实际动力循环不采用卡诺循环。
7-2. Rankine 循环的缺点是什么? 如何对其进行改进?答:Rankine 循环的吸热温度比高温燃气温度低很多,热效率低下,传热损失极大。
可通过:提高蒸汽的平均吸热温度、提高蒸汽的平均压力及降低乏汽的压力等方法进行改进。
7-3.影响循环热效率的因素有哪些?如何分析?答:影响循环热效率的因素有工质的温度、压力等。
具体可利用下式1L HT T η=- 分析确定哪些因素会改变L H T T 或,从而得到进一步工作的方案。
7-4.蒸汽动力循环中,若将膨胀做功后的乏气直接送人锅炉中使之吸热变为新蒸汽,从而避免在冷凝器中放热,不是可大大提高热效率吗? 这种想法对否? 为什么?答:不合理。
蒸汽动力循环以水为工质,只有在高压下才能提高水温;乏汽的压力过低,不能直接变成高压蒸汽。
与压缩水相比较,压缩蒸汽消耗的工太大,不仅不会提高热效率,反而会大大降低热效率。
7-5.蒸气压缩制冷循环与逆向卡诺循环有何区别与联系? 实际制冷循环为什么不采用逆向卡诺循环?答:两种循环都是由四步组成,二个等压过程和二个等熵(可逆绝热)过程完成一次循环。
但逆向卡诺循环的二个等压过程是等温的,全过程完全可逆;蒸气压缩制冷循环的二个等压过程变温,全过程只有二个等熵过程可逆。
Carnot 制冷循环在实际应用中是有困难的,因为在湿蒸汽区域压缩和膨胀会在压缩机和膨胀机汽缸中形成液滴,造成“汽蚀”现象,容易损坏机器;同时压缩机汽缸里液滴的迅速蒸发会使压缩机的容积效率降低。
化工热力学答案冯新宣爱国课后总习题答案详解

6.料流方向取决于料流进入型腔的位置,故在型腔一定时影响分子取向方向的因素是浇口位置。
7.牛顿型流体包括粘性流体、粘弹性流体和时间依赖性流体。
8.受温度的影响,低分子化合物存在三种物理状态:固态、液态、气态。
稳定剂:提高树脂在热、光和霉菌等外界因素作用时的稳定性。
润滑剂:改进高聚物的流动性、减少摩擦、降低界面粘附。
着色剂:使塑料制件具有各种颜色。
3.增塑剂的作用是什么?
答:在树脂中加入增塑剂后,加大了分子间的距离,削弱了大分子间的作用力。这样便使树脂分子容易滑移,从而使塑料能在较低温度下具有良好的可塑性和柔软性。增塑剂的加入虽然可以改善塑料的工艺性能和使用性能,但也使树脂的某些性能降低了,如硬度、抗拉强度等。
15.收缩率的影响因素有压力、温度和时间。
16.塑料在一定温度与压力下充满型腔的能力称为流动性。
17.根据塑料的特性和使用要求,塑件需进行后处理,常进行退火和调湿处理。
判断
1.根据塑料的成份不同可以分为简单组分和多组分塑料。单组分塑料基本上是树脂为主,加入少量填加剂而成。(√)
2.填充剂是塑料中必不可少的成分。(×)
(4)提高原材料的纯度
第 2 章
填空
1.塑料的主要成份有树脂、填充剂、增塑剂、着色剂、润滑剂、稳定剂。
2.根据塑料成型需要,工业上用成型的塑料有粉料、粒料、溶液和分散体等物料。
3.热固性塑料的工艺性能有:收缩性、流动性、压缩率、水分与挥化物含量、固化特性。
4.热塑性塑料的工艺性能有:收缩性、塑料状态与加工性、粘度性与流动性、吸水性、结晶性、热敏性、应力开裂、熔体破裂。
化工热力学习题答案 第一至五、第七章

第一章 绪论一、选择题(共3小题,3分)1、(1分)关于化工热力学用途的下列说法中不正确的是( ) A.可以判断新工艺、新方法的可行性。
B 。
优化工艺过程。
C 。
预测反应的速率。
D.通过热力学模型,用易测得数据推算难测数据;用少量实验数据推算大量有用数据。
E 。
相平衡数据是分离技术及分离设备开发、设计的理论基础.2、(1分)关于化工热力学研究特点的下列说法中不正确的是( ) (A )研究体系为实际状态。
(B )解释微观本质及其产生某种现象的内部原因. (C )处理方法为以理想态为标准态加上校正。
(D )获取数据的方法为少量实验数据加半经验模型。
(E )应用领域是解决工厂中的能量利用和平衡问题.3、(1分)关于化工热力学研究内容,下列说法中不正确的是( ) A.判断新工艺的可行性. B.化工过程能量分析。
C.反应速率预测。
D 。
相平衡研究参考答案一、选择题(共3小题,3分) 1、(1分)C 2、(1分)B 3、(1分)C第二章 流体的PVT 关系一、选择题(共17小题,17分)1、(1分)纯流体在一定温度下,如压力低于该温度下的饱和蒸汽压,则此物质的状态为( )。
A .饱和蒸汽 B.饱和液体 C .过冷液体 D 。
过热蒸汽2、(1分)超临界流体是下列 条件下存在的物质。
A 。
高于T c 和高于P cB 。
临界温度和临界压力下C 。
低于T c 和高于P cD 。
高于T c 和低于P c3、(1分)对单原子气体和甲烷,其偏心因子ω,近似等于 . A 。
0 B. 1 C. 2 D 。
34、(1分)0.1Mpa ,400K 的2N 1kmol 体积约为__________A 3326LB 332。
6LC 3.326LD 33.263m5、(1分)下列气体通用常数R 的数值和单位,正确的是__________ A K kmol m Pa ⋅⋅⨯/10314.833B 1。
987cal/kmol KC 82。
化工热力学答案-冯新 第六章 第七章概要

第六章思考题:6-1 空气被压缩机绝热压缩后温度是否上升,为什么? 6-2 为什么节流装置通常用于制冷和空调场合? 6-3 请指出下列说法的不妥之处:① 不可逆过程中系统的熵只能增大不能减少。
② 系统经历一个不可逆循环后,系统的熵值必定增大。
③ 在相同的始末态之间经历不可逆过程的熵变必定大于可逆过程的熵变。
④ 如果始末态的熵值相等,则必定是绝热过程;如果熵值增加,则必定是吸热过程。
6-4 某封闭体系经历一可逆过程。
体系所做的功和排出的热量分别为15kJ 和5kJ 。
试问体系的熵变:(a )是正?(b )是负?(c )可正可负?6-5 某封闭体系经历一不可逆过程。
体系所做的功为15kJ ,排出的热量为5kJ 。
试问体系的熵变: (a )是正?(b )是负?(c )可正可负?6-6 某流体在稳流装置内经历一不可逆过程。
加给装置的功为25kJ ,从装置带走的热(即流体吸热)是10kJ 。
试问流体的熵变:(a )是正?(b )是负?(c )可正可负?6-7 某流体在稳流装置内经历一个不可逆绝热过程,加给装置的功是24kJ ,从装置带走的热量(即流体吸热)是10kJ 。
试问流体的熵变: (a )是正?(b )是负?(c )可正可负?6-8 热力学第二定律的各种表述都是等效的,试证明:违反了克劳休斯说法,则必定违反开尔文说法。
6-9 理想功和可逆功有什么区别?6-10 对没有熵产生的过程,其有效能损失是否必定为零? 6-11 总结典型化工过程热力学分析。
习题6-1 压力为1.5MPa ,温度为320℃的水蒸气通过一根内径为75㎜的管子,以-13m s ⋅的速度进入透平机。
由透平机出来的乏气用内径为25㎜的管子引出,其压力为35kPa ,温度为80℃。
假定过程无热损失,试问透平机输出的功率为多少?【解】:查593K 和353K 过热水蒸气焓值,-113255.8kJ kg h =⋅,-122645.6kJ kg h =⋅ 由 3-13-11176.5cm g 0.1765m kg V =⋅=⋅313-124625 4.625m kg V cm g -=⋅=⋅进口截面积 ()22210.0750.00442m 44A D ππ==⨯=-11130.004420.0751kg s 0.1756u A m V ⨯===⋅、 m V A u V A u ==111222-122220.0751 4.6257.08m s 0.254m V u A π⋅⨯===⋅⨯ -1212645.63255.8610.2kJ kg h h h ∆=-=-=-⋅忽略位能变化,则 0z ∆=()2223-1117.0831020.563kJ kg 22u -∆=-⨯=⋅212s q w m h u ⎛⎫+=∆+∆ ⎪⎝⎭()-10.0751610.220.56347.37kJ s 47.37kW s w =-+=-⋅=-6-2 有一水泵每小时从水井抽出1892kg 的水并泵入储水槽中,水井深61m ,储水槽的水位离地面18.3m ,水泵用功率为3.7KW 的电机驱动,在泵送水过程中,只耗用该电机功率的45%。
化工热力学课后习题答案

第1章绪言一、是否题3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)第2章P-V-T关系和状态方程一、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)3. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
)4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle温度时,Z>1。
)7. 纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
)8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。
(错。
它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)10. 若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。
(错。
)11. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
)12. 气体混合物的virial系数,如B,C…,是温度和组成的函数。
(对。
)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。
(错。
三对数对应态原理不能适用于任何流体,一般能用于正常流体normal fluid)14. 在压力趋于零的极限条件下,所有的流体将成为简单流体。
(错。
简单流体系指一类非极性的球形流,如Ar等,与所处的状态无关。
)二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 相平衡与化学反应平衡一、是否题1. 在一定温度T (但T <T c )下,纯物质的饱和蒸汽压只可以从诸如Antoine 等蒸汽压方程求得,而不能从已知常数的状态方程(如PR 方程)求出,因为状态方程有三个未知数(P 、V 、T )中,只给定了温度T ,不可能唯一地确定P 和V 。
(错,因为纯物质的饱和蒸汽压代表了汽液平衡时的压力。
由相律可知,纯物质汽液平衡状态时自由度为1,若已知T ,其蒸汽压就确定下来了。
已知常数的状态方程中,虽然有P 、V 、T 三个变量,但有状态方程和汽液平衡准则两个方程,所以,就能计算出一定温度下的蒸汽压。
) 2. 混合物汽液相图中的泡点曲线表示的是饱和汽相,而露点曲线表示的是饱和液相。
(错) 3. 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。
(错,在共沸点时相同)4. 一定压力下,纯物质的泡点温度和露点温度是相同的,且等于沸点。
(对)5. 由(1),(2)两组分组成的二元混合物,在一定T 、P 下达到汽液平衡,液相和汽相组成分别为11,y x ,若体系加入10 mol 的组分(1),在相同T 、P 下使体系重新达到汽液平衡,此时汽、液相的组成分别为'1'1,y x ,则1'1x x >和1'1y y >。
(错,二元汽液平衡系统的自由度是2,在T ,P 给定的条件下,系统的状态就确定下来了。
) 6. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <。
(错,若系统存在共沸点,就可以出现相反的情况)7. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增大而增大。
(错,若系统存在共沸点,就可以出现相反的情况)8. 纯物质的汽液平衡常数K 等于1。
(对,因为111==y x )9. 理想系统的汽液平衡K i 等于1。
(错,理想系统即汽相为理想气体,液相为理想溶液,)10. EOS 法只能用于高压相平衡计算,EOS +γ法只能用于常减压下的汽液平衡计算。
(错,EOS 法也能用于低压下,EOS +γ法原则上也能用于加压条件下) 11. virial 方程RTBP Z +=1结合一定的混合法则后,也能作为EOS 法计算汽液平衡的模型。
(错,该方程不能用汽液两相)12. 对于理想体系,汽液平衡常数K i (=y i /x i ),只与T 、P 有关,而与组成无关。
(对,可以从理想体系的汽液平衡关系证明) 13. 二元共沸物的自由度为1 。
(对) 14. 对于负偏差体系,液相的活度系数总是小于1。
(对)15. 能满足热力学一致性的汽液平衡数据就是高质量的数据。
(错)16. EOS 法既可以计算混合物的汽液平衡,也能计算纯物质的汽液平衡。
(对)17. EOS +γ法既可以计算混合物的汽液平衡,也能计算纯物质的汽液平衡。
(错)18. A-B 形成的共沸物,在共沸点时有()()az Aaz BazsB az s A TP T P γγ=。
(对) 二、选择题1. 欲找到活度系数与组成的关系,已有下列二元体系的活度系数表达式,βα,为常数,请决定每一组的可接受性 。
(D ) A 2211;x x βγαγ== B 12211;1x x βγαγ+=+=C 1221ln ;ln x x βγαγ==D 212221ln ;ln x x βγαγ== 2. 二元气体混合物的摩尔分数y 1=0.3,在一定的T ,P 下,8812.0ˆ,9381.0ˆ21==ϕϕ,则此时混合物的逸度系数为 。
(C ) A 0.9097B 0.89827C 0.8979D 0.90923. 汽液平衡关系li v i f f ˆˆ=的适用的条件 (A )A 无限制条件B 低压条件下的非理想液相C 理想气体和理想溶液D 理想溶液和非理想气体4. 汽液平衡关系i l i i v i x y ϕϕˆˆ=的适用的条件 (A ) A 无限制条件 B 低压条件下的非理想液相 C 理想气体和理想溶液 D 理想溶液和非理想气体5. 汽液平衡关系i i si i x P Py γ=的适用的条件 (B )A 无限制条件B 低压条件下的非理想液相C 理想气体和理想溶液D 理想溶液和非理想气体6. 汽液平衡关系s i i i Py P x =的适用的条件 (C )A 无限制条件B 低压条件下的非理想液相C 理想气体和理想溶液D 理想溶液和非理想气体 三、计算题1. 用PR 方程计算甲烷(1)-乙烷(2)-丙烷(3)-丁烷(4)-丙烯(5)等摩尔液体混合物在P =3MPa 下的泡点温度和气相组成(用软件计算)。
解:04183817.0,00989295.0,03558313.0,1313172.0,7812595.0,9445.25754321======y y y y y K T2. 一个由丙烷(1)-异丁烷(2)-正丁烷(3)的混合气体,7.01=y ,2.02=y ,1.03=y ,若要求在一个30℃的冷凝器中完全冷凝后以液相流出,问冷凝器的最小操作压力为多少?(用软件计算)解:计算结果为最小操作压力0.8465MPa3. 在常压和25℃时,测得059.01=x 的异丙醇(1)-苯(2)溶液的汽相分压(异丙醇的)是1720Pa 。
已知25℃时异丙醇和苯的饱和蒸汽压分别是5866和13252Pa 。
(a)求液相异丙醇的活度系数(对称归一化);(b)求该溶液的E G 。
解:由1111γx P Py s =得55866059.017205866059.010132511111≈⨯=⨯==y x P Py sγ同样有:()813252059.0117201013252222≈⨯--==x P Pysγ28ln 941.05ln 059.0ln ln 2211≈⨯+⨯=+=γγx x RTGE16.495715.298314.82-⋅=⨯⨯=∴mol J G E4. 乙醇(1)-甲苯(2)体系的有关的平衡数据如下 T =318K 、P =24.4kPa 、x 1=0.300、y 1=0.634,已知318K的两组饱和蒸汽压为 05.10,06.2321==ss P P kPa ,并测得液相的混合热是一个仅与温度有关的常数437.0=RT H ∆,令气相是理想气体,求 (a)液相各组分的活度系数;(b)液相的G ∆和G E ;(c)估计333K 、x 1=0.300时的G E 值;(d)由以上数据能计算出333K 、x 1=0.300时液相的活度系数吗? 为什么?(e )该溶液是正偏差还是负偏差?解:(a )由1111γx P Py s=得24.206.233.0634.04.241111=⨯⨯==x P Py sγ同样有:27.105.107.0)634.01(4.242222=⨯-==x P Py sγ(b)122110.108441.027.1ln 7.024.2ln 3.0ln ln -⋅=⇒=⨯+⨯=+=molJ Gx x RTGEEγγ()7.0ln 7.03.0ln 3.041.0ln ln 2211⨯+⨯+=++=x x x x RTGRTG E∆()1Jmol0.531--=∆G(c)(){}T RT H T H T T G Ex P E 437.022,-=-=-=⎥⎦⎤⎢⎣⎡∂∂∆ 积分得390.0318333ln437.041.0437.0333318318333=-=-=⎰====T T T E T EdT TRTGRTG(d)不能得到活度系数,因为没有G E 的表达式。
(e)由于G E>0,故为正偏差溶液。
5. 在总压101.33kPa 、350.8K 下,苯(1)-正已烷(2)形成x 1=0.525的恒沸混合物。
此温度下两组分的蒸汽压分别是99.4KPa 和97.27KPa ,液相活度系数模型选用Margules 方程,汽相服从理想气体,求350.8K 下的汽液平衡关系1~x P 和11~x y 的函数式。
解:将低压下的二元汽液平衡条件与共沸点条件结合可以得 04.127.9733.101,02.14.9933.1012211======s az az saz az PP P Pγγ将此代入Margules 方程()[]()[]212211221222112211212ln 2ln x x A A A x x A A A -+=-+=γγ得()[]()[]22112212122112525.0475.0204.1ln 475.0525.0202.1ln A A A A A A -+=-+=解出0879.0,1459.02112==A A由此得新条件下的汽液平衡关系()()[]()()()[]211121112221111116.00879.0exp 127.971116.01459.0exp 4.99x x xx x x x P x P P ss-+-+--=+=γγ()()[]Px x x Px P y s211111111116.01459.0exp 4.99--==γ6. 苯(1)-甲苯(2)可以作为理想体系。
(a)求90℃时,与x 1=0.3 的液相成平衡的汽相组成和泡点压力;(b)90℃和101.325kPa 时的平衡汽、液相组成多少? (c)对于x 1=0.55和y 1=0.75的平衡体系的温度和压力各是多少? (d)y 1=0.3的混合物气体在101.325KPa 下被冷却到100℃时,混合物的冷凝率多少?解:查出方程常数K )(15.36315.27390=+=T ,由Antoine 方程得(a )kPa 136,995.126.5315.36342.27699419.6ln 11=-=--=ssP P同样得kPa 2.542=s P 由理想体系的汽液平衡关系得52.074.783.0136kPa 74.787.02.543.01361112211=⨯===⨯+⨯=+=P x P y x P x P P sss(b) 由()576.012.54136325.1011112211=→-+=→+=x x x x P x P P ss773.0325.101576.0136111=⨯==P x P y s(c)由222111,x P Py x P Py ss==得⎪⎪⎭⎫⎝⎛=-→=122121122121ln ln ln x y x y P P x y x y P P s sss 即K 64.36955.025.045.075.0ln 65.5465.30760580.726.5342.27699419.6≈→⎪⎭⎫ ⎝⎛⨯⨯=-+---T T T所以kPa 6.66,4.16321==ssP PkPa 84.1192211=+=x P x P P ss(d )K )(15.37315.273100=+=T ,由Antoine 方程得 kPa 1.74,.18021==ssP P()743.0,257.011.74180325.1012111==→-+=x x x x544.0,456.0325.101257.018021==⨯=y y设最初混合物汽相有10mol ,即苯3mol ,甲苯7mol 。