建筑含钢量

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言

土建工程造价一般占建筑总造价(不包括工艺设备) 的70 %~80 %;在土建工程造价中,75 %为材料费。一般地,砂石价格为几十元/吨,水泥价格为几百元/吨,钢材价格却为几千元/吨。为了降低造价,要求设计者尽量减小含钢量。有的地方,设计概算的含钢量甚至成了设计能否中标的决定性因素。

2 含钢量的实际统计值

建筑结构的含钢量是指建筑主体结构(不算装修) 总用钢量除以总建筑面积得到的一个建筑经济指标,通常以(kg/m2 ) 表示。木结构的含钢量几乎为零,砌体结构较少,混凝土结构较多,钢结构最多。砌体结构以砖石砌块作竖向承重构件,梁板一般为钢筋混凝土构件,需用一定量的钢材。钢筋是钢筋混凝土构件的骨架,配筋多少决定构件承载能力的大小,混凝土结构用钢量太少反而不经济。所以,建筑结构的含钢量有一个合理范围。实际工程含钢量的统计数据,在各种论述建筑经济和造价的著作中有所记载,其数据大多为20 世纪90 年代以前的。21世纪后,一些建筑工程造价网站发布了典型建筑工程的技术经济指标。作者根据上述统计数据,汇总出各类建筑结构实际的含钢量,见表1~5.

以上表格中的数值,均不考虑地下室和桩基,若考虑桩基应增加10 %左右。而单独计算地下室,其含钢量为80~490 kg/m2 (上限为考虑人防) 。应当指出,采用轻型钢结构的厂房和住宅,虽然为全钢结构,但它们的含钢量比钢筋混凝土结构多不了多少。

3 影响含钢量的因素

表1~5 的数据说明:即使是同一结构类型的建筑,其含钢量也有多有少,差值可达一两倍。但是,对于一个具体的工程来说,含钢量应该为确定的数值。那么,哪些因素会影响含钢量?

3.1 自然条件

作用在建筑结构上的外力,主要有地震作用和风荷载。处在抗震设防烈度高或者风压大的地区,含钢量高,反之较低。在气候恶劣、温差变化剧烈的地区,为抵抗温度应力,增加抗拉性能优良的钢筋的配置,是工程师常用的办法。建筑场地土质差,浅层土承载力低,持力层埋深大时,需要采用桩基础或很厚的钢筋混凝土筏板,含钢量较大。

3.2 政策法规

长期以来,我国因缺少钢材而对建筑用钢加以限制。从1996 年钢产量首次超过一亿吨大关,跃居世界第一位以后,我国钢产量连年增长,并一直保持钢产量世界排名第一的位置。目前,我国钢材年产量已超过4 亿吨,国家开始出台优惠政策,鼓励建筑行业积极合理地推广应用钢结构。1997 年11 月建设部发布的《中国建筑技术政策(1996~2010 年)中,明确提出发展建筑钢材、建筑钢结构和建筑钢结构施工工艺的具体要求,使中国长期以来实行的"节约钢材"政策转变为"合理用钢"政策。设计规范作为上层建筑,必然反映时代社会经济的特色和需要。短缺经济的主要倾向是竭尽全力去约束消费和限制投资,并伴以过多的行政干预来加以保证。设计规范的低安全度和某些荷载标准值的过低取值,也是短缺经济造成的。为了增强延性和防倒塌能力,主要还得靠合理加大构造用钢量。我国混凝土结构设计规范对各类构件中受拉和受压纵向钢筋最小配筋率的规定,最早引自原苏联规范,取值偏低。2002版的混凝土设计规范,对非抗震结构中受弯、偏心受拉和轴心受拉构件中的受拉纵向钢筋最小配筋率改用特征

值表达式和下限值相结合的取值方案,使其取值水准适度提高;通过对抗震框架梁受拉纵向钢筋最小配筋率增加特征值表达式,适度提高了其在混凝土强度等级偏高情况下的取值;适度提高了非抗震受压构件和抗震框架柱的纵向钢筋最小配筋率取值;新增了基础底板最小配筋率的取值规定。2002版规范基于以上理由,对建筑结构的含钢量要求,较之上世纪的规范,有明显的提高,设计试算表明,提高幅度约为5%~15 %。

3.3 设计参数

建筑专业的设计,对含钢量影响最大的一个方面,是建筑物的规则性,具体体现在开间、进深、层高、平面形状的凹凸、竖向立面的缩进、悬挑等等。如果一座总面积不大的房子,开间、进深、层高各不相同,平面立面多有变化,其含钢量必然很大,这也是一般公共建筑(剧院、体育馆等) 比同等面积的住宅办公楼含钢量大一两倍的原因。此外,对于工业厂房,影响含钢量的设计参数,则是厂房的跨度、高度、柱距、吊车吨位和楼面荷载(对多层厂房而言) 。吊车吨位200t的重型厂房,采用全钢结构,含钢量300 kg/m2 并不算多。结构专业的设计,直接左右着含钢量的大小。要想降低含钢量,必须多方案比较。如美国纽约102 层的帝国大厦采用的是框架2剪力墙体系,用钢量206kg/m2 ;而芝加哥110 层的西尔斯大厦,采用束筒体系,用钢量仅161 kg/m2 ,比帝国大厦降低了20%。在结构设计中,结构方案选择不合理造成的浪费,往往比配筋计算的不精确造成的浪费大得多。

3.4 施工变更

由于施工变更是在现场提出的,要求尽快实施,没有时间反复计算比较,设计人员凭经验做出答复, 这些变更一般偏于保守。另一种常见的情况是因为采购不到设计所要求品种规格的钢筋,必须进行钢筋代换,代换后的用钢量多数只增不减。据决算部门统计,施工变更造价占整个工程造价的比例达10 % ,有时甚至更多,这其中就有含钢量增加的因素。

4 降低含钢量的措施

4.1 优化设计方案

建筑师应能同结构师一道,摒弃片面追求新奇,使建筑平面规则整齐,体型简洁协调,设计出自然和谐、美观大方的建筑,从而达到建筑、结构和经济的协调统一。采用什么结构体系对于工程造价关系重大,能做落地剪力墙的就不做框支转换层,能使短肢剪力墙减少就尽量减少。长墙肢有利于降低竖向构件的配筋率以及减少暗柱数量。长肢墙使得暗柱数量大为减少,其边缘构件纵向筋配筋率往往较低。例如对高层住宅,一般采用钢筋混凝土剪力墙结构体系。从承载力方面来看,小开间结构中墙体的作用不能得到充分的发挥。过多的剪力墙(结构的侧向刚度过大) ,还会导致较大的地震作用。由于结构自重较大,增加了基础工程的投资。大开间剪力墙结构体系与小开间体系相比,使用功能灵活,经济指标合理,是高层住宅设计的发展方向。

4.2 合理的基础形式

一般来说,钢筋混凝土基础(包括混凝土桩) 的配筋率并不高,但因其工程量大,耗用的钢筋总量仍是巨大的。所以对基础采取什么形式,必须反复权衡,能用浅基础时就不要用桩基,采用桩基时求短不求长,灌注桩配筋又有通长和二分之一、三分之一桩长的节省办法。此外,采用加固软土地基新技术可以避免使用钢筋混凝土桩,而进行桩-土复合基础的设计,则可减少桩的数量或桩长。凡此种种,每一项均可大大减少用钢量。

4.3 采用HRB 400 级钢筋( 新Ⅲ级钢筋)

Ⅱ级钢筋( HRB 335) 强度设计值为f y = 300N/mm2 , 新Ⅲ级钢筋强度设计值为f y = 360 N/mm2 ,新Ⅲ级钢筋强度设计值与Ⅱ级钢筋强度设计值之比为360/300 = 1.2 ; 新Ⅲ级钢筋目前的市场价格比Ⅱ级钢筋略高,综合价格比为1.05。若将强度低的Ⅱ级钢筋改为强度较高的Ⅲ级钢筋用于建筑,则可节约钢材约14 %(1.2/1.05 - 1 = 14 %) ,这是降低含钢量最直接的措施。此外,在板构件中采用冷轧带肋焊接钢筋网片代替普通钢筋,节约率可达15 % 。

相关文档
最新文档