变电站接地设计及防雷技术通用版
变电站防雷接地技术分析

变电站防雷接地技术分析变电站作为电力机制的重要设施之一,它能够有效地调节电力强度等其他电力参数,它的功能发挥水平在很大程度上会影响到电网运作的平稳度。
倘若变电站受到雷击的影响,那么就会导致其他有关的电气设施遭到毁坏,严重时还会引发当地区域大规模的停电,诱发一系列的危险事故。
所以,不管是从供电平稳性还是从社会安全的角度出发,相关的工作人员都要越来越重视起防雷环节,严格秉持防雷接地设计的基本准则,灵活地采取防雷接地技术,由此提高电变站的防雷水平,防止遭到雷击的大面积损坏。
对此,笔者将详尽地阐述變电站的接地装置设计以及防雷接地的技术,希望能够给同行带来一定的参考价值。
标签:变电站;防雷接地;技术分析1 导言在现代社会中,无论是国家的经济发展,还是千家万户的日常生活,都与电力系统有密不可分的联系。
因此,可以将电力系统称之为社会发展的核心内容,如果电力系统一旦出现瘫痪,则很有可能使一个国家或者整个世界陷入黑暗之中,人类也无法正常的生存。
电力系统中,变电站具有非常重要的作用,但是其也非常容易受到雷电的袭击,一旦遭遇雷电的袭击,不仅会带来严重的经济损失,还会对周围的环境带来巨大的危害,所以必须要不断地提升变电站的防雷水平。
2 雷电对变电站的危害2.1雷的直击和绕击危害天空的雷云携带与地表相反的电荷。
雷云经过变电站的避雷针或者其他地面突出物体上方的时候,突出物体的顶端电场会发生畸变。
在闪电形成的过程中,从雷云底部电荷开始逐渐向地面发展。
当距地面的高度不足100m时,突出物体顶部发生畸变电场的地方电荷开始往上移动。
当两者电荷汇合,则标志着闪电开始进入了主放电的阶段。
在安装独立避雷针后,避雷针附近将会有大量的散击出现。
同时也可能会出现直击避雷针或对处于避雷针保护范围内的物体进行绕击。
雷击的主放电会释放出巨大能量,雷电流通常为几万到十几万安培[1]。
在这种巨大能量冲击下,会造成建筑物倒塌、电气设备的损坏甚至引起大爆炸,造成人员伤亡。
变电站防雷接地技术

变电站防雷接地技术摘要:变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
如果变电站发生雷击事故,将造成大面积的停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠,所有如何有效、合理对变电所采取防雷接地保护措施有着十分重要的意义,因此,必须加强变电所雷电防护问题的认识与研究。
关键词:变电站;防雷措施;接地电阻;直击雷防护一变电站防雷接地的研究意义雷电一直是危害电力系统安全稳定运行的重要因素之一,如果变电站发生雷击事故,将造成大面积停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠。
目前,电力系统高压部分的雷电防护措施已经比较完善,而低压系统是由大量电子、微电子等弱电设备组成,由于其耐压水平低,雷电波侵入弱电系统时易导致设备的误动、击穿,严重影响了电力系统的安全稳定运行。
国内外对二次系统的防护主要从电磁兼容角度进行研究,并未提出完善的保护措施。
二变电站的防雷保护首先来分析变电站遭受雷击的主要原因:雷电是雷云层接近大地时,地面感应出相反电荷,当电荷积聚到一定程度,产生云和云之间以及云和大地之间放电,迸发出光和声的现象。
供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中某些部分的电压会大大超过正常状态下的数值,通常情况下变电站雷击有两种情况:一是雷直击于变电站的设备上,二是架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电站。
其具体表现形式如下:1、直击雷过电压雷云直接击中电力装置时,形成强大的雷电流,雷电流在电力装置上产生较高的电压,雷电流通过物体时,将产生有破坏作用的热效应和机械效应。
2、感应过电压当雷云在架空导线上方,由于静电感应,在架空导线上积聚了大量的异性束缚电荷,在雷云对大地放电时,线路上的电荷被释放,形成的自由电荷流向线路的两端,产生很高的过电压,此过电压会对电力网络造成危害。
变电站的防雷与接地

摘要 : 本文 简述 了雷 电形 成 的基本 原理 , 出 了变 电站在 防雷接 地 方 面应 采取 的措 施 , 提 并对 接地 方 法进 行 了分 析 , 出 了一 些做 法 , 提 以保证 变 电站的安 全 可 靠运 行 。
Absr t tac :Ths p p rd s rb s t e b sc rn i e o ih nng fr to ,pus fr r h a u e i u tto b u ih nn r tcin a d i a e e c ie h a i p icpl flg t i o main t o wa d t e me s r s n s bsain a o tl t ig p oe to n g go n i h ud b a e , n hego n to sa ay e , n u sfr r o a u e oe s r h aea d rla l p rto ftes sain r u dngs o l etk n a d t r u d meh d i n lz d a d p t owa ds meme s r st n u et esf n e ibeo e aino h ub tto .
Va u g n e i g l e En i e rn
变 电站 的 防雷 与接 地
Li h n n r t c i n a d Gr u d n fS b t to g t i g P o e t n o n i g o u sai n o
吴 承 俊 W uC e gu h n jn
( 林 丰源 电力勘 察设 计 有 限责任 公司 , 林 5 10 ) 桂 桂 4 02
( e g u nElcr i uvya dD s nLmi dLa it o a yi in Gul 4 0 2 C ia) F n y a e tct S re n ei i t iblyC mp n nGul , in5 10 , hn iy g e i i i
电力系统防雷与接地通用版

安全管理编号:YTO-FS-PD834电力系统防雷与接地通用版In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities.标准/ 权威/ 规范/ 实用Authoritative And Practical Standards精品管理范本编号:YTO-FS-PD8342 / 2 电力系统防雷与接地通用版使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。
文件下载后可定制修改,请根据实际需要进行调整和使用。
避雷线和避雷针的作用是防止直击雷,使在它们保护范围内的电气设备(架空输电线路及变电站设备)遭直击雷绕击的几率减小。
避雷器的作用是通过并联放电间隙或非线性电阻的作用,对入侵流动波进行削幅,降低被保护设备所受过电压幅值。
避雷器既可用来防护大气过电压,也可用来防护操作过电压。
接地网起着工作接地和保护接地的作用,当接地电阻过大则:(1)发生接地故障时,使中性点电压偏移增大,可能使健全相和中性点电压过高,超过绝缘要求的水平而造成设备损坏。
(2)在雷击或雷电波袭击时,由于电流很大,会产生很高的残压,使附近的设备遭受到反击的威胁,并降低接地网本身保护设备(架空输电线路及变电站电气设备)带电导体的耐雷水平,达不到设计的要求而损坏设备。
该位置可输入公司/组织对应的名字地址The Name Of The Organization Can Be Entered In This Location。
变电站防雷接地技术

【 关键词 】变电站 防雷接地 雷 电入侵
3变电站的防雷接地技术
3 . 1 防 雷 接 地 装 置
于重要节点处的变 电站,其接地 电阻更要小于
0 . 5 D,除 此 之 外 , 在 进 行 变 电 站 防 雷接 地装 置
或化 学腐蚀 的可能性。在进行接地线敷设时 ,
需要注意以下几个方面 :一是接 电线 的连接应 采用焊接方式,且当采 用搭接焊接 时,搭接长 度 应为扁钢 的 2倍 、圆钢 的 6倍 ;二是接地线 与管道等进行连接时宜采 用焊接方式 ,且连接 点应选择近处,并在管道阀门处设置跨 接线 ; 三是接电线与电气设备 间的连接 可采用螺栓或 焊接方式,而与接地极间的连接 宜采用焊接方
地网。 ’
出了更高 的要求 。变 电站作 为电力系统中电压
等 级 变 换 、 电 能集 中 分配 的 场 所 , 对 电 力 系 统
般 来 说, 防雷接 地装 置主 要 由接地 体
与接地线两大部分组成 。 ( 1 )接 地体。接地 体根据属 性不 同可 以 分为 自然接地体与人工接地体 两类。 自然接 地 体是指利用大地 中已经存 在的管道、钢筋等金
而感应雷也称二次雷,是 由于雷云电磁感应 而 在 电气设备上产生的一种过电压,对 电气设备 也有着严重 的破坏 。根据雷击形式的不同,变 电站 的防雷措施也应当有针对性地入手 。
P o we r E l e c t r o n i c s ● 电力 电子
变电站防雷接地技术
文/ 王 志平
的控制调度 中心 ,内部布置有大量二次 系统通 随着 我 国经 济社会 的迅 速发
展 , 社 会 用 电 量 不 断 增 加 , 电 力
35kv变电站防雷接地保护方案

35kv变电站防雷接地保护方案一、背景与目标随着电力系统的不断发展,35kv变电站的数量逐渐增多,其运行安全问题也日益突出。
雷电是导致变电站故障的重要因素之一,因此,制定一套有效的防雷接地保护方案至关重要。
本方案旨在提高35kv变电站的防雷接地能力,确保其在雷雨天气下的正常运行。
二、方案设计1.避雷针安装在变电站的进出线架构、变压器和开关设备等重要设施上安装避雷针,以防止直击雷对设备造成的损害。
避雷针应选择具有优良导电性能的材料,并按照规范进行安装,以确保其保护效果。
2.接地网设计设计一个覆盖全站的接地网,确保所有设备均能通过低阻抗路径连接到地网。
接地网的设计应考虑以下几点:(1) 确定合理的接地电阻值,以确保地网与大地之间的导电性能良好;(2) 选择合适的接地体材料,如镀锌钢等;(3) 按照规范的施工方法进行接地体的埋设和连接。
3.浪涌保护器设置在变电站的电源、信号等关键部位设置浪涌保护器,以吸收雷电过电压和操作过电压等瞬时能量,保护设备免受雷电冲击。
浪涌保护器的选择应符合设备的额定电压、持续运行电压等参数。
4.合理布线对进出变电站的线路进行合理布线,避免线路交叉跨越或近距离平行排列,减少雷电感应过电压对设备的影响。
同时,对重要设备进行屏蔽措施,如采用屏蔽电缆等。
5.维护与监测定期对防雷接地系统进行检查和维护,确保其正常运行。
同时,安装接地电阻在线监测系统,实时监测地网的电阻值变化,及时发现并处理问题。
三、实施步骤1.调研与设计阶段:对变电站的地形地貌、建筑结构、设备布局等进行详细调研,确定避雷针安装位置、接地网设计方案等。
2.材料采购与施工准备阶段:根据设计方案采购必要的材料和设备,包括避雷针、接地体、浪涌保护器等。
同时,做好现场施工准备工作,如清理场地、准备施工工具等。
3.避雷针安装与接地网施工阶段:按照设计方案和施工规范进行避雷针的安装和接地网的施工。
注意确保避雷针与设备之间的安全距离,以及接地体的埋设深度和连接质量。
变电站防雷设计标准

变电站防雷设计标准如下:
避雷针的使用:在变电站的建筑、变压器、电缆的周围都需要安装避雷针,避雷针的高度要超过被保护目标的高度。
接地网的设计:合理的接地设计可将雷击所带来的电流引导到地下,减小建筑物的损坏,同时还要保证稳定且足够的接地电阻。
避雷器的选择:针对变电站中的各个电气设备,应根据其等级和功能选择适合的避雷器,保证其对雷击的防范作用。
外壳和屏蔽的设计:采用防雷的材料制作建筑的外壳和各个电器设备的套管和外壳,起到屏蔽和消散雷击的作用。
防雷触媒的使用:可在变电站电缆附近的山地上设置防雷触媒,其作用是加强地面静电场的增强,吸收大量的闪电。
避雷引线的设置:设置避雷引线可以有效的分散雷电的电荷,降低雷击发生的可能性。
建筑物的设计:建筑物的设计应考虑到其在雷电天气下的安全系数,如建筑物不应是细长型或高耸而无抗风性质的建筑物。
变电站的防雷接地技术范文

变电站的防雷接地技术范文【引言】随着现代社会的发展,电力系统在人们的生活中起到了至关重要的作用。
而变电站作为电力系统的重要环节,其正常运行与安全稳定有着密切关系。
然而,雷电是变电站运行中的一个重要威胁,因为雷电击中变电站会导致强大的电磁脉冲和电压浪涌,使设备受到损坏甚至导致变电站停运。
因此,防雷接地技术成为了变电站安全运行的必备技术之一。
本文将对变电站的防雷接地技术进行详细介绍,包括接地原理、接地装置的设计与安装以及接地系统的检测与维护等方面,以期提高变电站的防雷水平,确保变电站的安全稳定运行。
【接地原理】接地是指将电器设备和线路的金属外壳与大地之间建立良好的导电连接,以保证设备或线路和地之间具有良好的电位平衡。
在防雷工程中,接地的主要作用是将雷电击中的电流引入地中,从而保护设备免受雷击的侵害。
在变电站中,防雷接地主要分为主接地和绝缘接地两种形式。
主接地是将电源系统的零线通过接地装置与大地连接,以确保设备安全工作。
绝缘接地则是将设备的金属外壳通过绝缘层与大地隔离,以保护设备和人员的安全。
【接地装置的设计与安装】为了确保接地效果良好,接地装置的设计与安装十分关键。
下面将分别介绍主接地和绝缘接地的设计与安装。
1. 主接地的设计与安装主接地的设计与安装需要考虑以下几个因素:(1)接地电阻:接地电阻是指接地装置引入地中的电流通过地下电阻层流向大地的电阻。
为了确保接地效果良好,接地电阻应控制在一定范围内。
通常,根据变电站的规模和使用需求,接地电阻应小于10欧姆。
(2)接地装置的选型:接地装置的选型应根据变电站的具体情况进行,包括使用环境、功率负载和地质条件等。
常见的接地装置包括接地网、接地极和接地带等。
(3)接地装置的布置:接地装置应均匀地分布在变电站的不同位置,从而形成一个完整的接地系统。
同时,为了避免接地装置之间的干扰,应保持适当的距离。
(4)接地装置的连接方式:接地装置的连接方式应采用良好的接地线,确保连接可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决方案编号:YTO-FS-PD207 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed To Solve The Overall Problem Can Ensure The Rapid And Effective Implementation.
标准 / 权威 / 规范 / 实用 Authoritative And Practical Standards
变电站接地设计及防雷技术通用版 精品方案范本 编号:YTO-FS-PD207 2 / 8 编写人:xxxxx 审核人:xxxxx
变电站接地设计及防雷技术通用版
使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。
引言 变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。随着电力系统规模的不断扩大,接地系统的设计越来越复杂。变电站接地包含工作接地、保护接地、雷电保护接地。工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。 1 变电站接地设计的必要性 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为精品方案范本 编号:YTO-FS-PD207 3 / 8 接地装置。接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。 变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网的网格设计不合理,则可能造成接地系统电位分布不均,局部电位超过规定的安全值,这会给出运行人员的安全带来威胁,还可能因反击对低压或二次设备以及电缆绝缘造成损坏,使高压窜入控制保护系统、变电站监控和保护设备会发生误动、拒动,酿成事故,甚至是扩大事故,由此带来巨大的经济损失和社会影响。 2 变电站接地设计原则 由于变电站各级电压母线接地故障电流越来越大,在接地设计中要满足R≤2000/I是非常困难的。现行标准与原接地规程有一个很明显的区别是对接地电阻值不再规定要达到0.5Ω,而是允许放宽到5Ω,但这不是说一般情况下,接地电阻都可以采用5Ω,接地电阻放宽是有附加条件的,即:防止转移电位引起的危害,应采取各种隔离措施;考虑短路电流非周期分量的影响,当接地网电位升高时,3~10kV避雷器不应动作或动作后不应损坏,应采取精品方案范本 编号:YTO-FS-PD207 4 / 8 均压措施,并验算接触电位差和跨步电位差是否满足要求,施工后还应进行测量和绘制电位分布曲线。变电站接地网设计时应遵循以下原则: 2.1 尽量采用建筑物地基的钢筋和自然金属接地物统一连接地来作为接地网; 2.2 尽量以自然接地物为基础,辅以人工接地体补充,外形尽可能采用闭合环形; 2.3 应采用统一接地网,用一点接地的方式接地。 3 变电站接地电阻的构成及降阻措施 3.1 接地引线电阻,是指由接地体至设备接地母线间引线本身的电阻,其阻值与引线的几何尺寸和材质有关。 3.2 接地体本身的电阻,其电阻也与接地体的几何尺寸和材质有关。 3.3 接地体表面与土壤的接触电阻,其阻值怀土壤的性质、颗粒、含水量及土壤与接地体的接触面积及接触紧密程度有关。 3.4 从接地体开始向远处(20米)扩散电流所经过的路径土壤电阻,即散流电阻。决定散流电阻的主要因素是土壤的含水量。 3.5 垂直接地体的最佳埋置深度是指能使散流电阻尽可能不而又易于达到的埋置深度。决定垂直接地体的最佳深度,应考虑到三维地网的因素,所谓三维地网,是指垂直精品方案范本 编号:YTO-FS-PD207 5 / 8 接地体的埋置深度与接地网的等值半径处于同一数量级的接地网。 3.6 接地体的通常设计,是用多根垂直接地体打入地中,并以水平接地体并联组成接地体组,由于名单一接地体埋置的间距仅等于单一接地体长度的两倍左右,此时电流流入名单一接地体时,将受到相互的限制而妨碍电流的流散,即等于增加名单一接地体的电阻,这种影响电流流散的现象,称为屏蔽作用。 3.7 化学降阻剂的应用,化学降阻剂机理是,在液态下从接地体向外侧土壤渗出,若干分钟固化后起着散流电极的作用。 4 变电站接地电阻的测量 接地网电阻值的大小,是判定接地网是否合格的重要部分,而对接地网电阻的测量采用的方法及设备也直接影响测量的结果,测量接地网电阻时,其接地棒和辐助接地体有两种布置法。 对大型地网的电阻测量,应采用电流电压测量法,其接地棒,辅助接地体的布置应采用三角形由置法,并使辐助接地体的接地电阻不应大于10Ω。通过接地装置的电流应大于30A,电源电压应为65~220V交流工频电压,电压较低时测量较为安全,电压表应采用高内阻的表计,以减少该云支路的分流作用。这种测量方法的优点是,接地精品方案范本 编号:YTO-FS-PD207 6 / 8 电阻不受测量范围的限制,特别适用于110KV以上系统的接地网的接地电阻测量,也适用于自动化系统接地电阻的测量,其测量的结果准确可靠。 5 变电站防雷措施分类 防雷措施总体概括为两种:①避免雷电波的进入;②利用保护装置将雷电波引入接地网。 5.1 避雷针或避雷线 雷击只能通过拦截导引措施改变其入地路径。接闪器有避雷针、避雷线。小变电站大多采用独立避雷针,大变电站大多在变电站架构上采用避雷针或避雷线,或两者结合,对引流线和接地装置都有严格的要求。 5.2 避雷器 避雷器能将侵入变电所的雷电波降低到电气装置绝缘强度允许值以内。我国主要是采用金属氧化物避雷器(MOA)。 5.3 浪涌抑制器 采用过压保护,防雷端子等提高电气设备自身的防护能力,防止电气设备、电子元件被击坏。当发生雷击事故时,如电源防雷模块遭到损坏,在后台监控机上就能显示其状态。在控制、通讯接口处加装浪涌抑制器。 5.4 接地线 接地线即接地体的外引线,连接被保护或屏蔽设施的精品方案范本 编号:YTO-FS-PD207 7 / 8 连线,可设主接地线、等电位连接板和分接地线。防雷接地装置的接地线即防雷接闪装置的引下线,可采用圆钢或扁钢,两端按规定的搭接长度焊接达到电连接。变电站的防雷接地电阻值要求不大于1Ω。 6 变电站弱电设备防雷措施 6.1 采用多分支接地引下线,使通过接地引下线的雷电流大大减小。 6.2 改善屏蔽,如采用特殊的屏蔽材料甚至采用磁特性适当配合的双层屏蔽。 6.3 改进泄流系统的结构,减小引下线对弱电设备的感应并使原有的屏蔽网能较好地发挥作用。 6.4 除电源入口处装设压敏电阻等限制过压的装置外,在信号线接入处应使用光电耦合元件或设置具有适当参数的限压装置。 6.5 所有进出控制室的电缆均采用屏蔽电缆,屏蔽层公用一个接地网。 6.6 在控制室及通讯室内敷设等电位,所有电气设备的外壳均与等电位汇流排连接。 7 变电站直击雷的防雷措施 7.1 防止反击:设备的接地点尽量远离避雷针接地引线的入地点,避雷针接地引下线尽量远离电气设备。 7.2 装设集中接地装置:上述接地应与总线地网连接,精品方案范本 编号:YTO-FS-PD207 8 / 8 并在连接下加装集中接地装置,其工频接地电阻碍大于10Ω。 7.3 主控室(楼)或网络控制楼及屋内配电装置直击雷的保护措施。①若有金属屋顶或屋顶有金属结构时,将金属部分接地。②若屋顶为钢筋混凝土结构,应将其钢筋焊接成网接地。③若结构为非导电的屋顶时,采用避雷保护,该避雷带的网络为8~10m设引下线接地。 8 结束语 接地网的设计,要根据区域的地质条件,采取不同的降阻措施,以最高性能价格比来设计其接地网,同时应采用新技术和新材料。接地技术是一门多学科的综合技术,故在今后的工作中去研究,在实践中不断探索,以使其更加趋于完善。根据变电站防雷设计的整体性、结构性、层次性、目的性,及整个变电站的周围环境、地理位置、土质条件以及设备性能和用途,采取相应雷电防护措施,保证变电站设备的安全稳定运行。
该位置可输入公司/组织对应的名字地址 The Name Of The Organization Can Be Entered In This Location