高中物理【万有引力定律】专题练习题

合集下载

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理专题练习(一)万有引力定律1.(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。

双方确定对火星及其卫星“火卫一”进行探测。

火卫一在火星赤道正上方运行,与火星中心的距离为9 450 km ,绕火星1周需7 h39 min 。

若其运行轨道可看作圆形轨道,万有引力常量为1122G 6.6710Nm /kg -=⨯,则由以上信息能确定的物理量是( )A .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度2.(多选)经长期观测人们在宇宙中已经发现了“双星系统”。

“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。

如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动。

现测得两颗星之间的距离为L ,质量之比为12:3:2=m m ,则可知( )A .1m 、2m 做圆周运动的角速度之比为2:3B .1m 、2m 做圆周运动的线速度之比为3:2C .1m 做圆周运动的半径为2L /5D .1m 、2m 做圆周运动的向心力大小相等3.2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。

下列说法正确的是( )A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小C .天宫二号由椭圆形轨道进入近圆形轨道需要减速D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道4.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

高中物理(新人教版)必修第二册同步习题:万有引力定律(同步习题)【含答案及解析】

高中物理(新人教版)必修第二册同步习题:万有引力定律(同步习题)【含答案及解析】

第七章 万有引力与宇宙航行2 万有引力定律基础过关练题组一 对太阳与行星间引力的理解1.(多选)根据开普勒行星运动定律和圆周运动知识知:太阳对行星的引力F ∝mr 2,行星对太阳的引力F'∝Mr2,其中M 、m 、r 分别为太阳、行星的质量和太阳与行星间的距离。

下列说法正确的是( ) A.由F ∝mr2和F'∝Mr2知F ∶F'=m ∶MB.F 和F'大小相等,是一对作用力与反作用力C.F 和F'大小相等,是同一个力D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力2.(多选)关于太阳与行星间的引力,下列说法中正确的是( )A.由于地球比木星离太阳近,所以太阳对地球的引力一定比对木星的引力大B.行星绕太阳沿椭圆轨道运动时,在从近日点向远日点运动时所受引力变小C.由F=GM 太m r 2可知G=Fr 2M 太m,由此可见G 与F 和r 2的乘积成正比,与M 太和m 的乘积成反比D.行星绕太阳运动的椭圆轨道可近似看成圆轨道,行星做圆周运动的向心力来源于太阳对行星的引力题组二 对万有引力定律的理解3.(2020河北唐山十一中高二上期中)(多选)关于物体间的万有引力的表达式F=Gm 1m 2r 2,下列说法正确的是( )A.公式中的G 是引力常量,它是由实验得出的,而不是人为规定的B.当两物体间的距离r 趋于零时,万有引力趋于无穷大C.两个物体间的万有引力总是大小相等的,而与m 1和m 2是否相等无关D.两个物体间的万有引力总是大小相等、方向相反的,是一对平衡力4.(2019北京东城高一上期末)两个质点之间万有引力的大小为F,如果将这两个质点之间的距离变为原来的2倍,那么它们之间万有引力的大小变为( ) A.2FB.4FC.F2D.F45.(2019广东佛山高一下期中)如图所示,O1、O2两球间的距离为r,两球的质量分布均匀,大小分别为m1、m2,半径分别为r1、r2,则两球间的万有引力大小为( )A.G m1m2r2B.G m1m2r12C.G m1m2(r1+r2)2D.G m1m2(r1+r2+r)26.(2019福建泉州高一下期末)(多选)要使两物体间的万有引力减小到原来的14,下列办法可采用的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变C.使两物体间的距离增为原来的2倍,质量不变D.使两物体间的距离和它们的质量都减为原来的14题组三万有引力和重力的关系7.关于万有引力F=G m1m2r2和重力,下列说法正确的是( )A.公式中的G是一个比例常数,没有单位B.到地心距离等于地球半径2倍处的重力加速度为地面重力加速度的14C.相互作用的两物体受到的万有引力是一对平衡力D.若两物体的质量不变,它们间的距离减小到原来的一半,它们间的万有引力也变为原来的一半8.(2020浙江杭州余杭第二高级中学高一下月考)设地球表面的重力加速度为g0,物体在距离地球表面3R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则gg0为( )A.1B.19C.14D.1169.(2020四川石室中学高三期中)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R=3310m/s v ==⨯3.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.如图所示是一种测量重力加速度g 的装置。

高一物理万有引力定律测试题及答案.doc

高一物理万有引力定律测试题及答案.doc

万有引力定律测试题班级姓名学号一、选择题(每小题中至少有一个选项是正确的,每小题5分,共40分)1.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,则物体()A.不受地球引力作用 B.所受引力全部用来产生向心加速度C.加速度为零 D.物体可在飞行器悬浮2.人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是()A.R不变,使线速度变为v/2B.v不变,使轨道半径变为2RD.无法实现3.由于地球的自转,地球表面上各点均做匀速圆周运动,所以()A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置及两人造卫星到地球中心的距离可能是()A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍C.两人都在赤道上,两卫星到地球中心的距离一定相等D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍5.设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是( )6.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的()A:环绕半径B:环绕速度C:环绕周期D:环绕角速度7.假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pqm8.已知万有引力恒量G ,则还已知下面哪一选项的数据,可以计算地球的质量( ) A :已知地球绕太阳运行的周期及地球中心到太阳中心的距离.B :已知月球绕地球运行的周期及月球中心到地球中心的距离.C :已知人造地球卫星在地面附近绕行的速度和运行周期.D :已知地球同步卫星离地面的高度.附加题(每题5分)1.假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 ( )A.根据公式v=ωr ,可知卫星的线速度将增大到原来的2倍2.两个靠近的天体称为双星,它们以两者连线上某点O 为圆心做匀速圆周运动,其质量分别为m 1、m 2,如右图所示,以下说法正确的是( )A :它们的角速度相同.B :线速度与质量成反比.C :向心力与质量的乘积成正比.D :轨道半径与质量成反比.二、填空题(每空6分,共36分) 1.天文学家根据天文观测宣布了下列研究成果:银河系中可能存在一个大“黑洞”,接近“黑洞”的所有物质,即使速度等于光速也被“黑洞”吸入,任何物体都无法离开“黑洞”。

(物理)物理万有引力定律的应用练习题含答案

(物理)物理万有引力定律的应用练习题含答案

(物理)物理万有引力定律的应用练习题含答案一、高中物理精讲专题测试万有引力定律的应用1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R = 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.3.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224Tπ① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin R r )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.4.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。

物理万有引力定律的应用题20套(带答案)

物理万有引力定律的应用题20套(带答案)

mg
对于嫦娥三号由万有引力等于向心力:
联立可得:
GMm r2
m4 T2
2r
g
4 2r3 T 2R2
(3)第一宇宙速度为沿月表运动的速度:
GMm mg mv2
R2
R
可得月球的第一宇宙速度:
v
gR
4 2r3 T 2R
9.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成 功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为 r 的匀速圆周运动。卫星的 质量为 m,地球的半径为 R,地球表面的重力加速度大小为 g,不计地球自转的影响。 求:
4 (4000 103 )2 6.67 1011
kg
11024 kg
6.2018 年 11 月,我国成功发射第 41 颗北斗导航卫星,被称为“最强北斗”。这颗卫星是 地球同步卫星,其运行周期与地球的自转周期 T 相同。已知地球的 半径为 R,地球表面的 重力加速度为 g,求该卫星的轨道半径 r。
(1)A 星体所受合力的大小 FA; (2)B 星体所受合力的大小 FB; (3)C 星体的轨道半径 RC; (4)三星体做圆周运动的周期 T.
【答案】(1) 2
Gm2 3
a2
(2)
7Gm2 a2
(3) 7 a (4)T π 4
a3 Gm
【解析】
【分析】
【详解】
(1)由万有引力定律,A 星体所受 B、C 星体引力大小为
则合力大小为
FR 4
G
mAmB r2
G
2m2 a2
FCA ,
FA 2
3G
m2 a2
(2)同上,B 星体所受 A、C 星体引力大小分别为

高考物理万有引力定律应用真题汇编(含答案)含解析

高考物理万有引力定律应用真题汇编(含答案)含解析

高考物理万有引力定律的应用真题汇编( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【分析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力供给圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243.以下图 ,P 、 Q 为某地域水平川面上的两点 ,在 P 点正下方一球形地区内储蓄有石油 .假定地区四周岩石均匀散布 ,密度为 ρ;石油密度远小于 ρ,可将上述球形地区视为空腔 .假如没有这一空腔 ,则该地域重力加快度 (正常值 )沿竖直方向 ;当存在空腔时 ,该地域重力加快度的大小和方向会与正常状况有细小偏离 .重力加快度在原竖直方向 (即 PO 方向 )上的投影相关于正常值的偏离叫做 “重力加快度失常 ”为.了探访石油地区的地点和石油储量,常利用 P 点邻近重力加快度失常现象 .已知引力常数为 G.(1)设球形空腔体积为 V,球心深度为 d(远小于地球半径 ), PQ x, 求空腔所惹起的 Q 点处的重力加快度失常 ;(2)若在水平川面上半径为 L 的范围内发现 :重力加快度失常值在δ与 k δ (k>1)之间变化 ,且重力加快度失常的最大值出此刻半径为 L 的范围的中心 .假如这类失常是因为地下存在某一球形空腔造成的 ,试求此球形空腔球心的深度和空腔的体积.G Vd(2) VL 2 k .【答案】(1)x 2 )3/2 G( k 2/31)( d 2【分析】【详解】(1)假如快要地表的球形空腔填满密度为 ρ的岩石 ,则该地域重力加快度便回到正常值.所以 ,重力加快度失常可经过填补后的球形地区产生的附带引力来计算,Mm Gr2m g ①式中 m 是 Q 点处某质点的质量 ,M 是填补后球形地区的质量 .M=ρV ②而 r 是球形空腔中心O 至 Q 点的距离 r= d 2 x2③Δg 在数值上等于因为存在球形空腔所惹起的Q 点处重力加快度改变的大小 ?Q 点处重力加 速度改变的方向沿 OQ ,g ′ 方向 重力加快度失常是这一改变在竖直方向上的投影dg ′= g ④rG Vd联立 ①②③④ 式得g ′=22 )3/2 ⑤(dx(2) 由 ⑤ 式得 ,重力加快度失常g 的′最大值和最小值分别为(G Vg max ′)=d2⑥(minG Vd 3/2⑦g ′)=22( d L )由题设有 ( g max ′)=k δ ,(min g=′)δ⑧联立 ⑥⑦⑧式得 ,地下球形空腔球心的深度和空腔的体积分别为LV L 2 k .dG ( k 2/3k 2/311)4. 一宇航员登上某星球表面,在高为 2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为 5m ,且物体只受该星球引力作用求:( 1 )该星球表面重力加快度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2;( 2) 1;10【分析】(1)依据平抛运动的规律:x =v 0t得t = x = 5s =1s v 0 5由 h = 1gt 22得: g = 22h = 2 2 2m / s 2=4m / s 2t1G M 星 m(2)依据星球表面物体重力等于万有引力:mg =R 星2G M 地 m地球表面物体重力等于万有引力:mg =R 地22=4( 1 )2则 M 星 = gR 星21 M 地 g R 地 10210点睛:本题是平抛运动与万有引力定律的综合题,重力加快度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5. 以下图,质量分别为m 和M的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L,m L,( 2) 2πL 3【答案】 (1) R=r=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:G mMmR 4 2 Mr 4 2L 2T 2T 2可得R=M,又因为 LRrrm所以能够解得: M L , r m L ;RmMmM(2)依据( 1)能够获得 : GmM4 24 2 M 2m2Rm2LLTTMm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .6. 以下图,返回式月球软着陆器在达成了对月球表面的观察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加快度为 g ,月球的半径为月球中心的距离为 r ,引力常量为 G ,不考虑月球的自转.求:R ,轨道舱到( 1)月球的质量 M ;( 2)轨道舱绕月飞翔的周期 T .gR 22 r r【答案】 (1) M( 2) TgGR【分析】【剖析】月球表面上质量为m 1 的物体 ,依据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞翔的周期 ;【详解】解: (1)设月球表面上质量为m 1 的物体 ,其在月球表面有 : GMm 1 m 1g GMm 1 m 1gR2R2gR 2 月球质量 : MG(2)轨道舱绕月球做圆周运动,设轨道舱的质量为mMm2π 2Mm 2 2由牛顿运动定律得:rG r 2m TrG2m() rT2 r r解得: TgR7.“嫦娥一号 ”在西昌卫星发射中心发射升空,正确进入预约轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.以下图,暗影部分表示月球,假想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上飞翔 n 圈所用时间为 t ,抵达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在抵达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,尔后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上飞翔 n 圈所用时间为 .不考虑其余星体对飞船的影响,求:( 1)月球的均匀密度是多少?( 2)假如在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球飞翔方向同样,某时辰两飞船相距近来(两飞船在月球球心的同侧,且两飞船与月球球心在同向来线上),则经过多长时间,他们又会相距近来?2mt【答案】( 1) 192n;( 2) t1,2,3 )( mGt 27n【分析】试题剖析:( 1)在圆轨道 Ⅲ 上的周期: T 3t,由万有引力供给向心力有:8nG Mmm22RR 2T又: M4 33 192 n 2 .R ,联立得:GT 32Gt 23(2)设飞船在轨道I 上的角速度为1 、在轨道 III 上的角速度为23 ,有:1T 1所以32设飞飞船再经过t 时间相距近来,有:3t ﹣ 1t2m 所以有:T 3tmtm ,, ).(7n 1 2 3考点:人造卫星的加快度、周期和轨道的关系【名师点睛】本题主要观察万有引力定律的应用,开普勒定律的应用.同时依据万有引力供给向心力列式计算.8. 我国科学家正在研究设计返回式月球软着陆器,计划在 2030 年前后实现航天员登月,对月球进行科学探测。

教科版高中物理必修第二册第三章万有引力定律2万有引力定律练习含答案

教科版高中物理必修第二册第三章万有引力定律2万有引力定律练习含答案

2.万有引力定律基础巩固1.行星之所以绕太阳运动是因为()A.行星运动时的惯性作用B.太阳是宇宙的中心,所以行星都绕太阳运动C.太阳对行星有约束运动的引力作用D.太阳对行星有排斥作用,所以不会落向太阳答案:C解析:行星能够绕太阳运动,是因为太阳对行星有引力作用,故只有C选项正确。

2.(多选)下列关于太阳对行星的引力的说法正确的是()A.太阳对行星的引力等于行星做匀速圆周运动的向心力B.太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成正比C.太阳对行星的引力是由实验得出的D.太阳对行星的引力规律是由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来的答案:AD解析:太阳对行星的引力提供行星做圆周运动的向心力,太阳与行星间的引力F∝mr2,可知A正确,B错误。

太阳对行星的引力规律由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来,故D正确,C错误。

3.两个质量分布均匀的球体,两球心相距r,它们之间的万有引力为10-8 N,若它们的质量、球心间的距离都增加为原来的2倍,则它们之间的万有引力为()A.10-8 NB.0.25×10-8 NC.4×10-8 ND.10-4 N答案:A解析:原来的万有引力为F=G Mmr2,后来变为F'=G2M·2m(2r)2=G Mmr2,即F'=F=10-8 N,故选项A正确。

4.两个完全相同的实心均质小铁球紧靠在一起,它们之间的万有引力为F。

若将两个用同种材料制成的半径是小铁球2倍的实心大铁球紧靠在一起,则两大铁球之间的万有引力为()A.2FB.4FC.8FD.16F答案:D解析:两个小铁球之间的万有引力为F=G mm(2r)2=G m24r2。

实心小铁球的质量为m=ρV=ρ·43πr3,大铁球的半径是小铁球的2倍,则大铁球的质量m'与小铁球的质量m之比为m'm =r'3r3=8,故两个大铁球间的万有引力为F'=G m'm'r'2=16F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理【万有引力定律】专题练习题
[A 组 基础达标练]
1.发现万有引力定律与测定引力常量的值的科学家分别是( ) A .开普勒 牛顿 B .牛顿 卡文迪什 C .牛顿 伽利略
D .伽利略 第谷
解析:牛顿根据行星的运动规律和牛顿运动定律推导出了万有引力定律,100多年后,英国物理学家卡文迪什利用扭秤装置巧妙的测量出了两个铁球间的引力,从而第一次较为准确地得到引力常量的值,故A 、C 、D 错误,B 正确。

答案:B
2.(多选)要使两物体间的万有引力减小到原来的1
4,下列办法可采用的是( ) A .使物体的质量各减小一半,距离不变
B .使其中一个物体的质量减小到原来的1
4,距离不变 C .使两物体间的距离增为原来的2倍,质量不变 D .使两物体间的距离和质量都减为原来的1
4
解析:根据F =G m 1m 2r 2可知,A 、B 、C 三种情况中万有引力均减为原来的1
4,当距离和质量都减为原来的1
4时,万有引力不变,故D 错误。

答案:ABC
3.2020年6月23日,我国成功发射了北斗三号最后一颗全球组网卫星,标志着北斗卫星导航系统星座部署已全面完成。

若卫星质量为m 、离地球表面的高度为h ,地球质量为M 、半径为R ,G 为引力常量,则地球对卫星万有引力的大小为( ) A.GMm h B.GMm
R +h C.GMm h 2
D.
GMm
(R +h )2
解析:由万有引力公式知,两者间的距离为R +h 时,引力的大小为GMm (R +h )2
,D
正确。

答案:D
4.已知地球半径为R ,将一物体从地面发射至离地面高度为h 处时,物体所受万有引力减小到原来的一半,则h 为( ) A .R B.2R C.2R
D .(2-1)R
解析:地面上F =G Mm R 2,高度为h 处F ′=G Mm (R +h )2
,因为F ′=1
2F ,所以(R +h )2
R 2
=2
1,所以h =(2-1)R ,故D 正确,A 、B 、C 错误。

答案:D
5.据报道,在太阳系外发现了首颗“宜居”行星,设其质量为地球质量的k 倍,其半径为地球半径的p 倍,由此可推知该行星表面的重力加速度与地球表面的重力加速度之比为( ) A.k p B.k p 2 C.k 2p
D.k 2p 2
解析:由mg =G Mm
R 2可知g 地=G M 地R 地2,g 星=G M 星R 星2,g 星g 地=M 星M 地·R 地2R 星2=k p 2,所以选项
B 正确。

答案:B
6.两个质量分布均匀、密度相同且大小相同的实心小铁球紧靠在一起,它们之间的万有引力为F 。

现将其中一个小球挖去半径为原球半径一半的球,并按如图所示的形
式紧靠在一起,三个球心在一条直线上,试计算它们之间的万有引力大小。

解析:如图1所示,原来是个实心球时,可知
F =
G mm (2r )2

右边的球体被挖去一小球体后,设它们之间的万有引力为F ′,右边的球体不能看成质点,则不能直接应用万有引力定律求F ′的值。

可以用“割补法”处理该问题。

如图2所示,设被挖掉的小球体质量m 1,其仍在原位置时与左边球之间的万有引力为F 1=G mm 1
(52r )2

又m 1∶m =(1
2r )3∶r 3=1∶8③
联立①②③式得F 1=2
25F ④
剩余部分之间的万有引力大小为F ′=F -F 1⑤ 联立④⑤式得F ′=23
25F 。

答案:2325F
[B 组 能力提升练]
7.假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ,地球自转的周期为T ,引力常量为G ,则地球的密度为( ) A.3πGT 2·g 0-g g 0
B.3πGT 2·g 0g 0-g
C.3πGT 2
D.3πGT 2·
g 0g
解析:地球表面的重力加速度在两极的大小为g 0,则G Mm
R 2=mg 0;在赤道的大小为g ,则G Mm R 2-mg =m (2πT )2R ,地球质量与地球半径的关系M =4
3πR 3ρ,联立三式可得ρ=3πGT 2·g 0
g 0-g ,故B 正确。

答案:B
8.(多选)万有引力定律能够很好地将天体运行规律与地球上物体运动规律具有的内在一致性统一起来。

用弹簧测力计称量一个相对于地球静止的质量为m 的小物体的重力,随称量位置的变化可能会有不同的结果。

已知地球质量为M ,引力常量为G 。

将地球视为半径为R 、质量均匀分布的球体。

下列说法正确的是( )
A .在北极地面称量时,弹簧测力计读数为F 0=G Mm
R 2 B .在赤道地面称量时,弹簧测力计读数为F 1=G Mm
R 2
C .在北极上空高出地面h 处称量时,弹簧测力计读数为F 2=G Mm
(R +h )2
D .在赤道上空高出地面h 处称量时,弹簧测力计读数为F 3=G
Mm
(R +h )2
解析:物体在两极时,万有引力等于重力,则有F 0=G Mm
R 2,故A 正确;在赤道地面称量时,万有引力等于重力加上小物体随地球一起自转所需要的向心力,则有F 1<G Mm R 2,故B 错误;在北极上空高出地面h 处称量时,万有引力等于重力,则有F 2=G Mm (R +h )2,故C 正确;在赤道上空高出地面h 处称量时,万有引力大
于重力,则有F 3<G Mm
(R +h )2
,故D 错误。

答案:AC
9.(多选)如图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的
圆轨道上,设地球质量为M ,半径为R 。

下列说法正确的是( )
A .地球对一颗卫星的引力大小为
GMm
(r -R )2
B .一颗卫星对地球的引力大小为GMm
r 2 C .两颗卫星之间的引力大小为Gm 2
3r 2 D .三颗卫星对地球引力的合力大小为
3GMm r 2
解析:由万有引力定律知A 错误,B 正确;圆轨道半径为r ,由数学知识易知任意两颗卫星间距d =2r cos 30°=3r ,由万有引力定律知C 正确;因三颗卫星对地球的引力大小相等且互成120°角,故三颗卫星对地球引力的合力为0,D 错误。

答案:BC
10.假设地球是一半径为R 、质量分布均匀的球体。

一矿井深度为d (矿井宽度很小),已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部的重力加速度为( ) A .(1-d R )g B.(1+d R )g C .(1-d
R )2g
D .(
R R -d
)2
g 解析:设地球的密度为ρ,在地球表面,重力和地球的万有引力大小相等,有g =G M R 2,由于地球的质量为M =ρ43πR 3,所以重力加速度的表达式可写成g =GM R 2=G ρ43πR 3
R 2=4
3GρπR 。

根据题意,质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的井底,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生
的万有引力,故井底的重力加速度为g ′=4
3Gρπ(R -d ),所以有g ′=R -d R g =(1-d
R )g ,故A 正确,B 、C 、D 错误。

答案:A
[C 组 创新应用练]
11.(多选)在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道。

已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍。

关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是( ) A .太阳引力远大于月球引力 B .太阳引力与月球引力相差不大 C .月球对不同区域海水的吸引力大小相等 D .月球对不同区域海水的吸引力大小有差异
解析:取质量为m 的海水研究。

太阳对海水的引力F 1=G M 1m
r 12,月球对海水的引
力F 2=G M 2m r 22,F 1
F 2≈169。

由于地球上不同区域到月球的距离不等,所以月球对
不同区域海水的吸引力大小有差异。

答案:AD
12.某航天员在飞船发射前测得自身连同宇航服等随身装备共重840 N ,在火箭发射阶段,发现当飞船随火箭以a =g
2的加速度匀加速竖直上升到某位置时(其中g 为地球表面处的重力加速度),其身体下方体重测试仪的示数为1 220 N 。

已知地球半径R =6 400 km ,地球表面重力加速度g 取10 m/s 2(求解过程中可能用到 19
18≈1.03,
21
20≈1.02)。

问:
(1)该位置处的重力加速度g ′是地面处重力加速度g 的多少倍? (2)该位置距地球表面的高度h 为多大?
解析:(1)飞船起飞前,对航天员受力分析有G =mg ,得m =84 kg 。

在h 高度处对航天员受力分析,应用牛顿第二定律有F -mg ′=ma ,解得g ′
g =2021。

(2)根据万有引力公式,在地面处有G Mm R 2=mg ,在h 高度处有G Mm
(R +h )2=mg ′。

解以上两式得h ≈0.02R =128 km 。

答案:(1)20
21 (2)128 km。

相关文档
最新文档