T型三电平逆变器课程设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要

三相三电平逆变器具有输出电压谐波小,/

dv dt小,EMI小等优点,是高压大功率逆变器应用领域的研究热点,三相二极管中点箝位型三电平逆变器是三相三电平逆变器的一种主要拓扑,已经得到了广泛的应用。三相T型三电平逆变器,是基于三相二极管中点箝位型三电平逆变器的一种改进拓扑。这种逆变器中,每个桥臂通过反向串联的开关管实现中点箝位功能,是逆变器输出电压有三种电平。该拓扑比三相二极管中点箝位型三电平拓扑结构每相减少了两个箝位二极管,可以降低损耗并且减少逆变器体积,是一种很有发展前景的拓扑。

本设计采用正弦脉宽调制(SPWM),本文介绍了三相T型三电平逆变器的设计,介绍其结构和基本工作原理,及SPWM控制法的原理,并利用SPWM控制的方法对三电平逆变器进行设计与仿真。本设计采用SIMULINK对T型三电平逆变电路建立模型,并进行仿真。

关键词: T型三电平逆变器、正弦脉宽调制、SIMULINK仿真

目录

第一章绪论 (6)

1.1研究背景及意义 ..

1.2三电平逆变器拓扑分类

第一章 T型三电平逆变器工作原理分析 (6)

1.1逆变器的结构

1.2本章小结

第二章正弦脉波调制(SPWM) (7)

3.1 PWM与SPWM的工作原理

3.2三电平逆变电路SPWM的实现

3.3本章小结

第三章电路仿真与参数计算 (10)

4.1逆变器的基本要求

4.2电路图

4.3调制电路

4.4L-C滤波电路

4.5结果分析

第四章课程设计小结 (14)

参考文献 (15)

第一章绪论

1.1 研究背景及意义

近年来,随着经济的飞速发展,人类对能源的需求也大幅度增加,而传统能源面临着枯竭的危机。在这种情况下,我们不得不加速开发新型能源。各国的专家致力于新能源的开发与利用,光伏发电、风力发电、生物发电等各种新型发电技术已经得到了一定的应用,并且正在蓬勃的发展,尤其是光伏发电,因其成本低、稳定性较好,控制简单等优点,在各国得到了广泛的应用。受地区气象条件的影响,太阳能光伏电池板输出的直流电压极不稳定,而且电压幅值低,容量小。为了高效利用太阳能,需要将不稳定的光伏电池串、并联组合,并且经过多级电力电子变换器组合输出恒频交流电压并网运行。而把这些初始能源转化为可用电能的桥梁就是逆变器。随着开关器件的不断发展,逆变器的拓扑、调制方式和控制策略也在不断发展,控制理论在逆变器的控制上得到了很好的应用,这一切都保证了优良的供电质量。在一些高电压、大功率的应用场合,传统的两电平逆变器由于开关器件耐压限制,无法满足需求。在这种情况下,如何将低耐压开关器件应用于高电压大功率场合成为各国专家研究的热点,由此,多电平逆变器技术应运而生。多电平的概念最早是由日本专家南波江章(A.Nabae)等人在 1980 年提出的[1],通过改变主电路的拓扑结构、增加开关器件的方式,在开关器件关断的时候将直流电压分散到各个器件两端,实现了低耐压开关器件在大功率场合应用。

1.2三电平逆变器拓扑分类

常见的多电平的电路拓扑主要有三种:二极管箝位型逆变器、飞跨电容箝位型逆变器和具有独立直流电源的级联型逆变器。本文研究的 T 型三电平逆变器可以说是中点箝位型逆变器的改进拓扑,其优势主要体现在减少了电流通路中的开关器件数量,减少了传导损耗。而且与二极管箝位型三电平逆变器相比,T 型三电平逆变器的每个桥臂少用了两个箝位二极管,其控制方法和二极管箝位型三电平逆变器类似[2]。T 型三电平逆变器融合了两电平和三电平逆变器的优势,既有两电平逆变器传导损耗低,器件数目少的优点,又有三电平逆变器输出波形好,效率高的优点,是很有发展前景的一种三电平逆变器拓扑。

第二章 T 型三电平逆变器的工作原理

2.1 逆变器的结构

图1 T 型三电平逆变器结构

以 A 相为例,当开关管1a S ,2a S 同时导通,3a S , 4a S 同时关断时,输出端 A 相对于直流侧零电位参考点 O 点的电平为dc U /2;当开关管2a S 、3a S ,同时导通,

1a S ,4a S

同时关断时,输出端 A 相对于 O 点的电平为 0;当开关管3a S , 4a S 同时导通,1a S ,2a S 同时关断时,输出端 A 相对于 O 点的电平为-dc U /2。如表 2-3 所示。并且开关管1a S 与4a S

不能同时导通,不考虑死区时间时,开关管1a S 和3a S ,2a S 和4a S 的驱动脉冲是互补的。开关状态不能在 P 和 N 之间直接转换,必须通过 0 状态来过渡。A 点的相电压幅值为{dc U /2, 0 , -dc U //2 }三种电平状态,故称为三电平逆变器。

1:1a S 、2a S 导通,3a S 、 4a S 关断 a U =dc U /2 2:2a S 、3a S 导通,1a S 、4a S 关断 a U =0 3:3a S 、4a S 导通,1a S 、2a S 关断 a U =-dc U /2

2.2三电平

测量图如下:

图2 测量三电平

2.3本章小结

本章对 T 型三电平逆变电路的结构及工作原理进行了简单的介绍,并对逆变器的控制提出要求,在下一章中将会重点对如何进行调制进行详细的讨论。

第三章正弦脉波调制(SPWM)

3.1 PWM与 SPWM的工作原理

多电平逆变器的PWM控制技术是多电平逆变器研究中一个相当关键的技术,它与多电平逆变器拓扑结构的提出是共生的,因为它不仅决定多电平逆变的实现与否,而且,对多电平逆变器的输出波形质量、电路中的器件应力、系统损耗的减少和效率的提高都有直接的影响。多电平逆变器的调制在传统两电平的基础上增加了零电平,从而使输出电压的谐波含量更进一步减少。

PWM控制技术的基本原理是根据采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同。上述原理可以称之为面积等效原理,它是PWM控制技术的重要理论基础。下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦波。

图3 将PWM波代替正弦波

如图3所示的正弦半波分成N等份,就可以把正弦半波看成是由N个彼此相连的脉冲序列组成的波形。这些脉冲宽度相等,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦部分的中点重合,且使矩形脉冲和相应的正弦波部分面积相等,就可以得到图3-1b所示的脉冲序列。这就是PWM 波形。可以看出,各脉冲的幅值相等,而宽度是按正弦规律变化的。根据面积等效原理,PWM波形和正弦半波是等效的。对于负半周期也可以按同样的方法得到PWM波形。像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,称为SPWM波形

相关文档
最新文档