机器人避障超声波测距系统(硬件)
超声波传感器的使用说明书

超声波传感器的使用说明书
一、产品概述
超声波传感器是一种利用超声波原理进行测距的装置,具有测量准确、反应速度快、抗干扰能力强等特点。
本产品适用于各种需要进行距离测量的场合,如机器人避障、物体定位、液位监测等。
二、产品特点
1. 高精度测量:采用先进的超声波发射和接收技术,能够实现高精度的距离测量,误差率小于1%。
2. 快速反应:产品具有快速的信号处理速度和反应时间,能够在短时间内获取准确的测量结果。
3. 抗干扰能力强:采用特殊的信号处理技术,能够有效地减少电磁干扰、环境噪声等因素对测量结果的影响。
4. 易于安装:产品体积小,重量轻,易于安装和调试。
三、使用步骤
1. 安装传感器:将超声波传感器固定在需要测量的位置,确保传感器前方无遮挡物,并且传感器能够正常发射和接收超声波。
2. 连接电源:将超声波传感器的电源线连接到控制器或电源适配器上,确保电源稳定可靠。
3. 调试传感器:通过控制器或软件对超声波传感器进行参数设置和
调试,确保测量结果准确可靠。
4. 读取数据:通过控制器或软件读取超声波传感器的测量数据,根据需要进行数据处理和分析。
四、注意事项
1. 避免在高温、高湿度、高粉尘等恶劣环境下使用传感器。
2. 在安装传感器时,应避免在传感器前方放置金属等反射物,以免影响测量结果。
3. 在调试传感器时,应按照说明书上的参数进行设置,不要随意更改参数。
4. 在读取数据时,应确保连接可靠,不要随意断开连接。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断发展,高精度测距技术广泛应用于机器人、智能家居、无人驾驶等领域。
本文旨在设计一个基于STM32单片机的高精度超声波测距系统,该系统通过超声波测距原理,实现对目标物体的精确测距。
二、系统设计要求1. 高精度:系统应具备高精度的测距能力,误差应控制在一定范围内。
2. 稳定性:系统应具有良好的稳定性,能够在不同环境下保持稳定的测距性能。
3. 实时性:系统应具备实时测距功能,能够快速响应并输出测距结果。
4. 易于集成:系统应易于与其他设备进行集成,方便实际应用。
三、硬件设计1. 主控制器:采用STM32单片机作为主控制器,负责整个系统的控制与数据处理。
2. 超声波传感器:选用高性能的超声波传感器,实现测距功能。
3. 电源模块:为系统提供稳定的电源,保证系统的正常工作。
4. 通信接口:根据实际需求,可扩展串口、I2C、SPI等通信接口,实现与其他设备的通信。
四、软件设计1. 驱动程序设计:编写超声波传感器的驱动程序,实现对传感器的控制与数据读取。
2. 数据处理程序:对读取的超声波数据进行处理,计算目标物体的距离。
3. 实时性处理:采用中断或定时器等方式,实现实时测距功能。
4. 通信程序设计:根据实际需求,编写与其他设备进行通信的程序。
五、系统实现1. 超声波传感器的工作原理是通过发送超声波并接收其反射回来的时间来计算距离。
系统通过STM32单片机的GPIO口控制超声波传感器的发送与接收。
2. 在软件设计中,通过编写驱动程序,实现对超声波传感器的控制与数据读取。
数据处理由STM32单片机进行计算,将读取的超声波数据进行处理,得到目标物体的距离。
3. 为了保证系统的实时性,采用中断或定时器等方式,实现实时测距功能。
当超声波传感器接收到反射回来的超声波时,中断或定时器触发,STM32单片机立即进行数据处理,并输出测距结果。
4. 根据实际需求,可扩展串口、I2C、SPI等通信接口,实现与其他设备的通信。
HC-SR04超声波测距模块说明书

HC-SR04超声波测距模块◼产品概述HC-SR04是一款升级的超声波测距模块。
新增加UART,IIC及1-WIRE(单总线)功能,模式可以通过外围电阻设置。
2CM超小盲区,4M典型最远测距,2mA超低工作电流。
采用自研超声波测距解调芯片,使其外围更加简洁,工作电压更宽(2.8-5.5V)。
驱动采用扫频技术,减少探头本身一致性对灵敏度的影响。
内部40K驱动频率采用正温度补偿,切合探头中心频率的温度特性,减小温度影响。
外部晶振为外观兼容而放置的晶振,不起任何作用,不焊接晶振的模块价格更有优势。
◼实物图片◼主要特性⚫采用专业解调芯片⚫工作电压:2.8-5.5V⚫工作电流:2mA⚫支持GPIO,UART,IIC及1-WIRE多种接口模式,默认输出模式兼容HC-SR04⚫2CM盲区,4M典型最远测距⚫200mS周期⚫可配置各种颜色及加固型探头◼典型应用⚫玩具,机器人避障⚫液位,水位测量⚫坐姿检测⚫其它测距应用◼性能参数◼GPIO/UART/IIC/1-WIRE模式选择◼测量操作一:GPIO模式工作模式同HC-SR04。
外部MCU给模块Trig脚一个大于10uS的高电平脉冲;模块会给出一个与距离等比的高电平脉冲信号,可根据脉宽时间“T”算出:距离=T*C/2(C为声速)声速温度公式:c=(331.45+0.61t/℃)m•s-1(其中330.45是在0℃)0℃声速:330.45M/S20℃声速:342.62M/S40℃声速:354.85M/S0℃-40℃声速误差7左右。
实际应用,如果需要精确距离值,必需要考虑温度影响,做温度补偿。
如有需要,可关注我司带温补单芯片RCWL-9700。
二:UART模式UART模式波特率设置:9600N1命令返回值说明0XA0BYTE_HBYTE_MBYTE_L 输出距离为:((BYTE_H<<16)+(BYTE_M<<8)+BYTE_L)/1000单位mm0XF1公司及版本信息连接串口。
基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计
超声波测距系统是一种常见的测距技术,它利用超声波的特性来测量物体与传感器之间的距离。
基于单片机的超声波测距系统是一种常见的应用,它可以广泛应用于工业自动化、智能家居、机器人等领域。
基于单片机的超声波测距系统主要由超声波传感器、单片机、LCD 显示屏和电源等组成。
超声波传感器是测距系统的核心部件,它可以发射超声波信号并接收反射回来的信号。
单片机是控制系统的核心部件,它可以对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。
LCD显示屏可以显示测量结果,方便用户进行观察和操作。
在设计基于单片机的超声波测距系统时,需要注意以下几点:
1.选择合适的超声波传感器。
传感器的频率和探测距离是选择传感器时需要考虑的重要因素。
2.选择合适的单片机。
单片机的处理速度和存储容量是选择单片机时需要考虑的重要因素。
3.编写合适的程序。
程序需要能够对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。
同时,程序还需要能够将测量结果显示在LCD显示屏上。
4.进行系统测试。
在完成系统设计后,需要进行系统测试,确保系统能够正常工作,并且测量结果准确可靠。
基于单片机的超声波测距系统具有测量精度高、响应速度快、体积小等优点,可以广泛应用于各种领域。
在未来,随着技术的不断发展,基于单片机的超声波测距系统将会得到更广泛的应用。
智能小车超声波避障实验

度考虑进去。
测距的公式表示为:L=C×T 式中L 为测量的距离 长度;C 为超声波在空气中的传播速度;T 为测 量距离传播的时间差(T 为发射到接收时间数值的 一半)。已知超声波速度C=344m/s (20℃室温)
HC-SR04接口定义:
Vcc、 Trig(触发端)、 Echo(回声端)、 Gnd
本产品使用方法:触发端发一个10US 以上的高电平,就可以在回声 端等待高电平输出.一有输出就可以开定时器计时,当此口变为低电平 时就可以读定时器的值,此时就为此次测距的时间,方可算出距离.如此 不断的周期测,就可以达到你移动测量的值了。
智能小车超声波避障实验
单击此处添加您的正文
HC-SR04超声波模块
安装位置
小车车头处留有超声波模块的插口(J2), 超声波探头朝前方直接插上即可
HC-SR04产品特点
1、典型工作用电压:5V。 2、超小静态工作电流:小于2mA。 3、感应角度:不大于15 度。 4、探测距离:2cm-400cm 5、高精度:可达0.3cm。 6、盲区(2cm)超近。
对于超声波测距精度要求达到1mm 时,就必 须把超声波传播的环境温
模块工作原理:
01
采用 IO 触发测距,给至少10us 的高电平信号;
02
模块自动发送8 个40khz 的方波,自动检测是否有信号返回;
03
有信号返回,通过IO 输出一高电平,高电平持续的时间就是超 声波从发射到返回的时间
超声波避障原理

超声波避障原理
超声波避障原理,是通过利用超声波距离传感器,测量超声波在耦合介质的距离,将距离的变化用作侦测某种障碍物的方法。
一般情况下,超声波传感器会发射短脉冲的超声波,然后根据反射超声波的时间改变,计算出障碍物与超声波探测器之间的距离,从而准确侦测障碍物与传感器之间距离的变化,从而达到自动避障的目的。
首先,改变的超声波频率以及声学特性对于噪声的抑制及准确侦测有很大影响,其次,此传感器常常采用自调节模式,使距离测量更加精确,最后,超声波可以测量不同介质的距离,比如空气、水或其他液体中的物体,从而使检测更加精准,真正实现自动避障。
而且,超声波避障原理还可以实现远距离、无线侦测,它具有体积小、重量轻、低功耗、高性能、智能化高等特点,可以应用于工业检测、家用智能设备的避障以及无人机空中定位等各种场景中。
至此,可以看出超声波避障原理具有很多优点,可以实现准确的距离测量,具有自适应能力,可以抑制噪声,以及对不同介质等物体的准确检测,是一种可靠而且值得信赖的避障方式,未来在很多领域得到有效应用,是非常值得关注及研究的一类新技术。
避障常用哪些传感器-几种传感器的基本工作原理

避障常用哪些传感器?几种传感器的基本工作原理导读避障是指移动机器人在行走过程中,通过传感器感知到在其规划路线上存在静态或动态障碍物时,按照一定的算法实时更新路径,绕过障碍物,最后达到目标点。
避障常用哪些传感器不管是要进行导航规划还是避障,感知周边环境信息是第一步。
就避障来说,移动机器人需要通过传感器实时获取自身周围障碍物信息,包括尺寸、形状和位置等信息。
避障使用的传感器多种多样,各有不同的原理和特点,目前常见的主要有视觉传感器、激光传感器、红外传感器、超声波传感器等。
下面我简单介绍一下这几种传感器的基本工作原理。
超声波超声波传感器的基本原理是测量超声波的飞行时间,通过d=vt/2测量距离,其中d是距离,v是声速,t是飞行时间。
由于超声波在空气中的速度与温湿度有关,在比较精确的测量中,需把温湿度的变化和其它因素考虑进去。
上面这个图就是超声波传感器信号的一个示意。
通过压电或静电变送器产生一个频率在几十kHz的超声波脉冲组成波包,系统检测高于某阈值的反向声波,检测到后使用测量到的飞行时间计算距离。
超声波传感器一般作用距离较短,普通的有效探测距离都在几米,但是会有一个几十毫米左右的最小探测盲区。
由于超声传感器的成本低、实现方法简单、技术成熟,是移动机器人中常用的传感器。
超声波传感器也有一些缺点,首先看下面这个图。
因为声音是锥形传播的,所以我们实际测到的距离并不是一个点,而是某个锥形角度范围内最近物体的距离。
另外,超声波的测量周期较长,比如3米左右的物体,声波传输这么远的距离需要约20ms 的时间。
再者,不同材料对声波的反射或者吸引是不相同的,还有多个超声传感器之间有。
超声避障技术在轮式机器人导航中的应用研究

32 .超声 波接收电路 超声波接收电路如图 2 所示。
图 2超声波接收电路原理 图 使 用 C 2 16 集 成电路对接 收探头收到 的信 号进行放大 、 X 00A 滤波 。 其 总放大增益 8d 。以下是 c 0 0 A的引脚注释 : 0b X2 l6 1 : 脚 超声信号输入端 , 的输入 阻抗 约为4k 该脚 0 O。 2 : 与地 之间连接R 串联网络 , 脚 该脚 E 它们是负反馈串联网络的一 个组 成部 分 , 变它们 的数值 能改变前 置放 大器 的增 益和频 率特性 。 改 增大 电阻R 1 3 或减小 C 4 将使负反馈量增大 , 5, 放大倍数下降 , 反之则放 大倍 数增大 。但 C 4 5 的改 变会影 响到频率特性 , 一般在 实际使用 中不 必改动 , 推荐选用参数 为 R 1 47 C 4 1 F 3 = .n, 5 = 。 3 : 与地 之间连接检波电容 , 脚 该脚 电容量大时为平均值检波 , 瞬间 相应灵 敏度低 ; 电容量小时 为峰值检波 , 瞬间相应灵 敏度高 , 但检 波输 出的脉 冲宽度 变动大 , 易造成误 动作 , 推荐参数 为 33 f _ 。
() 2
Hale Waihona Puke 因此本系统同时设计 了温度补偿电路 以提高超声 波测距系统的准
确度 。 3基 于超 声 波 的 障 碍 物 探 测 系 统 设 计 与 实 现 .
本 文以 DG18 片机为核心 控制器来设 计障碍探测 的硬件 系统 。 2单 该 硬件 电路 采集 轮式机 器人多方 位 8 超声测距 信息传 送给单 片机 , 路 由它完成轮式机器人的避障导航任务 。 超 声测距 电路 分为超声波发 射和接收检测 电路两部分 。共有 8 路 测距通 道 , 工作时采用分时循环测距 ,路测距 通道依次轮流工作 , 8 即一 个 超声波传感 器的 发射器发射 超声波脉 冲并被其接 收器接收后 , 下一 个 超声 波传感器开始工作 , 次循环 , 依 通过多路模拟 开关 进行控制 。各 通 道的测距范 围为02 m 6 通道间采样 间隔为 3ms如果在 3 m 内 . ~ m, 7 0 , 0s 未 收到回波信号 , 则认为 当前超声波传感器探测方 向上没有 障碍 物。 31 .超声 波发射电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人避障超声波测距系统第一章绪论1.1 课题研究的背景及意义机器人技术是在新技术革命中迅速发展起来的一门新兴学科,它在众多的科技领域与生产部门中得到了广泛的应用,并显示出强大的生命力。
它是集精密机械、光学、电子学、检测、自动控制、计算机和人工智能等技术于一体,形成的一门综合性的新技术学科。
机器人的发展有很长的历史,早在三国时代,诸葛亮造的“木牛流马”就是古代机器人的一种雏形。
机器人(robot)一词来源于 1920 年捷克作家卡雷尔·查培克所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。
后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。
在机器人发展历史上,存在两条不同的技术路线:一条是日本和瑞典所走的“需求牵引,技术驱动”,他们把美国开拓的机器人,结合工业发展的需求,开发出一定系列特定应用的机器人,如弧焊、点焊、建筑等等,从而形成了庞大的机器人产业;另一条是把机器人作为研究人工智能的载体。
看成是计算机科学的一部分,单纯从技术上仿人的某些功能出发研究机器人。
自从为了抓取放射性材料而设计制造的第一台遥控机械手诞生至今已经有50多年了,而六十年代第一台工业机器人问世也40多年了。
之所以当初称之为工业机器人是为了同虚构的机器人及玩具机器人加以区别。
目前所说的机器人大多指工业机器人。
第一代机器人,主要指只能以“示教-再现”方式工作的机器人。
示教内容为机器人操作机构的空间轨迹、作业条件、作业顺序等。
第二代机器人具有一定的感觉装置,能获取作业环境、操作对象的简单信息,通过计算机处理、分析,机器人作出一定的推理,对动作进行反馈控制,表现出低级的智能。
第三代机器人是指具有高度适应性的自治机器人,它具有多种感知功能,可进行复杂的逻辑思维判断决策,在作业环境中独立行动。
作为“第三代机器人”的智能机器人是这样一类机器人:机器人本身能对所处的工作环境、工作对象及其状态做出反映,它能根据人给予的指令和“自身”对外界的了解来独立的决定工作方法,利用操作机构和移动机构实现任务目标,并能适应工作环境的变化。
自主式移动机器人也属于智能机器人。
关于移动机器人的研究涉及许多方面。
首先,要考虑移动方式,可以是轮式的、履带式的、腿式的,对于水下移动机器人则是推进器。
其次,必须考虑驱动器的控制,以使机器人达到期望的行为。
第三,必须考虑导航和路径规划,对于后者,有更多的方面考虑,如传感器信息融合、特征提取、避障和环境映射等。
因此,移动机器人是一个集环境感知、动态决策、行为控制与执行等多功能于一体的综合系统。
在移动机器人自主行走的过程中,不可避免的会遇到一些障碍物,所以灵活、实时的避开这些障碍物是移动机器人必须拥有的一种基本能力。
为了实现这种能力,移动机器人必须通过外部传感器来收集周边环境的信息数据并通过这些信息建立起外部环境的模型,从而实现类似于人的避障行为。
在移动机器人环境探测的过程中,人们多采用视觉系统探测周围环境,并利用图象信号分析处理技术获得环境信息,从而引导机器人的运动。
比如,由浙江大学研究开发的以美国 TROBOT 公司ATRV-2 为平台的移动机器人,就是以放置在移动机器人上方的彩色CCD摄像机和安装在内部微机主板上的图象采集卡组成的视觉系统来探测前方障碍物。
采用视觉系统避障可以获得较完整的环境信息,但由于图象处理运算量大,需要高性能的信号处理设备,致使这类系统体积较大、能耗高、实时性差。
近年来,为了克服单纯视觉系统在应用上的不足,人们开始研究采用其他非摄像类传感器探测环境信息,直接采用多个廉价超声波传感器来进行测量。
由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。
由于移动机器人具有一般机器人所不具备的移动能力,从而使之更具备“代替人”作业的实力。
移动机器人在移动过程中不可避免会遇到各式各样的障碍物,灵活、实时的躲开这些障碍物是衡量其性能的关键指标。
具有避障功能的移动机器人拥有相当高的社会价值,被大量应用于航天、军事、制造业、医疗、交通等。
比如在制造业中,柔性装配系统(FAS)是柔性制造系统的主要组成部分。
近年来,为响应产品换代的频繁变化,FAS的构形发生了很大变化,发达工业国家已出现了动态可重构形的柔性装配系统,在这类系统中,众多的具有避障功能的移动机器人代替了通用的传送带。
同样具有避障功能的移动机器人能给不能行走的残疾人士带来福音。
现在,大多数残疾人士使用电子轮椅,由于驾驶这种轮椅需要相当大的技巧,对于那些残疾人士来说,灵活自如的驾驶这类轮椅将有一定的难度。
而拥有自主导航和避障能力的移动机器人将轻易的解决这类问题。
1.2国内外研究现状从 80 年代开始,美国国防高级研究计划局专门立项,制定了地面无人作战平台的战略计划。
如 DARPR 的“战略计算机”计划中的自主地面车辆计划。
能源部制定了为期10 年的机器人和职能系统计划,以及后来的空间机器人计划。
美国 NASA 研究的火星探测机器人于 1997 年登上了火星。
为了在火星上进行距离探测,又开始了新一代样机的研制,命名为 Rocky7,并在 Lavic 湖的岩溶流上和干枯的湖床上进行了成功的试验。
美国的 MDARS 项目是在著名的保安机器人 ROBART 的基础上建立的一个多移动机器人平台,后来在指定地点执行随机巡逻任务。
德国研制了一种轮椅机器人,并在乌尔姆市中心车站的客流高峰期的环境中和 1998 年汉诺威工业商品展览会大厅环境中进行了超过36 小时的考验,所表现出的性能是其它现存的轮椅机器人和移动机器人所不可比的。
对机器人自主性的挑战来自要求完成的任务以及高度非结构化和变化的环境。
在大多数室外环境中,要求机器人完全自主的完成任务目前还有一定的困难。
远程操作的半自动机器人,毫无疑问是一个发展方向,因此先进的远程操作技术是将来必需的。
国内在移动机器人的研究上起步较晚,大多数尚处于某个单项研究阶段,主要的研究工作有:清华大学智能移动机器人于1994 年通过鉴定,涉及到五个方面的关键技术:基于地图的全局路径规划研究;基于传感器信息的局部路径规划研究;路径规划的仿真技术研究;传感器技术、信息融合技术研究;智能移动机器人的设计和实现。
另外,还有中国科学院沈阳自动化研究所的 AGV和防暴机器人;中国科学院自动化自行设计、制造的全方位移动机器人视觉导航系统;哈尔滨工业大学于 1996 年研制成功了导游机器人。
随着汽车的普及,大中城市中的慢性堵塞和交通事故的增加已成为一个大的社会问题。
尤其在高速公路上行驶的汽车,时速通常在100公里每小时以上,一旦出现险情,留给驾驶员的时间是很短的,世界各地,由于雨、雾等原因引起的高速公路上的恶性交通事故时有发生。
如何利用汽车和道路的智能化来提高安全性能和交通效率已成为各发达国家关注的热点。
因此,目前移动机器人的研究开始偏向汽车的自主驾驶和辅助驾驶的研究。
部分发达国家重要的研究计划包括:●美国: IVHS(智能车辆高速公路系统)●欧洲: AVS(先进安全车辆)SSVS(超级灵巧车辆系统)VICS(车辆信息和通信系统)ARTS(先进道路运输系统)UTMS(通用交通管理系统)●中国:THMR-V(清华大学)这些计划中,各极其重要的环节是能在汽车行驶过程中探测障碍物与行人,并发出报警、自动启动刹车和避障的关键技术。
[15][17] 1.3本课题内容本文主要设计了机器人避障测距系统的硬件部分,主要有以下内容:(1)了解机器人避障超声波测距的研究背景,国内外发展状况,提出课题的研究意义。
(2)对测距技术进行研究,就当前比较流行的激光测距技术和超声波测距技术的原理进行探讨,比较两种测距的优缺点,针对本课题的实际,提出采用超声波测距的优势所在。
(3)提出系统硬件设计方案。
初步探讨了超声波传感器的工作原理。
概括性地叙述了超声波发送电路以及接收电路中的限幅、多路电子开关、放大、滤波、整流以及比较等几部分。
由于在设计过程中为了使系统稳定,必须对串扰问题进行解决,为此,还介绍了串扰处理电路的设计,还把针对本课题的AT89C52单片机控制系统进行说明。
(4)简单介绍了单片机的编程语言—C51语言及软件设计的流程图。
然后针对本课题提出软件编程方案:采用模块化设计,整个程序的编写分主程序、发射子程序、中断接收子程序、定时子程序等模块进行。
第二章机器人避障策略和测距方式的研究2.1 路径规划和避障策略所谓路径规划就是智能自主移动机器人能按照存储在其内部的地图信息,或根据外部环境所提供的一些引导(既通过对环境的实时探测所获得的信息)规划出一条路径,并能够沿着该路径在没有人工干预的情况下,移动到预定目标,同时完成预定任务。
执行这个过程的算法就是路径规划算法。
移动机器人有多种导航方式,根据环境信息的完整程度、导航指示信号类型、导航地域等因素的不同,可以分为基于地图导航、基于路标导航、基于视觉导航、基于感知器导航等。
目前还出现了其他的导航系统,如美国的GPS卫星导航系统。
本文主要研究的基于超声波传感器避障属于感知器导航。
最优路径的搜索既可以采用软件的方法,也可以根据退火算法利用硬件来实现路径规划,这种方法虽不能保证所得的路径绝对最优,但能以较小的时间代价来换取相对优化的路径;基于环境拓扑特征的路径规划可以减少对地图精确性的依赖,从而扩大路径规划的范围。
当移动机器人通过各种传感器获得一定量的周围环境信息时,如何利用这些有限的环境信息,来实现机器人的实时控制,一直是机器人研究者所关心的一个问题,这也是移动机器人进行实时避障所必须解决的一个难题。
为此,许多新颖而实用的控制算法被提出来,在一定程度上解决了这个问题。
他们一般能分为两类:全局规划与局部控制。
在此,对几种比较常用的控制算法作出简单的介绍。
由于移动机器人在避障过程中需要较强的实时性,所以要求控制算法具有较强的处理数据的能力,势场法作为全局规划方法的一种方面具有一定的优势。
对于势场法而言,每一个障碍物都由一个二维的笛卡尔栅格来表示。
目标位置对移动机器人产生一种虚拟的吸引力,而障碍物对机器人产生一种虚拟的排斥力。
这两种力的合成就决定了移动机器人的运动。
然而势场法也具有自身的缺点,主要表现在 4 个方面:(1)存在陷阱区域;(2)在相近障碍物之间不能发现路径(3)在障碍物前振荡;(4)在狭窄通道中摆动。
局部控制的方法主要应用在一个未知的环境中。
它是一种完全基于传感器信息的反映策略。
因此机器人和环境中的障碍物的绝对坐标并不需要知道,但必须了解其相对位置及关系,所以大量的传感器被利用来探测周边的环境信息。