机器人手臂的机械结构和机电设置
医疗机器人的结构设计与控制研究

医疗机器人的结构设计与控制研究在近年来,随着科技的不断发展,机器人已经成为人类生活当中的重要组成部分。
尤其是在医学领域中,医疗机器人的应用更是受到广泛的关注和研究。
医疗机器人分为外科机器人和辅助机器人。
外科机器人已经被广泛应用于心脏手术、肺部手术、子宫手术等,辅助机器人也在康复治疗、病房中的病人照顾等方面得到了广泛应用。
本文重点讨论医疗机器人的结构设计与控制研究。
一、医疗机器人的结构设计医疗机器人的结构设计一般分为三个层次:机电结构设计、运动控制系统设计和成像系统设计。
1. 机电结构设计机电结构设计是医疗机器人的核心设计之一。
医疗机器人的机械手臂要具备良好的灵活性和可靠性,同时也要具备足够的刚度和重量。
机械手臂通常由五个关节组成,利用电机、减速器、传动机构等实现关节的控制。
同时,在机械臂上布置相应的末端作业机构,如夹子、激光刀、针头等。
2. 运动控制系统设计运动控制系统是医疗机器人的关键设计。
运动控制系统对于机器人的稳定性、精准性、速度和安全性提出了高要求。
目前,运动控制系统主要有基于传统控制方法的PID控制和基于模糊控制、神经网络控制等智能控制方法。
3. 成像系统设计成像系统是医疗机器人的重要组成部分。
成像系统能够记录、观察和控制机器人的操作,也能为外科手术提供图像信息。
常用的成像系统有X射线成像系统、超声波成像系统、光学成像系统等。
二、医疗机器人的控制研究医疗机器人的控制研究目前面临着许多挑战,如建立精确的运动模型、有效的路径规划算法、实时控制等。
1. 运动模型和路径规划算法运动模型是机器人控制的基础,它可以帮助机器人完成复杂的动作。
路径规划算法的优化是医疗机器人研究的重点之一。
传统的路径规划算法如A*算法、Dijkstra算法,还存在优化空间。
近年来,深度学习、强化学习、遗传算法等新型算法也逐渐得到应用。
2. 实时控制实时控制是医疗机器人研究的一个重要挑战。
由于医疗机器人需要在高精度情况下保持稳定运动,所以需要提高控制精度。
机器人机械结构的说明书

机器人机械结构的说明书1. 引言本说明书旨在详细描述机器人的机械结构,以帮助用户了解并正确使用该机器人。
机器人的机械结构是其核心组成部分,决定了机器人的稳定性、运动灵活性和工作效率。
本文将介绍机器人的整体结构、关键零部件及其功能,以及装配和维护注意事项。
2. 机器人整体结构2.1 机器人外形特点本机器人采用全金属框架,稳定可靠。
其外形紧凑、简洁,并且具备良好的机械强度和刚性,确保机器人在复杂环境中的稳定运行。
2.2 关键组件及其功能2.2.1 机械臂机械臂是机器人的核心部件,由多个连杆和关节组成。
其主要功能是模拟人体手臂的运动,实现精准抓取和操作物体的能力。
机械臂采用精密滑轨设计,具备灵活、快速、稳定的运动特性。
2.2.2 轮式底盘轮式底盘是机器人的移动装置,由多个齿轮和电机驱动。
其主要功能是实现机器人的平稳移动和转向操作。
底盘设计合理,具备良好的防震性能和操控性,适应各类地面环境。
2.2.3 感应器件机器人配备多种感应器件,如接近传感器、力传感器和视觉传感器等。
这些感应器件可以实时获取环境信息,并将其传输给控制系统。
感应器件的准确性和稳定性对机器人的操作和安全性至关重要。
2.2.4 控制装置控制装置是机器人的大脑,用于接收和处理来自各个部件的信息,并根据预设程序控制机器人的运动。
控制装置采用先进的控制算法和可编程控制器,具备高效、可靠的控制性能。
3. 机器人的装配和调试机器人的装配和调试应由专业人员进行,确保各个部件的正确安装和互联。
在装配过程中,应注意零部件的顺序和紧固度,以及电气连接的正确性。
装配完成后,应进行全面的系统测试和调试,确保机器人的各项功能正常运行。
4. 机器人的维护与保养机器人的维护与保养是保证其长期稳定运行的重要环节。
用户应遵循以下原则进行:4.1 定期检查和紧固定期检查机器人的外观和各个零部件,确保其完好无损。
同时,对螺栓、紧固件等进行紧固,防止松动影响机器人的稳定性。
4.2 清洁和防尘机器人应保持清洁,并定期进行清扫和除尘工作。
机器人机械手臂的力学分析与设计

机器人机械手臂的力学分析与设计机器人是人工智能技术的重要应用之一,机器人的机械手臂作为其核心组成部分,扮演着至关重要的角色。
机械手臂的设计必须经过力学分析,才能确保机器人的正常运作。
在本文中,我们将探讨机器人机械手臂的力学分析和设计过程。
一、机械手臂的结构机械手臂通常由若干个关节和连杆构成,每个关节连接着两个相邻的连杆。
机械手臂的结构可以使用联轴器、直线导轨等方式设计。
由于机械手臂的关节数量和杆的长度会影响其稳定性和精度,因此在设计机械手臂时要视具体情况而定,采取合适的设计方案。
二、机械手臂的力学分析机械手臂主要依靠电机和减速器实现动力驱动,其关节位置和运动轨迹受力学原理的支配。
在机械手臂的力学分析中,需要考虑多个因素,如质量、惯性力、受力、扭矩等。
1. 质量机械手臂上的每个零件都有其自身的重量。
在进行力学分析时,必须将每个零件的重量计算在内。
此外,机械手臂运动时产生的离心力和惯性力也必须考虑进去。
2. 受力机械手臂在运动时,往往会承受外界的力。
这些力包括单向力、剪力和弯矩,可能会影响机械手臂的结构和稳定性。
为确保机械手臂的稳定性,设计者需要计算机械手臂在不同负载下的最大受力值。
3. 扭矩和能量在机械手臂运动时,其中的减速器和电机会产生扭矩和能量。
设计者需要确保机械手臂系统能够承受这些力和能量,以确保机械手臂的稳定性和安全性。
三、机械手臂的设计思路根据力学分析和结构设计原理,机械手臂的设计应遵循如下环节:1. 确定机械手臂的使用场景,包括负载、工作范围、工作精度等。
2. 根据使用场景确定机械手臂的杆数和长度,以及运动范围和速度。
3. 计算机械手臂上各关节之间的角度和位置变化,以及需要维持的角度和位置精度。
4. 选择合适的电机和减速器,保证其能够承受机械手臂的扭矩和能量,并确保其运行平稳。
5. 设计机械手爪部分,确保其能够兼容不同的工具,并使其能够在机械手臂运行时保持稳定。
最后,针对机械手臂的设计要求,进行实际构建并进行试验和测试,以确保机械手臂能够正常运行和实现目标使用效果。
机器人手部结构详解

2.设有检测开关的手爪装置:
工作原理:
手爪装有限位开 关5和7。在指爪 4沿垂直方向接 近工件6的过程 中,限位开关检 测手爪与工件的 相对位置。当工 件接触限位开关 时发信号,汽缸 通过连杆3驱动 指爪夹紧工件。
4.上料吸盘(1):
4.上料吸盘(2):
平动型:
平移型:
回转型图例:
压缩弹簧
拉伸弹簧
平动型图例:
动作分解:
作业:
用作图法分析当主 动件左移才处于某 个位置时,手指所 处的位置。
平移型图例:
此时手部是张开还是合拢?
该丝杆的螺纹具有什么特点?
4.按夹持原理分:
手指式:
外夹式、内撑式、内外夹持式。 平移式、平动式、旋转式。 二指式、多指式。 单关节式、多关节式。
2.手部是末端操作器:
可以具有手指,也可以不具有手指; 可以有手爪,也可以是专用工具。
末端操作器图例(1):
每个手指有三个或 四个关节。技术关 键是手指之间的协 调控制。
末端操作器图例(2):
3.手部是一个独立的部件:
工业机器人通常分为三个大的部件: 机身、手臂(含手腕)、手部。手部 对整个机器人完成任务的好坏起着关 键的作用,它直接关系着夹持工件时 的定位精度、夹持力的大小等。
放开工件:
2.电磁吸盘(2):
适用范围:
适用于用铁磁材料做成的工件;不适合于 由有色金属和非金属材料制成的工件。 适合于被吸附工件上有剩磁也不影响其工 作性能的工件。 适合于定位精度要求不高的工件。 适合于常温状况下工作。铁磁材料高温下 的磁性会消失。
机械设计中的机器人手臂设计与控制

机械设计中的机器人手臂设计与控制机械设计是现代工程领域中一项十分重要的学科,而机器人手臂的设计与控制更是其中的高级应用。
机器人手臂作为机器人重要的执行机构,广泛应用于工业生产、医疗卫生、航空航天等领域。
本文将介绍机器人手臂的设计与控制方法,并探讨其在机械设计中的应用。
一、机器人手臂的设计原理机器人手臂设计的关键是满足任务需求和运动性能,在此基础上考虑结构合理性、刚度和重量等因素。
机器人手臂的设计原理主要包括以下几个方面:1. 机械结构设计:机器人手臂通常采用多关节结构,通过旋转和伸缩等运动方式来实现各种复杂的操作。
设计时需要考虑机械臂的长度、关节数量和排列等因素,以保证机械臂能够灵活地完成各种任务。
2. 运动学分析:机器人手臂的运动学分析是设计过程中重要的一步。
通过对机械臂的运动学建模,可以得到机械臂关节的位姿和运动范围,进而确定机械臂的结构尺寸和关节参数。
3. 动力学分析:机械臂的动力学分析是研究机械臂运动状态和力学特性的关键环节。
通过动力学模型的建立,可以分析机器人手臂在不同工况下的力学行为,从而确定控制策略和优化结构参数。
二、机器人手臂的控制方法机器人手臂的控制方法主要包括位置控制、力控制和轨迹控制等。
不同的控制方法适用于不同的应用场景,具体的控制策略可根据实际情况选择。
1. 位置控制:位置控制是最基本的控制方式之一,通过控制机器人手臂各个关节的位置,实现末端执行器的位姿控制。
常用的位置控制方法包括PID控制、模型预测控制等,可以实现对机器人手臂的高精度定位。
2. 力控制:力控制是机器人手臂在与外界对象进行接触时的一种重要控制方式。
通过传感器实时测量力传感器的输出,控制机器人手臂施加的力或压力,实现对外界环境的感知和调整,从而保护机器人手臂和所操作的对象。
3. 轨迹控制:轨迹控制是指机器人手臂按照预定轨迹进行运动的一种控制方式。
通过事先规划机器人手臂的运动轨迹,控制各个关节实现相应的运动,可以实现机器人手臂的自主定位和路径跟踪。
工业机器人手臂的结构

工业机器人手臂的结构工业机器人手臂是现代工业生产中的重要设备,它的高效率和精准性在许多工业领域得到广泛应用。
工业机器人手臂的结构设计是实现其功能的关键要素。
以下将描述工业机器人手臂的结构及其组成部分。
工业机器人手臂由若干个关节连接而成,每个关节都有特定的运动范围和功用。
通常,一个工业机器人手臂包括基座、肩关节、肘关节、腕关节和末端执行器。
基座是机器人手臂的底部,通过接触地面提供稳定支撑。
它通常由铸铁或钢板制成,以确保足够的刚性和稳定性。
基座是所有关节的起始点。
肩关节连接在基座上方,允许机器人手臂的水平旋转。
肩关节的结构通常采用回转关节,它使机器人手臂能够在垂直和水平平面上进行灵活运动。
肘关节位于肩关节之上,使机器人手臂能够弯曲和伸直。
肘关节通常采用旋转或直线运动的结构,具体取决于所需的运动方式。
腕关节是机器人手臂的最后一个关节,它允许手臂末端执行器在三维空间内进行定位。
腕关节通常具有旋转、倾斜和转动等多个自由度,以实现复杂的任务。
末端执行器是机器人手臂的最终部分,用于完成特定的工作任务。
末端执行器可以是夹具、工具或传感器等,具体取决于应用需求。
工业机器人手臂的结构设计需要考虑多个因素,包括负载能力、运动灵活性、控制精度和安全性等。
设计人员通常会根据具体应用需求选择适当的结构和材料,并进行精确的运动学分析和模拟。
总之,工业机器人手臂的结构由基座、肩关节、肘关节、腕关节和末端执行器等组成。
每个关节都有特定的运动能力和功能,以实现机器人手臂的精确控制和高效任务执行。
这种结构设计允许机器人手臂在工业生产中扮演重要角色,并实现自动化和智能化生产的目标。
机器人机械臂控制技术的工作原理

机器人机械臂控制技术的工作原理机器人机械臂是一种现代化的控制技术,它由各种不同的元件组成,使用电子控制逻辑和高级计算技术来完成复杂操作。
在本文中,我将详细介绍机器人机械臂控制技术的工作原理,包括其组成、运动控制方法,以及智能化和自适应控制方案。
一、机器人机械臂的组成机器人机械臂主要由电动马达、减速器、传感器组件、制动器、连杆和手指等组成。
各个组件之间密不可分,相互协助完成精密的操作任务。
电动马达通常是机器人机械臂的基础设备,它们负责推动叶轮或链轮组件,使机械臂完成各种复杂的任务。
减速器并不是必需的组件,但它们可以提供额外的驱动力和减少过程中的机械波动。
传感器组件是一个非常关键的组成部分,它可以帮助机器人机械臂制约位置和速度,并监测外界环境的变化,以便更好地执行任务。
传感器组件包括接近开关、温度传感器、压力传感器和光电传感器等,它们能够感知不同的信号,并通过智能控制系统进行分析和处理。
制动器通常是用于控制运动顺序和保护机器人机械臂免受过量振动和惯性影响的组件。
它们能够实时翻转机械臂的方向,以便更好地应对不同的工作环境和任务。
二、机器人机械臂的运动控制方法机器人机械臂的运动控制方法通常包括位置控制、速度控制和力控制等。
它们可以通过控制机械臂的动态模型,精确定位、控制速度和力量等,以便实现各种复杂的任务。
①位置控制位置控制通常是机器人机械臂最基础的控制方法。
它们能够通过执行位置命令,在不同的位置上调整机械臂,以便精确地控制其运动轨迹和执行任务。
在执行位置控制时,机器人需要通过各种传感器和计算机软件进行实时监测,以便更好地应对环境变化和时间延迟。
②速度控制速度控制通常是机器人机械臂的次级控制方法,它们能够自动控制机械臂的速度,以便更好地适应不同的环境和工作任务。
在执行速度控制时,机器人需要通过调整内部计时钟和电动马达的输出电流,以便实现平滑和安全的运动。
③力控制力控制通常是机器人机械臂最高级的控制方法,它能够控制机械臂的力量,以便更好地处理不同的工件和部件。
工业机器人的五大机械结构和三大零部件解析

工业机器人的五大机械结构和三大零部件解析一、五大机械结构:1.手臂结构:工业机器人的手臂结构类似于人的手臂,用于搬运和操作物体。
它通常由多段关节构成,这些关节可以进行旋转和伸缩。
手臂结构可以根据不同的任务来设计,手臂的长度、关节的自由度和负载能力等可以根据实际需求进行调整。
2.底座结构:底座结构是工业机器人的支撑部分,它承载整个机器人和工作负载的重量,并提供机器人的旋转能力。
底座通常由电机和减速器组成,通过控制电机的旋转实现整体机器人的转动。
3.关节结构:关节结构是工业机器人手臂各关节连接的部分,它具有旋转和转动的能力。
关节结构通常由电机、减速器和编码器等组成,电机提供动力,减速器提供转动和转动的精度,编码器用于反馈位置和速度等参数。
4.手持器结构:手持器结构是机器人手臂的末端装置,用于夹取和操纵物体。
手持器通常由夹爪、吸盘、焊枪等组成,它们可以根据不同的任务和工作环境进行选择和装配。
5.支撑结构:支撑结构是机器人的框架和支撑部分,它提供机器人的稳定性和强度。
支撑结构通常由铝合金、碳纤维等材料制成,具有轻巧、刚性和耐用等特点。
二、三大零部件:1.电机:电机是工业机器人的核心动力部件,它提供驱动力和旋转力。
根据不同的应用需求,电机可以选择步进电机、直流电机、交流伺服电机等,它们具有不同的功率、转速和扭矩等特性。
2.减速器:减速器是机器人关节结构中的关键部件,它将电机的高速转动转换为低速高扭矩的输出。
减速器能够提供精确的旋转和转动控制,确保机器人的高精度和灵活性。
3.编码器:编码器是机器人关节结构中的传感器部件,它用于测量关节的位置和速度等参数。
编码器通过提供准确的反馈信号,帮助控制系统实时控制和监测机器人的运动状态。
以上是对工业机器人的五大机械结构和三大零部件的解析。
机器人的结构和零部件的选择和设计根据不同的应用和需求来进行,它们共同作用于机器人的性能和功能,实现自动化生产和工作的目标。
随着科技的不断发展,工业机器人在各个领域的应用也将越来越广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【摘要】机器人学是一门边缘学科,它涉及电子精密机械、空间机构学、操纵动力学、人机工程学等的一门系统工程。
本人在已有的机器人手臂的机械结构和机电设计的基础上,基于Motorola 公司的DSP56805单片机及PC机设计并实现了机器人臂部多关节控制系统。
设计以MOTOROLA公司生产DSP56805单片机为核心,设计了机器人臂部关节控制节点的硬件电路,并在此基础上利用C语言编制了机器人臂部关节的DSP控制程序,控制算法中采用了经典的PID控制算法,论文中采用了一种用Matlab模拟仿真来近似确定PID控制参数(Kp、Ki、Kd)的方法。
最后进行了系统程序、硬件仿真调试,结果表明:系统的软、硬件设计合理可行。
所以机器人设计是符合要求的。
关键词:控制节点、PID控制算法、PID控制参数、DSP56805、Matlab、VC 6.0 Title: Robotic Arms Intelligent Control SystemAbstractThe robotics is an edge course, it involves the precise machine, the space organization, manipulated the dynamics, person with machine engineering learns a system engineering of etc.. On given foundation of an electric shock the design at the machine structure and machines of the robotic arms ,I have been up and carried out a many joints of the robotic arms control system also according to a singlechip of DSP56805 and the PC machine designs of the company of Motorola.The design of thesis’nuclere isthe Motorola company produces a singlechip of DSP56805, designed a joint of the robot arm to control the hardware telephone of the nodal point, and make use of the DSP control procedure that the C language drew up a joint of the robot arm on this foundation, adopting the PID control calculate way of the classic in the control calculate way, adopting in the thesis a kind of with the method that the analog simulation of Matlab looks like the certain PID control parameter( Kp, Ki, Kd).Carried on the debugging of the system procedure and the hardware simulation finally, the result show:This design about system of the software and the hardware don’t only go,but also is reasonable.So the robotic design meets the request.Keywords:Control the nodal point, the PID control calculate way, PID control parameter, DSP56805、Matlab、VC 6.0目录1绪论 (1)1.1项目背景及意义 (1)1.2 方案论证 (2)2 机器人的机械结构介绍 (3)2.1机器人的一般神经网络结构图 (3)2.2机器人的臂部机械结构 (4)2.3机器人的臂部关节电机分布图 (4)2.4 小结 (5)3 PID算法介绍及位置控制算法 (6)3.1 PID算法简介 (6)3.1.1比例运算放大电路 (6)3.1.2积分运算电路 (7)3.1.3微分电路 (7)3.1.4 PID调节电路 (7)3.2电机物理模型 (8)3.3实际电机的开环阶跃响应 (9)3.4开环系统模拟仿真 (17)3.5闭环比例控制模拟仿真 (18)3.6闭环比例微分控制模拟仿真 (20)3.7闭环比例微分积分控制模拟仿真 (22)3.8 PWM简介 (25)3.9本章小结 (25)4智能机器人手臂设计硬件电路图设计 (26)4.1拟人机器人臂部电机及电机驱动电路 (26)4.2驱动电路的功能介绍说明 (27)4.2.1 MC33035无刷直流电机控制器概述 (27)4.2.2 MC33035無刷直流電机控制器的工作原理 (29)4.2.3 MC33039电子测速器概述 (30)4.2.4 MC33039电子测速器的工作原理 (31)4.2.5 三相全波六步无刷直流电动机闭环速度控制电路 (31)4.3臂部节点硬件电路分析 (32)4.4 臂部节点硬件资源分配 (33)4.5臂部节点电路设计 (36)4.5.1电源电路设计 (36)4.5.2滤波电路、时钟电路、复位电路设计 (38)4.5.3 DSP接口电路设计 (38)4.5.4 电机控制接口电路设计 (41)4.6 本章小结 (42)5拟人机器人机器人臂部关节节点软件设计 (43)5.1 臂部节点软件功能概述 (43)5.2 臂部节点软件流程 (43)5.2.1初始化模块 (44)5.2.2主循环模块 (45)5.2.3控制曲线规划模块 (46)5.2.4 PID模块 (48)5.3 臂部节点软件编程 (50)5.3.1 静态配置 (50)5.3.2 IO端口操作 (51)5.3.3 中断服务程序 (52)5.4本章小结 (52)致谢 (53)参考文献 (54)附录A (55)附录B (56)附录C (65)第一章绪论1.1项目背景及意义机器人是上个世纪中叶迅速发展起来的高新技术密集的机电一体化产品,在发达国家,工业机器人已经得到广泛应用。
随着科学技术的发展,机器人的应用范围也日益扩大,遍及工业、国防、宇宙空间、海洋开发、医疗健康等领域。
浸入21世纪,人们已经愈来愈亲身感受到机器人深入产业、深入生活、深入社会的坚实步伐。
拟人机器人(HumanoidRobot)更是先进机器人技术的高级发展阶段,它综合体现了高级机器人的机构学、运动与动力学、现代设计理论、信息检测和感知、微电子学、控制理论等诸多方面的研究和发展水平,是一个复杂的综合系统。
它涉及多种学科的内容。
下图1-1为下载的拟人机器人的雏形。
机器人的核心是控制系统。
机器人的先进性和功能的强弱通常都直接与其控制系统的性能有关。
手臂是拟人机器人的重要执行机构,在整个拟人机器人中起着重要的作用。
单独的手臂本身也是一个机器人,如目前应用非常普遍的工业六轴机器人实质就是一个拟人的手臂。
如果不考虑手臂与其他部分的协调问题,本论文中的控制对象就是一个工业六轴机器人。
1.2 方案论证机器人系统有许多控制方法。
例如PID,模糊控制,自适应控制等。
模糊控制和自适应控制的精度很高。
是现代控制领域中应用广泛的控制方法,尤其是在军工领域和航天领域中。
PID控制是最基本的控制方法。
它的控制方法与前两种相比不高。
但在要求不高的情况下大多采用PID控制算法。
在大多数领域中一般可将几种控制方法结合使用,达到性能价格的最优组合。
由于本次设计所做机器人的要求不高,并且工作环境也是在正常环境中,所以本文的设计思路也是采用经典控制理论中的PID控制。
PID控制有很强的实用性。
它对系统的调节即可达到快速敏捷,又可达到平稳准确,只要三项作用的强度配合适当,便可得到满意的调节效果。
本设计采用的PID控制为转速、电流双闭环调速系统。
大部分的电机控制调速系统大多采用这种方式。
首先它运行稳定。
外环控制转速,转速调节的作用时对转速的抗干扰调节并使之在稳态时无静差,其输出限幅值决定允许的最大电流;在内环控制电流,电流调节器的作用是电流跟随,过流自动保护和及时抑制电压第二章机器人的机械结构分析2.1机器人的一般神经网络结构图机器人是一个高度协调的系统,其完成的每一个动作都是整个系统中所有元素配合工作的结果。
它的身上有很多电机和传感器,这些电机和传感器在底层由本文所设计的控制节点控制着,但是孤立的节点是没有意义的,必须要将机器人身上所有的节点连接起来构成一个控制网络,使得所有的节点都在机器人的“大脑”的统一支配下。
这样一个网络好比人身体里的神经,将大脑的指令传达给“肌肉”,同时将感觉到的信息送给大脑。
在这样一个体系下,每个节点必须实时和上位机打交道,获取指令,上传数据,这样对通讯协议就有了速度和可靠性的要求,大多数机器人设计选择了CAN总线作为全身的神经系统。
第二章机器人的机械结构分析2.1机器人的一般神经网络结构图机器人是一个高度协调的系统,其完成的每一个动作都是整个系统中所有元素配合工作的结果。
它的身上有很多电机和传感器,这些电机和传感器在底层由本文所设计的控制节点控制着,但是孤立的节点是没有意义的,必须要将机器人身上所有的节点连接起来构成一个控制网络,使得所有的节点都在机器人的“大脑”的统一支配下。
这样一个网络好比人身体里的神经,将大脑的指令传达给“肌肉”,同时将感觉到的信息送给大脑。
在这样一个体系下,每个节点必须实时和上位机打交道,获取指令,上传数据,这样对通讯协议就有了速度和可靠性的要求,大多数机器人设计选择了CAN总线作为全身的神经系统。
2.2机器人的臂部机械结构本设计只是采用它的臂部设计。
仿照人类胳膊真实的运动结构,拟人机器人臂部采用了三关节型机械结构。
它的每条手臂包括肩、肘、腕三个关节,每个关节上都有一个摆动自由度和一个转动自由度。