A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclabili

合集下载

遵义“PEP”2024年小学三年级第6次英语第四单元寒假试卷

遵义“PEP”2024年小学三年级第6次英语第四单元寒假试卷

遵义“PEP”2024年小学三年级英语第四单元寒假试卷考试时间:100分钟(总分:100)A卷考试人:_________题号一二三四五总分得分一、综合题(共计100题)1、听力题:A __________ is a combination of two or more elements that are chemically bonded.2、What do we call the study of the distribution and movement of populations?a. Demographyb. Sociologyc. Anthropologyd. Geography答案:a3、听力题:She plays _____ (soccer/hockey) after school.4、听力题:The process of changing a solid directly to a gas is called ______.5、填空题:Plants are essential for maintaining ______ balance on Earth.(植物对维持地球的生态平衡至关重要。

)6、What is 3 x 4?A. 10B. 11C. 12D. 137、填空题:I want to _______ (学习) how to garden.8、填空题:The _______ (蜗牛) moves slowly.9、What do you call the time of day when the sun sets?A. DawnB. DuskC. NoonD. Midnight答案: B10、填空题:I enjoy watching birds build their ______ (巢) in the spring.11、听力题:The chemical symbol for erbium is ______.12、What do you call a young pig?A. CalfB. PigletC. FoalD. Kid答案:B13、ts are ______ (肉质的) and store water. 填空题:Some pla14、填空题:我的朋友喜欢 _______ (活动). 她觉得这很 _______ (形容词)15、听力题:The classroom is _____ and tidy. (clean)16、听力题:The chemical formula for butanoic acid is ______.17、填空题:The ________ was a time of great exploration in Africa.18、填空题:My favorite season is ______ (秋季).19、听力题:Metals are good conductors of ______.20、填空题:The __________ is a major mountain range in Europe. (阿尔卑斯山脉)21、填空题:We will have a ________ (庆典) later this month.22、填空题:My grandmother has a beautiful ________ garden.23、听力题:A substance that helps preserve food by preventing spoilage is called a ______.24、填空题:A cheetah is the fastest _______ in the animal kingdom, running swiftly.25、听力题:A _______ is a chemical reaction where energy is absorbed.26、听力题:I brush my teeth _____ night. (every)27、Which insect has wings?A. AntB. SpiderC. ButterflyD. Worm28、填空题:The __________ was a time of great scientific advancement. (启蒙时代)29、填空题:The ______ (植物的特征) can inform garden design.30、听力题:Kittens are born ______ and depend on their mothers.31、填空题:A ________ (植物分类) helps in identification.32、听力题:The __________ is a significant site for environmental studies.33、填空题:I like to create stories with my toy ____. (玩具名称)34、听力题:I like to ___ in the water. (swim)35、What is the name of the famous American actor known for his role in "Forrest Gump"?A. Tom HanksB. Robin WilliamsC. Brad PittD. Johnny Depp答案:A36、What do you call a baby swan?A. GoslingB. CygnetsC. DucklingD. Calf37、填空题:A __________ (多样性) in chemical compounds contributes to the complexity of life.38、听力题:The sun is ___ (setting) behind the hills.39、What do we call a scientist who studies living things?A. ChemistB. BiologistC. PhysicistD. Geologist答案:B40、听力题:Jupiter has a very strong ______ field.41、填空题:The __________ (历史的价值) is timeless.42、听力题:I want to _____ (become/learn) an artist.43、填空题:The garden is full of ______ (昆虫) in summer.44、填空题:My pet _____ loves to cuddle and play.45、选择题:What do you call the act of keeping animals for agriculture?A. FarmingB. RanchingC. BreedingD. All of the above46、填空题:I love my ______ very much. (我非常爱我的______。

小学上册第八次英语第三单元测验试卷

小学上册第八次英语第三单元测验试卷

小学上册英语第三单元测验试卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1. A ____ is often found in the wild and has a powerful bite.2.My mom enjoys making ____ (smoothies) for breakfast.3.What do you call a large group of fish?A. SchoolB. FlockC. SwarmD. Pod答案:A4.What is the main language spoken in the United Kingdom?A. SpanishB. FrenchC. EnglishD. German5.What is the main ingredient in soap?A. WaterB. OilC. FatD. LyeD6.What is the main purpose of the leaves on a plant?A. Absorb waterB. Store foodC. PhotosynthesisD. Provide supportC7.The __________ is a major river flowing through Paris. (塞纳河)8.What is the first month of the year?A. DecemberB. JanuaryC. FebruaryD. March9.What do you call the sound that a cat makes?A. BarkB. MeowC. RoarD. ChirpB10.The Earth's surface is shaped by both ______ and erosion.11.I call my cousins __________. (表亲)12.I can ______ (开发) my talents through practice.13.Which device do you use to call someone?A. ComputerB. PhoneC. TelevisionD. RadioB14.She is wearing a ________ dress.15.The _____ (desk/table) is made of wood.16.What is the main ingredient in butter?A. MilkB. EggC. SugarD. Flour17.What is the largest organ inside the human body?A. HeartB. LiverC. LungD. KidneyB18.Did you ever meet a _______ (小海豹)?19.My friend has a unique __________ (个性).20.Roots anchor the plant in the __________ (土壤).21.Chemical bonds can be ionic or _______.22.The _______ (青蛙) can leap great distances.23.I enjoy playing with my toy ________ (玩具名称) after school.24.My sister enjoys __________ (做实验).25.How many colors are in a rainbow?A. FiveB. SixC. SevenD. Eight26.In _____ (45), the Great Wall can be seen from space.27.My aunt loves to paint ____ (murals).28.What is the term for a young pig?A. CalfB. PigletC. LambD. ChickB Piglet29.The capital of Kuwait is _______.30.The ______ is a powerful animal in the jungle.31. A _____ is an experiment that follows scientific methods.32.Changes in temperature can affect the _____ of a chemical reaction.33.My brother is very __________ (友善) to his classmates.34.My brother is known for his __________ (勇气).35.The first successful vaccine was developed by Edward __________ (詹纳).36.The chemical symbol for mercury is ________.37.I see a _____ (幼儿园) nearby.38.The __________ (历史的分析) brings clarity.39.The __________ is important for agriculture and food production.40.What do we call a period of ten years?A. CenturyB. DecadeC. YearD. Millennium41. A solution that can dissolve more solute is called a _______ solution.42.I love playing with my ________ action figure.43.The _______ (The New Deal) aimed to provide relief during the Great Depression.44.My uncle is a talented ____ (painter).45.My brother loves to work on __________ (项目) with me.46.What is the capital city of Finland?A. HelsinkiB. OsloC. StockholmD. CopenhagenA47.What is the name of the famous landmark in Paris?A. Eiffel TowerB. Louvre MuseumC. Arc de TriompheD. Notre-Dame Cathedral48.What is the past tense of "go"?A. GoesB. GoedC. WentD. Going答案:C49.The chemical formula for carbon tetrachloride is ______.50.The ______ (果皮) protects the fruit inside.51.We will eat _____ (pasta/rice) for dinner.52.What do you call a person who writes plays?A. PlaywrightB. AuthorC. ScreenwriterD. NovelistA53. A _______ is a process that alters the state of matter.54.The ______ (蓝色) flower is rare.55.Which animal lives in a den?A. LionB. FishC. BirdD. FrogA56.What is the largest planet in our solar system?A. EarthB. MarsC. JupiterD. SaturnC57. A tortoise's shell is made of ______ (骨头).58.My brother is excited about ____.59.My brother plays the ____ (trumpet) in the band.60.What is the capital of Afghanistan?A. KabulB. KandaharC. HeratD. Mazar-i-Sharif61. A snail leaves a slimy ______.62.The process of plants making their food using sunlight is called __________.63.The main gas that supports combustion is ______.64.I feel ________ when I see my friends.65.The ______ thrives in tropical climates.66.I saw a _______ (青蛙) by the pond.67.I want to be a ______ (teacher) when I grow up.68.What do you call a large area covered with ice?A. GlacierB. IcebergC. SnowfieldD. IcecapA69. A kitten pounces on ______ (玩具).70.The ancient Romans established one of the first ________ (共和国).71.What do you call the art of folding paper into shapes?A. OrigamiB. CalligraphyC. PaintingD. SculptureA72.What is the capital of Denmark?A. CopenhagenB. AarhusC. OdenseD. Aalborg73. A conductor allows electricity to ______ (flow) through it easily.74.Some fish are known for their vibrant ______.75.What do you call the action of putting things in order?A. OrganizingB. ArrangingC. SortingD. ClassifyingA76.The _____ (花) smells sweet.77.The flowers are _______ (开得很美).78.What do we call a person who studies languages?A. LinguistB. PolyglotC. TranslatorD. All of the above79.The park is ________ from my house.80.The ______ is a great motivator.81.What do you call a place where you can see wild animals?A. ZooB. AquariumC. MuseumD. Farm答案:A82.Light can be ______ (absorbed) by dark surfaces.83.The _____ (老虎) is a powerful animal found in the jungle. 老虎是在丛林中发现的强大动物。

球形花状结构氧化锡光催化降解亚甲基蓝

球形花状结构氧化锡光催化降解亚甲基蓝

球形花状结构氧化锡光催化降解亚甲基蓝刘斌;杜燕萍;常薇;郁翠华;杨合情【摘要】为了研究SnO2对亚甲基蓝的光催化降解性能,以SnCl4·5H2O为原料,通过水热法,在200℃下反应24h,制备出直径范围为1.7μm~2.0μm球形花状结构SnO2.考察催化剂用量、光照时间及pH值对光催化降解亚甲基蓝性能的影响.结果表明,球形花状结构SnO2对亚甲基蓝溶液具有良好的光催化性能,催化剂的最佳加入量是1.25mg/mL,在最佳加入量下,紫外光照射时间超过30min时,亚甲基蓝溶液降解率达到96.3%;且随着溶液pH值的增加,亚甲基蓝溶液降解率逐渐增加,光催化反应更加完全.【期刊名称】《纺织高校基础科学学报》【年(卷),期】2015(028)003【总页数】5页(P343-347)【关键词】氧化锡;球形花状结构;光催化;亚甲基蓝【作者】刘斌;杜燕萍;常薇;郁翠华;杨合情【作者单位】西安工程大学环境与化学工程学院,陕西西安710048;陕西师范大学材料科学与工程学院,陕西西安710062;西安工程大学环境与化学工程学院,陕西西安710048;西安工程大学环境与化学工程学院,陕西西安710048;西安工程大学环境与化学工程学院,陕西西安710048;陕西师范大学材料科学与工程学院,陕西西安710062【正文语种】中文【中图分类】O643金属氧化物,如二氧化锡(SnO2)、氧化锌(ZnO)、二氧化钛(TiO2)等,由于其独特的物理和化学性能,近年来备受关注[1-2].SnO2是一种重要的n-型半导体材料,其带隙宽度为3.6eV,由于其独特的光学、电学和化学性质,在锂离子电池、染料敏化太阳能电池、气敏传感器、光催化及透明电极等领域具有广泛地应用[3].这些器件的性能在很大程度上取决于SnO2纳米结构单元的尺寸、形貌及其组装形成的纳米结构.因此,不同尺寸和形貌的SnO2的制备成为研究热点.目前为止,研究人员已经通过多种方法,如化学气相沉积、热蒸发法、水热法、微波法和溶胶凝胶法,制备了SnO2纳米粒子、纳米棒、纳米带、纳米片、纳米管、纳米线、纳米花、空心球等纳米结构,并对这些纳米结构的物理及化学性能进行了测试[4-11].SnO2纳米管[8]和空心球[11]已经被应用于制造锂离子电池的负极,测试发现,这些SnO2纳米结构具有较高的储锂容量和良好的电循环性能.此外,SnO2纳米带、纳米线、纳米粒子、纳米棒和纳米管等纳米结构已经被用于构筑各种气体传感器,并被广泛应用于乙醇、一氧化碳、氢气、二氧化氮、2-丙醇等气体和液体的测定[12-16].结果表明,这些具有不同纳米结构的SnO2传感器比SnO2粉末具有更高的灵敏度.文献[17-18]研究了SnO2纳米棒和纳米花对罗丹明B降解的光催化能力,结果发现,SnO2纳米棒[17]和纳米花[18]对罗丹明B降解的催化性能高于SnO2纳米颗粒.然而,有关球形花状纳米结构SnO2光催化降解亚甲基蓝的研究至今未见报道.本文通过水热法制备球形花状纳米结构SnO2光催化剂,以亚甲基蓝溶液为研究对象,讨论催化剂的用量、光照时间及pH值对球形花状纳米SnO2光催化性能的影响.1.1 试剂与仪器(1) 试剂四氯化锡(SnCl4·5H2O,分析纯,天津市科密欧化学试剂有限公司),氢氧化钠(NaOH,分析纯,天津市科密欧化学试剂有限公司),聚乙烯吡咯烷酮(PVP, Mr=30000,分析纯,国药集团化学试剂有限公司),亚甲基蓝(分析纯,北京化工厂),二次蒸馏水.(2)仪器 IKA RO10型磁力搅拌器(广州仪科实验室技术有限公司),DHA-9246A型电热恒温鼓风干燥箱(上海精宏实验设备有限公司),AL-204型电子天平(梅特勒-托利多仪器有限公司),TGL-16G型台式高速离心机(上海安亭科学仪器厂),UV-2450型紫外可见分光光度计(日本岛津公司),BL-GHX-V型光化学反应仪(西安比朗生物科技有限公司).1.2 方法(1) 球形花状结构SnO2的制备根据文献[19],称取0.500g SnCl4·5H2O于50 mL 烧杯中,再向其中依次加入2mL, 6M NaOH,0.5g PVP和13mL H2O,搅拌形成清亮溶液.将该溶液转入具有聚四氟乙烯内衬的反应釜中,密封反应釜,在200℃下反应24h,然后自然冷却至室温,得白色成淀.离心后分别用去离子水和无水乙醇依次洗涤3次,室温下,最终得到白色粉末状产物.(2) 光催化实验实验采用BL-GHX-V型光化学反应仪,光源是300W汞灯.首先,量取20mL,10mg/L的亚甲基蓝溶液于体积为50mL的石英试管中,再称取不同量的SnO2样品分散到亚甲基蓝溶液中,于暗处震荡10min,使亚甲基蓝分子和半导体光催化剂表面建立起吸附脱附平衡,然后置于紫外灯管下,进行测试.由于溶液pH值不同,对亚甲基蓝的结构会产生不同的影响,为了仅考虑SnO2对亚甲基蓝的光催化降解性能,所以在光催化实验方法中没有控制溶液的pH.所有实验均在室温下进行,照射一定时间后取出,高速离心,将光催化剂与溶液进行分离,取上层清液用岛津UV-2450紫外可见分光光度计进行分析测定.(3) 降解率计算先用紫外可见分光光度计对亚甲基蓝进行全波段(190nm~800nm) 扫描,确定亚甲基蓝的最大吸收波长(664 nm),再用紫外可见分光光度计在此波长下测定清液的吸光度.由Lambert-Beer定律可知:A=εbc,式中b为光程,cm;c为质量浓度,g/L;ε为质量吸光系数,L/g·cm,亚甲基蓝溶液的降解率按照下面的公式进行计算:式中:η为亚甲基蓝溶液的降解率,%;C0为含有SnO2样品的亚甲基蓝溶液的初始浓度,g/L;C为含有SnO2样品的亚甲基蓝溶液光照不同时间后的实际浓度,g/L;A0为含有SnO2样品的亚甲基蓝溶液的初始吸光度;A为含有SnO2样品的亚甲基蓝溶液光照不同时间后的吸光度.2.1 SEM和XRD分析制备的球形花状结构SnO2的SEM和XRD图谱如图1所示.从图1(a)可看出,所制备的产物由大量的球形花状结构物质组成,其直径范围为1.7μm~2.0μm.由图1(b)可见,所有衍射峰均指向四方相SnO2(JCPDS卡号:41-1445).此外,其衍射峰比较尖锐,说明该产物结晶性很高.除此之外,没有其他杂质峰出现, 说明所制备的产物为纯的四方相SnO2.2.2 亚甲基蓝溶液的吸收光谱分别测定未经紫外光照射的亚甲基蓝溶液,紫外光照射30min后的亚甲基蓝溶液和含有SnO2球形花状结构并经紫外光照射30min后的亚甲基蓝溶液的吸收光谱,其结果如图2所示.从图2可以看出,亚甲基蓝溶液的最大吸收波长为664nm(曲线Ⅰ),当紫外光照射30min后,其吸光度大约下降了12%(曲线Ⅱ),而含有SnO2球形花状结构的亚甲基蓝溶液,在紫外光照射30min后,其吸光度大约下降了96%(曲线Ⅲ).由此可见,采用球形花状结构SnO2作为光催化剂可有效降解亚甲基蓝溶液.2.3 SnO2用量对降解率的影响在光催化反应中,催化剂的用量是非常重要的影响因素.在20mL,10mg/L的亚甲基蓝溶液中加入光催化剂SnO2,用300W汞灯照射,通过改变SnO2的加入量,探究紫外光照射30min后亚甲基蓝溶液的降解率,其结果如图3所示.由图3可知,随着SnO2用量的增加,亚甲基蓝溶液的降解率逐渐增加.但当加入量至25mg后,亚甲基蓝溶液的降解率增加缓慢,不再有明显的提高.故SnO2最佳用量为25mg.2.4 光照时间对降解率的影响在其他反应条件固定不变的情况下,在20mL亚甲基蓝溶液中加入25mg 光催化剂SnO2,研究不同紫外光照射时间下亚甲基蓝溶液的降解率,其结果如图4所示.由图4 可知,随光照时间的延长,亚甲基蓝溶液的降解率不断升高,但是当光照时间超过30min后,降解率升高至最大值96.3%且增加缓慢,说明亚甲基蓝溶液基本降解完全.2.5 pH值对降解率的影响向7份,20mL亚甲基蓝溶液中分别加入25mg 光催化剂SnO2,用HCl和NaOH调节溶液pH值分别为1,3,5,7,9,11,13,用300W汞灯光照20min后,计算降解率,其结果如图5所示.由图5可见,随着溶液pH值的增加,亚甲基蓝溶液的降解率逐渐增加.由于SnO2受到紫外光照射后,会产生空穴,空穴可以和OH-反应生成羟基自由基(·OH),·OH具有很强的氧化性,可以使亚甲基蓝氧化褪色[20].在酸性pH范围时,亚甲基蓝溶液的降解率增加缓慢,这是由于在酸性溶液中,OH-浓度较低,所产生的·OH的数目相对较小,所以降解率增加缓慢.当溶液由酸性过渡到碱性时,OH-增加很多,产生的·OH数目随之增加,所以在溶液pH=7的前后,亚甲基蓝溶液的降解率大幅增加,当溶液的pH值增加到11以后,亚甲基蓝溶液的降解率达91%,亚甲基蓝溶液基本降解完全.由于光照时间较短只有20min,所以其降解率低于光照30min的降解率.本文通过水热法制备了对亚甲基蓝具有良好光催化性能的球形花状结构SnO2,并考察了催化剂用量、光照时间及溶液pH值对其光催化性能的影响.结果表明,300W汞灯照射30min,SnO2最佳加入量1.25mg/mL;当紫外光照时间超过30 min时,亚甲基蓝溶液降解率达到了96.3%.当溶液pH由酸性变化到碱性时,亚甲基蓝溶液降解率大幅增加,降解更加完全.球形花状SnO2的制备方法操作方便、条件温和、设备简单,有望用于大规模生产,且可能应用于其他氧化物花状结构的制备,预计其在染料废水处理方面有一定的应用价值.当然,这种光催化剂的性能还没有与其他光催化剂进行比较,此外,这种光催化剂对不同染料的降解性能和降解机理还有待于进一步的研究.【相关文献】[1] 余花娃,樊慧庆,王晶,等.Co掺杂ZnO微/纳米纤维的制备及其光催化性能[J].纺织高校基础科学学报,2014,27(2):244-247.YU Huawa,FAN Huiqing,WANG Jing,et al.Preparation and photocatalytic characterization of Co-doped ZnO micro/nanofibers[J].Basic Sciences Journal of TextileUniversities,2014,27(2):244-247.[2] 王文静,郭晓玲,王志刚,等.纳米二氧化钛光催化净化酸性染料废水的研究[J].西安工程大学学报,2011,25(2):216-219.WANG Wenjing,GUO Xiaoling,WANG Zhigang,et al.Study of photocatalysis purification of acid dyeing wastewater with titania[J].Journal of Xi′an PolytechnicUniversity,2011,25(2):216-219.[3] WANG X,HAN X G,XIE S F.Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanoparticles with exposed high-energy facets[J].Chem Eur J,2012,18(8):2283-2289.[4] KRISHNAKUMAR T,JAYAPRAKASH R,PARTHIBAVARMAN M.Microwave-assisted synthesis and investigation of SnO2 nanoparticles[J].Mater Lett,2009,63(11):896-898. [5] LUPAN O,CHOW L,CHAI G,et al.Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique[J].Physica E,2009,41(4):533-536.[6] MA X L,LI Y,ZHU Y L.Growth mode of the SnO2 nanobelts synthesized by rapid oxidation[J].Chem Phys Lett,2003,376(5/6):794-798.[7] KUMAR B,LEE D H,KIM S H,et al.General route to single-crystalline SnO2 nanosheets on arbitrary substrates[J].J Phys Chem C,2010,114(25):11050-11055.[8] LI L M,YIN X M,LIU S,et al.Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries[J].Electrochem Commun,2010,12(10):1383-1386.[9] CHEN Z W,JIAO Z,WU M H,et al.Bulk-quantity synthesis and electrical properties of SnO2 nanowires prepared by pulsed delivery[J].Mater Chem Phys,2009,115(2/3):660-663.[10] NING J J,DAI Q Q,JIANG T,et al.Facile synthesis of tin oxide nanoflowers:A potential high-capacity lithium-ion-storage material[J].Langmuir,2009,25(3):1818-1821.[11] LOU X W,WANG Y,YUAN C L,et al.Template-free synthesis of SnO2 hollownanostructures with high lithium storage capacity[J].Adv Mater,2006,18(17):2325-2329.[12] ANDREI P,FIELDS L L,ZHENG J P,et al.Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure[J].Sens Actuators B,2007,128 (1):226-234.[13] WANG B,ZHU L F,YANG Y H,et al.Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen[J].J Phys Chem C,2008,112(17):6643-6647.[14] MATIN B M,MORTAZAVI Y,KHODADADI A A,et al.Alkaline-and template-free hydrothermal synthesis of stable SnO2 nanoparticles and nanorods for CO and ethanol gas sensing[J].Sens Actuators B,2010,151 (1):140-145.[15] WANG D,CHU X F,GONG M L.Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method[J].Sens Actuators B,2006,117(1):183-187.[16] WANG G X,PARK J S,PARK M S,et al.Synthesis and high gas sensitivity of tin oxide nanotubes[J].Sens Actuators,B,2008,131(1):313-317.[17] CHENG G E,CHEN J Y,KE H Z,et al.Synthesis,characterization and photocatalysis of SnO2 nanorods with large aspect ratios[J].Mater Lett,2011,65(21/22):3327-3329. [18] DAI S D,YAO Z L.Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity[J].Appl Surf Sci,2012,258(15):5703-5706.[19] LIU B,ZHANG L H,ZHAO H,et al.Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2 submicron rods[J].Sens ActuatorsB,2012,173:643-651.[20] WU S S,CAO H Q,YIN S F,et al.Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals[J].J Phys Chem C,2009,113(41):17893-17898.。

昆明2024年10版小学4年级下册第十二次英语第4单元寒假试卷[含答案]

昆明2024年10版小学4年级下册第十二次英语第4单元寒假试卷[含答案]

昆明2024年10版小学4年级下册英语第4单元寒假试卷[含答案]考试时间:80分钟(总分:120)B卷考试人:_________题号一二三四五总分得分一、综合题(共计100题)1、填空题:The butterfly has beautiful _________. (翅膀)2、What do we call the act of creating a work of art?A. ArtistryB. InspirationC. CreationD. Craftsmanship答案:C3、What is the name of the first spacecraft to fly by Saturn?A. Pioneer 10B. Voyager 1C. Voyager 2D. Cassini4、听力题:The chemical formula for iron(III) sulfate is _____.5、What do you call the art of folding paper into shapes?A. OrigamiB. CalligraphyC. PaintingD. Sculpture答案:A6、填空题:The turtle is hiding in its ______.7、填空题:A _____ (植物管理) plan can optimize resources and efforts.8、填空题:I enjoy watching ______ with my family. (我喜欢和家人一起看______。

)9、填空题:My dad loves to ________ (园艺).10、填空题:We visit the ______ (历史遗址) to understand our culture.11、听力题:The teacher is _____ the students to listen. (asking)12、听力题:The butterfly is ___ (landing) on the flower.13、填空题:A _____ (狗) can be a great friend. They love to play and go for walks.狗可以成为很好的朋友。

氧化锡纳米结构的制备及光致发光性能

氧化锡纳米结构的制备及光致发光性能

氧化锡纳米结构的制备及光致发光性能李立珺【摘要】利用热蒸发法成功制备出了两种氧化锡纳米结构.利用X射线衍射法、拉曼光谱、扫描电子显微镜和透射电子显微镜对两种纳米结构的晶格结构和表面形貌做了详细分析,结果表明所制纳米结构为金红石型氧化锡晶体结构,氧化锡纳米结构的形貌与实验中所用的源材料有着很大的关系.以氧化锡和碳粉的混合物为源,制备出的纳米线长且直,直径在50~200nm之间,以氧化亚锡和碳粉为源,制备出的纳米结构短且多弯折,直径在150nm左右.研究了所制氧化锡纳米材料的室温光致发光性能,发光峰位于590、630和677nm处.【期刊名称】《功能材料》【年(卷),期】2013(044)009【总页数】4页(P1269-1271,1276)【关键词】氧化锡;纳米结构;热蒸发法;X射线衍射;光致发光【作者】李立珺【作者单位】西安邮电大学电子工程学院,陕西西安710121【正文语种】中文【中图分类】TB334;O782+.91 引言SnO2作为一种重要的宽禁带半导体功能材料,由于具有优异的光学、电学特性,在气敏传感器[1]、透明导电材料[2]、紫外探测器[3]、场发射器件[4]等众多领域具有广阔的潜在应用前景,引起了人们的广泛关注。

由于特殊的物理属性和在纳米级器件上的应用,近年来一维纳米结构已经引起了人们强烈的兴趣。

SnO2纳米结构的研究也取得了重大的进展。

通常制备SnO2纳米结构的方法有水热合成法[5]、化学气相沉积法[6],激光脉冲沉积法[7]和热蒸发法[8-12]。

其中热蒸发法最为常用,该方法制备的产品纯度高,均一性好,可通过改变反应条件实现可控制性生长。

目前,已通过控制实验温度、气压、气流量、催化剂等工艺条件制备出了不同形貌的纳米结构,如纳米片[8]、纳米线[9]、纳米带[10]、之字状结构[11]及鱼骨状结构[12]等。

通过改变源材料配比,也能影响到纳米结构形貌的变化,而目前相关报道较少。

本文通过改变源材料配比,利用热蒸发法成功制备出了两种不同形貌的氧化锡纳米结构,进行了形貌和结构表征,并初步研究了所制两种氧化锡纳米结构的室温光致发光性能。

浙江大学化学系求是学者黄建国教授诚聘博士后研究人员

浙江大学化学系求是学者黄建国教授诚聘博士后研究人员

浙江大学化学系黄建国课题组诚招博士后研究人员研究方向:1. 自组织超薄膜2. 无机纳米材料3. 复合功能纳米材料4. 表面和界面纳米科技在近几年来的迅猛发展及其向其他学科的渗透开辟了一个前景诱人的材料科学的新生领域,而和众多的机遇同时涌现的则是更多的挑战。

不落俗套的材料结构和功能设计,简便高效的制备方法,直接面向实际应用的新材料开发等正在成为该学科近一步发展的目标和动力。

研究工作的重点是设计和合成基于自组织(复合)超薄膜的功能纳米材料,解析其结构,并探索其在器件(光电磁热等)和生物传感器方面的应用。

博士后招聘要求:化学或相关专业博士学位,具有薄膜,表界面,纳米材料制备或有机合成的研究背景。

英语读写能力良好。

工作踏实认真。

同时招收博士研究生和硕士研究生。

博士后生活待遇:除享受浙江大学博士后待遇外,研究室视工作业绩另发奖励和津贴;年收入约六万元左右。

联系地址:邮编:310027浙江大学玉泉校区化学系黄建国教授E-mail:***************.cn电话:0571-8795-1202附:黄建国教授简介黄建国,1972 年生,山东兖州人。

1990 年至1999 年在南京大学化学系学习工作,1998 年获理学博士学位。

1999 至2000 年在Iowa State University化学系任研究助理;2000 年至2007 年在日本理化学研究所和日本物质材料研究机构任研究员。

2007 年9 月起,任浙江大学化学系求是学者特聘教授。

主要研究方向为化学方法制备基于金属氧化物超薄膜的功能纳米材料,并探索其在传感器和生物功能化方面的应用。

作为独立课题负责人多次获得日本文部科学省基金资助。

相关研究工作获得学术界的关注和好评并引起了一定的社会反响。

有关研究论文分别为著名国际期刊Angewandte Chemie International Edition专门著文介绍(见该刊2004年43卷第21期之“Highlight”),和被著名国际期刊Chemical Communications作为封面重点推介(见该刊2005年第21 期),及入选国际期刊Journal of Materials Chemistry的top ten most-accessed paper (November, 2006)。

岳阳2024年03版小学3年级第二次英语第六单元综合卷[有答案]

岳阳2024年03版小学3年级英语第六单元综合卷[有答案]考试时间:80分钟(总分:140)B卷考试人:_________题号一二三四五总分得分一、综合题(共计100题共100分)1. 选择题:What is the name of the popular show about a detective solving mysteries?A. Sherlock HolmesB. Law and OrderC. CSID. Monk答案: A2. 填空题:A _______ (小松鼠) gathers acorns for winter.3. 听力题:A __________ is a chemical change that produces light and heat.4. 听力题:The chemical formula for ammonium thiocyanate is _______.5. 选择题:What is the name of the large mammal known for its trunk?A. LionB. GiraffeC. ElephantD. Rhino答案: C6. 听力题:The tree is ___ (green/brown).7. 填空题:The rabbit's fur is very ________________ (柔软).The chemical formula for ammonium phosphate is _____.9. 填空题:My mom enjoys _______ (动词) with her friends. 她觉得这个活动很 _______ (形容词).10. 填空题:A ____(team-building exercise) fosters collaboration.11. 听力题:The chemical name for common baking soda is ______ bicarbonate.12. 填空题:__________ (氧化) is a reaction that involves the loss of electrons.13. 听力题:The ______ is a part of a plant that stores food.14. 听力题:A rocket uses thrust to move _______.15. 填空题:My _______ (兔子) loves to eat carrots.16. 选择题:What is the opposite of ‘right’?A. CorrectB. LeftC. TrueD. Just17. 听力题:The baby is ______ (laughing) in the crib.18. 填空题:The __________ (美洲土著人) have rich cultural traditions.19. 选择题:What do you call the process of changing from a solid to a liquid?A. FreezingB. MeltingC. EvaporatingD. Condensing答案:BA _____ (小狗) barks happily.21. 听力题:My cousin is a ______. She loves to write music.22. 填空题:Certain plants can ______ (改善) air quality in cities.23. 填空题:The _____ (兔子) has long ears and a fluffy tail.24. 填空题:My brother loves to play __________. (乒乓球)25. 选择题:What is the chemical symbol for potassium?A. PB. KC. PtD. Pa答案: B. K26. 听力题:The tree has _____ (leaves/branches).27. 选择题:What is 5 + 3?A. 6B. 7C. 8D. 9答案: C28. 听力题:A ____ is a small mammal that digs in dirt.29. 听力题:Asteroids can be found in the ______ belt.30. 填空题:My sister and I share a ____.31. 听力题:The chemical symbol for sodium is ______.I like to have fun with my ____.33. 听力题:The book is _____ (on/under) the table.34. 听力题:A solution that can conduct electricity is called an ______ solution.35. 填空题:A bunny is known for its fluffy ______ (毛).36. 听力题:In a chemical reaction, a catalyst can speed up the reaction without being _____ in the process.37. 填空题:I like to watch the ______ (云彩) change shapes.38. 听力题:The sun _____ (rises/sets) in the east.39. 听力题:My mom _____ cookies for dessert. (bakes)40. 听力题:The ancient civilizations of Mesopotamia contributed to the development of ________.41. 填空题:My cousin is my cheerful _______ who plays with me.42. 填空题:The ______ (小鸟) takes flight as soon as it learns to spread its ______ (翅膀).43. 填空题:The __________ was a significant time of change in American history. (民权运动)44. 选择题:What is the opposite of dark?A. GrayB. LightC. BrightD. Dim答案:BThe _____ (fish/bird) is swimming.46. 填空题:The __________ (历史的多重视角) enrich discussions.47. 听力题:My sister is _____ (older/younger) than me.48. 选择题:What is the name of the fairy tale character who had long hair?A. CinderellaB. RapunzelC. Sleeping BeautyD. Snow White答案:B49. 听力题:A compound made of carbon, hydrogen, and oxygen is a ______.50. 填空题:A rabbit's teeth never ______ (停止) growing.51. 选择题:What is the name of the famous American national park known for its wildlife?A. YellowstoneB. YosemiteC. Grand CanyonD. Denali答案:A52. 填空题:The ______ (植物的特征) can help in identification.53. 选择题:Which shape is round?A. SquareB. TriangleC. CircleD. Rectangle答案: C. Circle54. 填空题:I love to ______ (观察) the stars at night.I want to make new friends this year. I will be _______ (形容词) and say hello to everyone.56. 填空题:I can ______ (利用) online tools effectively.57. 选择题:What is the name of the famous American national park known for its geysers and hot springs?A. Yellowstone National ParkB. Yosemite National ParkC. Grand Canyon National ParkD. Zion National Park答案: A. Yellowstone National Park58. 填空题:My brother has a ______ (足球) that he practices with every day. He wants to be a______ (运动员).59. 填空题:I saw a _______ in the garden (我在花园里看到一只_______).60. 听力题:The cake is very _____. (sweet)61. 选择题:What is the name of the ancient Egyptian writing system?A. HieroglyphicsB. CuneiformC. LatinD. Sanskrit答案:A62. 填空题:The kids are _______ in the playground.63. 填空题:I love to watch _____ (小动物) play in the yard.64. 填空题:A _____ (小羊) loves to frolic in the grass.65. 填空题:The ______ (种类) of plants in a rainforest is very diverse.Frogs have smooth, ________________ (湿润) skin.67. 选择题:What do we call the person who studies history?A. HistorianB. ScientistC. BiologistD. Chemist68. 选择题:What do you call the young of a horse?A. FoalB. ColtC. FillyD. Calf答案:A69. 填空题:The owl can turn its head _________. (很远)70. 填空题:The _______ (猫) purrs when happy.71. 填空题:The capital of the Dominican Republic is ________ (圣多明各).72. 听力题:A chemical reaction can be catalyzed by a ______.73. 填空题:My birthday is in ______.74. 填空题:The ancient Greeks held _______ to honor their gods. (运动会)75. 听力题:An _______ reaction often produces gas and heat.76. 选择题:What do you call a young mouse?A. KitB. PupC. PinkieD. Calf答案:C77. 填空题:My cat loves to watch the ______ (小鸟) from the window.78. 听力题:The birthday cake is ______ (round) and delicious.79. 填空题:The __________ is a large area of land characterized by low rainfall. (沙漠)80. 填空题:A ______ (蝙蝠) sleeps upside down in caves.81. 听力题:The _______ is where the roots grow.82. 填空题:My sister has a pet ______ (鹦鹉) that can repeat words.83. 听力题:The smell of vinegar is due to the presence of _______ acid.84. 选择题:What is the color of a ripe strawberry?A. BlueB. GreenC. RedD. Yellow85. 选择题:How many wheels does a bicycle have?A. 2B. 3C. 4D. 5答案: A86. 选择题:What is the capital city of Malaysia?A. Kuala LumpurB. PenangC. Johor BahruD. Malacca答案: AThe dog is ______ (playing) with its owner.88. 填空题:The _____ (灌溉) system helps water crops efficiently.89. 听力题:Elements in the same column of the periodic table have similar __________.90. 填空题:My favorite pizza has ________ (奶酪).91. 选择题:What do we call a baby chicken?A. KittenB. PuppyC. ChickD. Calf答案: C92. 填空题:The ancient Mayans were skilled in ________ and astronomy.93. 选择题:What do we call the person who plays a role in a movie?A. DirectorB. ActorC. ProducerD. Writer94. 选择题:What is the color of a typical school bus?A. GreenB. YellowC. BlueD. Red95. 填空题:A flamingo can be seen standing on one ______ (腿).96. 听力题:Countries are divided into smaller regions called ________.97. 填空题:The _______ (Vikings) were known for their seafaring and exploration.A planet's _____ is the time it takes to orbit the sun.99. 听力题:Solar panels convert sunlight into electrical ______.100. 听力题:The study of living things is called __________.。

小学上册A卷英语第四单元真题(含答案)

小学上册英语第四单元真题(含答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.What do you call the main character in a story?A. AntagonistB. ProtagonistC. Supporting CharacterD. Narrator答案: B2.The ______ (生态) plays a role in the survival of many species.3.I enjoy crafting gifts for my friends and family, such as __________.4.My favorite color is ______ (蓝色). It reminds me of the clear ______ (天空).5.The ______ is a measure of how much matter is in an object.6.Which season is known for blooming flowers?A. WinterB. SpringC. SummerD. Autumn答案: B7.We can find many ________ (植物) in the rainforest.8.The doctor, ______ (医生), gives advice on staying healthy.9.小猴子) eats bananas all day. The ___10.__________ are used to represent elements in the periodic table.11.I call my neighbor ______ when I see him. (我见到我的邻居时称他为)12.What is the capital of the United States?A. New YorkB. Washington, D.C. C. Los AngelesD. Chicago答案:b13.The capital of Barbados is __________.14.n Tea Party was a protest against _____. The Bost15. A gazelle is known for its speed and ______ (优雅).16.What is the name of the famous river that runs through Egypt?A. AmazonB. MississippiC. NileD. Yangtze答案: C. Nile17.The __________ (历史的教训) is invaluable.18.The Earth's magnetic field protects us from ______.19.The sky is _______ (非常晴朗).20.The __________ is a famous city known for its historic buildings. (伊斯坦布尔)21.The _____ (ancient) Romans built roads that connected their empire.22.My sister is a ______. She enjoys singing.23.What is the process of taking in oxygen called?A. InhalationB. ExhalationC. RespirationD. Digestion答案: A24.The puppy is very ________.25.Listen and number.(听录音标号.)26.Enzymes are biological ______ that speed up reactions.27.The __________ is famous for its cherry blossoms.28.The dog is ______ with a ball. (playing)29.What do you call a place where animals are kept for public display?A. FarmB. ZooC. ParkD. Aquarium答案: B30.The __________ is a region known for its deserts.31.We will go ______ for a picnic tomorrow. (outside)32.We like to listen to ___. (music)33.I enjoy painting ________ (水彩画) in art class.34.What do we call the act of keeping something safe from harm?A. ProtectionB. PreservationC. ConservationD. Safeguarding答案: A35.The chemical symbol for neon is _______.36.I like to ________ my friends.37.My sister is _______ (在画画).38.We have English class _____ (on/in) Tuesday.39.The _____ (狐狸) is clever and quick on its feet.40.Elements are organized in the periodic ______.41.The rabbit’s ears help it hear _______ (声音).42.My favorite dish is ______ (意大利面).43.Fish come in many _________. (颜色)44. A __________ is a mixture that can be separated by centrifugation.45.在历史上,________ (battles) 常常改变了国家的命运。

红外图谱解读

Facile route to γ-Fe2O3 /SiO2 nanocomposite used as a precursor of magnetic fluid Materials Chemistry and Physics 108 (2008) 132–141.
1、实验目的:
磁性纳米材料的合成是一个重要的研究课题,在各种各样的磁性材 料中,赤磁铁矿(γ-Fe2O3)粉末因为具有极好的亚铁磁性和抗氧化 性能获得了更多的关注,已经被广泛应用在磁性材料和催化剂中。 因为铁的氧化物存在很多不同形态(FeO/Fe2O3/Fe3O4),在制备 γ-Fe2O3的过程中也呈现出一些困难,并且α-Fe2O3 是顺磁性的,γFe2O3是铁磁性的, γ-Fe2O3在380 ◦C转化成α-Fe2O3 。 在温和条件下,通过三步化学法得到赤磁铁矿γ-Fe2O3的纳米粒子分 散在SiO 2 基体上的磁性材料。
煅烧之后,对ᵧ 2O3 /SiO2纳米复合材料颗粒进行红外光谱测定, 1589.9cm-1、 -Fe 1450.9cm-1─COO- 对称不对称拉伸振动吸收峰消失,测得640.6cm-1、586.5cm-1 Fe─O伸缩振动吸收峰,是ᵧ 2O3 特征吸收峰。证明铁与─COOH的连接形成 -Fe FeOOH对磁变相位的产生是必要的,并且XRD证明为了得到γ-Fe2O3 ,不能用FeCl 6H 9H 3· 2O代替Fe(NO 3 ) 3· 2 O 。
特征吸收
SiO 2
颗粒表面的-OH
1389.2cm-1、1381.5cm-1 NO3-集团不对称伸缩振动 1589.9cm-1、1450.9cm-1 ─COO-集团对称不对称伸缩振动吸收峰
主要基团的红外特征吸收峰
基团 Si-O -OH(缔合) 吸收频率 1300-900cm-1 3400-3200cm-1 振动形式 伸缩振动 伸缩振动 强度 S S

外研版高中英语选择性必修第四册精品课件 Unit 5 分层跟踪检测(三)

ⅠⅡⅢⅣⅤⅥⅦ
1.What can we learn about DAC according to the text? A.It is the best way to fix climate change at present. B.It requires enough heat and energy to operate. C.It is highly developed in removing CO2. D.It can be applied anywhere in the world. 答案 B
ⅠⅡⅢⅣⅤⅥⅦ
from volcanic activity.Next,the collected CO2 is combined with water and pumped deep underground into rock formations.Within a few years,the CO2 will turn into stone.
Carbon storage(碳储存) is just arising as a technology.It won’t help us fix climate change yet,but it can be important down the line,if we have the right conditions for it. 【语篇解读】本文是一篇说明文。文章主要介绍了一项新的碳存储技 术——直接空气捕获技术(DAC),该技术能够吸收空气,并在高能支持下分 离出二氧化碳,经过时间沉淀将其转换成岩石。
A 级 必备知识基础练 Ⅰ.单词拼写 1.I dived as a fish among the corals (珊瑚) of Persia Gulf. 2.All substances (物质),whether they are gaseous,liquid or solid,are made of atoms. 3.The house is far too small for us. Furthermore (此外),it’s not close enough to the city. 4.There was an impressive array of pill bottles stacked (摞起) on top of the fridge. 5.It’s a trench (沟) that used to be dry,but now has water in it.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Electrochimica Acta 54 (2009) 7519–7524Contents lists available at ScienceDirectElectrochimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c taA facile route to carbon-coated SnO 2nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteriesShu-Lei Chou a ,b ,∗,Jia-Zhao Wang a ,b ,Chao Zhong a ,b ,M.M.Rahman a ,b ,Hua-Kun Liu a ,b ,Shi-Xue Dou aa Institute for Superconducting and Electronic Materials,University of Wollongong,NSW 2522,Australia bARC Center of Excellence for Electromaterials Science,University of Wollongong,NSW 2522,Australiaa r t i c l e i n f o Article history:Received 14July 2009Accepted 2August 2009Available online 11 August 2009Keywords:SnO 2Carbon coatingLithium-ion battery BinderNanoparticlesa b s t r a c tCarbon-coated SnO 2nanoparticles were prepared by a novel facile route using commercial SnO 2nanopar-ticles treated with concentrated sulfuric acid in the presence of sucrose at room temperature and ambient pressure.The key features of this method are the simple procedure,low energy consumption,and inexpensive and non-toxic source materials.As-prepared core/shell nanoparticles were characterized by X-ray powder diffraction (XRD),thermogravimetric analysis (TGA),scanning electron microscopy (SEM),energy-dispersive X-ray spectrometry (EDX),transmission electron microscopy (TEM),and high-resolution transmission electron microscopy (HRTEM).The electrochemical measurements showed that the carbon-coated SnO 2nanoparticles with 10%carbon and using carboxymethyl cellulose (CMC)as a binder displayed the best electrochemical performance with the highest specific capacity of 502mAh g −1after 50cycles at a current density of 100mA g −1.In addition,owing to the water solvability of CMC,the usage of CMC as binder makes the whole electrode fabrication process cheaper and more environmental friendly.© 2009 Elsevier Ltd. All rights reserved.1.IntroductionRechargeable lithium-ion batteries are currently the technol-ogy of choice for portable electronic devices [1,2].In order to meet the requirements of the rapidly increasing portable electron-ics market,the performance of rechargeable lithium-ion batteries needs to be improved with higher energy density and better rate capability.Currently,the commercial anode material of choice is graphite,which has a relatively low theoretical capacity around 370mAh g −1[3].Materials based on tin oxide have been pro-posed as promising alternative anode materials for rechargeable lithium batteries owing to their high theoretical capacity (SnO 2:790mAh g −1)[4–9].The severe volume expansion and contraction during the alloying–dealloying cycles with Li +ions is the main hin-drance to the commercial use of SnO 2[10].In order to alleviate the volume changes,two main methods have been investigated,fabricating SnO 2into nanostructures [11–18]and adding/coating with buffer materials (such as carbon or other conductive materi-als),inside or outside the particles [19–26].Various types of SnO 2nanostructures,such as nanotubes [11–14],nanowires [15,16],and nanorods [17,18],have been investigated and were found to∗Corresponding author at:Institute for Superconducting and Electronic Mate-rials,University of Wollongong,Northfields Avenue,Wollongong,NSW 2522,Australia.E-mail address:sc478@.au (S.-L.Chou).have enhanced electrochemical performance.They provide more reaction sites,short Li +diffusion lengths,and considerable kinetic enhancement.However,the high cost for synthesizing the nanos-tructured materials and the relatively low capacity retention still need to be addressed for future commercial application.On the other hand,surface-coated/composite SnO 2showed better elec-trochemical performance than the bare material.Among the buffer materials,carbon has to be considered as the best choice because of its cheap,light,and conductive nature.To date,carbon coated onto or added into SnO 2has been prepared by spray pyrolysis,polymer coating and then carbonization,and hydrothermal/solvothermal methods [19–25].However,it is still important to explore eco-nomical synthesis techniques with low energy consumption for the formation of carbon-coated SnO 2.Recently,the choice of binder has become a very important issue in finding a solution to the problem of the large capac-ity fade observed for anode materials after cycling [27–31].Buqa et al.reported that nano-Si electrode containing 1%sodium car-boxymethyl cellulose (CMC)as binder shows the same cycle stability as an identical electrode containing 10%conventional polyvinylidene fluoride (PVdF)binder [27].Lestriez et al.claimed that the extended conformation of CMC in solution facilitates an efficient networking process between the conductive agent and the Si particles [28].Hochgatterer et al.reported that the chemi-cal bonding between CMC binder and Si particles contributes to the enhanced capacity retention of Si/C composite electrodes [29].Li et al.reported that Fe 2O 3electrodes using CMC binder and two other0013-4686/$–see front matter © 2009 Elsevier Ltd. All rights reserved.doi:10.1016/j.electacta.2009.08.0067520S.-L.Chou et al./Electrochimica Acta54 (2009) 7519–7524new binders show better cycling performance(about800mAh g−1 for100cycles)compared to electrodes made from conventional PVdF binder[30].Another advantage of using CMC as the binder is that CMC can be dissolved and processed in water,which makes the whole electrode fabrication process cheaper and more environ-mental friendly.However,there are still no reports on using CMC binder with SnO2-based anode materials.Here,carbon-coated SnO2nanoparticles were prepared by a novel facile route using commercial SnO2nanoparticles treated with concentrated sulfuric acid in the presence of sucrose at room temperature and ambient pressure.The key features of this method are the simple procedure,low energy consumption,and inexpen-sive and non-toxic source materials.In addition,CMC was used as a binder to further investigate its effects on the electrochemical performance.2.Experimental2.1.Preparation of carbon-coated SnO2nanoparticlesThe method used here is adopted from the literature[32].The typical procedure to prepare Sample CS-1is as follows.A mix-ture of the SnO2nanoparticles(1.7193g,99.5%,Nanostructured& Amorphous Materials Inc.,61nm),sucrose(3.0159g,98%,Aldrich), and water(1mL)was ultrasonicated for30min at room temper-ature,and then H2SO4(5mL,98wt.%,Sigma–Aldrich)was slowly added with stirring.After reacting for about20min,thefinal prod-ucts were washed with N,N-dimethylformamide three times,with water three times,and with ethanol three times,and then dried under vacuum at80◦C for12h.Sample CS-2was prepared by using the similar method as Sample CS-1.The only difference is that sam-ple CS-2increased the mass of the sucrose to6.025g.The pure carbon-based sample was also prepared via the similar method as CS-1without using SnO2nanoparticles.2.2.CharacterizationThe morphology and microstructure of the as-prepared carbon-coated SnO2nanoparticles were characterized by X-ray diffraction (XRD;GBC MMA017),the Brunauer–Emmett–Teller technique (BET;Quanta Chrome Nova1000),scanning electron microscopy (SEM;JEOL JSM6460A,30kV)with JEOL energy-dispersive X-ray (EDX)spectroscopy and EDX mapping systems,and transmission electron microscopy(TEM;JEOL2011,200KV).The thermal proper-ties of the as-prepared carbon-coated SnO2were characterized by thermogravimetric analysis(TGA;TA Instruments2000)under air at aflow rate of40mL min−1over a temperature range of80–800◦C with a ramp rate of5◦C min−1.For infrared(IR)spectroscopy,the samples were mixed with KBr powder,placed in a sample cup,and measured using a Shimadazu IRPrestige-21Fourier transform IR (FT-IR)spectrometer.KBr was used as the backgroundfile.All spec-tra were measured from4000to500cm−1,and the number of scans was typically10,with a resolution of2cm−1.2.3.Electrochemical testingTo test the electrochemical performance,carbon-coated SnO2 nanoparticles were mixed with acetylene black(AB)and a binder, sodium carboxymethyl cellulose(CMC,average Mw:∼250,000, Aldrich)or poly(vinylidenefluoride)(PVdF,Mw:∼534,000, Aldrich),in a weight ratio of70:20:10in a solvent,consisting of either water or N-methyl-2-pyrrolidone(99.5%,Aldrich),respec-tively.The slurry was uniformly pasted onto pieces of Cu foil with an area of1cm2.Such prepared electrode sheets were dried at90◦C in a vacuum oven for12h.The electrochemical cells(CR2032coin-type cell)contained carbon-coated SnO2nanoparticles on a Cu foil as the working electrode,Li foil as the counter electrode and ref-erence electrode,a porous polypropylenefilm as separator,and 1M LiPF6in a1:2(v/v)mixture of ethylene carbonate(EC)and diethyl carbonate(DEC)as the electrolyte.The cells were assem-bled in an Ar-filled glove box.The cells were cycled at a current density of50mA g−1for thefirstfive cycles and then cycled at 100mA g−1for the following cycles between0.01and1.5V using a computer-controlled charger system manufactured by Neware Bat-tery Testers.The specific capacity is calculated based on the mass of CS-1,CS-2,and pristine SnO2in the electrode,respectively.3.Results and discussionSEM and TEM images and EDX mapping of carbon-coated SnO2 nanoparticles(CS-1sample)are shown in Fig.1.Fig.1(a)shows that the nanoparticles of the CS-1sample are agglomerated into big particles several micrometers in diameter.The EDX spectrum in Fig.1(d)shows that only the elements Sn,O,and C are present in the sample,indicating its high purity.Fig.1(b)and(c)contains the EDX mapping images for C and Sn,showing the good distribution of car-bon in the composite.That is to say,the carbon is uniformly coated onto the surface of the SnO2nanoparticles.The transmission elec-tron microscope(TEM)image of CS-1in Fig.1(e)demonstrates that the nanoparticles(dark particle)have a size of about60nm,which is in a good agreement with that of the pristine SnO2nanoparticles, and are trapped inside the carbon materials(bright,film-like mate-rial).The high-resolution TEM(HRTEM)image in Fig.1(f)displays lattice fringes with a spacing of0.36nm,which is in good agree-ment with the spacing of the(110)planes of SnO2.The amorphous layer outside of the SnO2crystal marking with red arrows is the amorphous carbon coating.For comparison,samples with different carbon contents,named CS-1and CS-2,were also prepared by increasing the ratio of sucrose to SnO2nanoparticles.XRD,FT-IR,and TGA results are shown in Fig.2.Fig.2(a)demonstrates that the SnO2and carbon-coated SnO2 materials have the same crystal structure,which can be indexed to rutile-type SnO2(Joint Committee on Powder Diffraction Standards (JCPDS)Card No.41-1445).The pure carbon obtained from sucrose treated with H2SO4only shows a broad peak centered at around 22◦,indicating the amorphous carbon structure.The carbon-coated SnO2samples show small broad peaks at around22◦,showing the presence of carbon-based materials in the CS-1and CS-2.FT-IR transmission spectra of SnO2nanoparticles and carbon-coated SnO2nanoparticles are shown in Fig.2b.It can be seen that all the samples show absorption peaks at637cm−1,which were assigned to the vibration of Sn–O–Sn[33].For pristine SnO2nanoparticles, the absorption peaks at around3500,1647,and1368cm−1were attributed to the hydroxyl vibrations due to absorbed water on the surface of the nanoparticles.For carbon-coated SnO2nanoparti-cles,the broad absorption peak at around3500cm−1and two other peaks at1717and1278cm−1were attributed to the carboxyl func-tional group,indicating that there are still organic functional groups in the carbon coating[34].The weight percentage of carbon-based materials was measured by means of thermogravimetric analysis (TGA).Due to the thermal stability of SnO2,the main weight loss results from the decomposition of carbon-based materials from 80◦C to500◦C.The carbon contents of pristine SnO2,CS-1,and CS-2are0%,10%,and27%,respectively.Typical discharge–charge curves of the pristine SnO2nanopar-ticle(a and c)electrodes and the CS-1(b and d)electrodes,using PVdF(a and b)and CMC(c and d)as binders in Li-ion coin cells, are shown in Fig.3.The curves are similar to what has been pre-viously reported[21–25].The main reason for the existence of the initial irreversible capacity for anode materials is the formation of aS.-L.Chou et al./Electrochimica Acta54 (2009) 7519–75247521Fig.1.SEM image(a),EDS mapping of carbon(b),Sn(c),EDX spectrum(d),TEM(e)and HRTEM(f)image of carbon-coated SnO2nanoparticles(CS-1).solid electrolyte interphase(SEI)layer,which forms on the surface of the anode material during thefirst discharge at around0.8V(vs. Li+/Li)[35],and the irreversible reaction from SnO2to Sn.In the initial cycle,SnO2was reduced to Sn(Eq.(1)),and then the Sn can reversibly react with Li+through alloying and dealloying processes in the following cycles(Eq.(2))[36]:SnO2+4Li++4e−→Sn+2Li2O(1) Sn+x Li++x e−↔Li x Sn(0≤x≤4.4)(2) The initial discharge capacities of the electrodes using CMC as a binder are much higher than those of the electrodes using PVdF as a binder.The initial discharge capacity for SnO2and CS-1with CMC is1637and1651mAh g−1,while the initial discharge capacity with PVdF as a binder is1589and1458mAh g−1,respectively.The reversible capacities of electrodes using CMC as the binder are also higher than for those using PVdF as the binder.The carbon-coated electrode(CS-1)shows lower specific capacity compared with the pristine SnO2electrode but relatively good capacity retention,no matter which kind of binder was used.It can be seen in Fig.3(d)that the charge and discharge curves of the CS-1sample remain almost the same,indicating the good capacity retention.The repeated cycling induces enormous volume changes in Sn particles,which tend to expand and coalesce with the nearby Sn atoms,leading to large agglomerates and thus reducing the available surface area for the Li-ion storage capacity of the pure SnO2.The carbon coating can prevent the agglomeration of the Sn particles and improve the cycle stability.The differential charge and discharge profiles are shown in Fig.4. In the initial discharge,a major reduction peak at around0.90V is observed in all the curves,which is derived from Li2O formation when SnO2reacts with Li+,while the shoulder peaks at around0.8V are due to the formation of the SEI layer.These peaks disappear in the following cycles and leave a large initial irreversible capacity, which is relevant to the galvanostatic voltage profile presented in Fig.3.The small reduction peaks around0.6and0.3V correspond to the formation of Li x Sn alloys[36].Oxidation peaks can be found at0.45,0.6,0.8,and1.2V,indicating the multi-step transporta-tion of electrons from Li x Sn(0≤x≤4.4)to Sn.The intensities of the peaks for the electrodes using PVdF as the binder decreased much more quickly than those of electrodes using CMC as the binder. The CS-1using CMC as binder shows the best stability in terms of the peak positions and intensities,indicating the best reversibility of the reaction between Li+ions and Sn.Therefore,by combining CMC as a binder with the application of a carbon coating,enhanced cycle stability can be achieved.Fig.5displays the cycle stability of the pristine SnO2,CS-1, and CS-2samples at a current density of50mA g−1for thefirst five cycles and then cycled at100mA g−1for the following cycles between0.01and1.5V.It can be seen in Fig.5(a)that the capacity of the samples using CMC as binder is much higher than for samples using PVdF,which shows that the binder plays an important role in the cycle stability of electrode[27–31].After50cycles,the pristine SnO2and CS-1using CMC as binders show capacities of382andFig.2.XRD patterns(a),FT-IR transmission spectra(b),and TGA curves(c)of commercial SnO2nanoparticles,pure carbon,and carbon-coated SnO2nanoparticle samples CS-1and CS-2.7522S.-L.Chou et al./Electrochimica Acta54 (2009) 7519–7524Fig.3.Typical discharge–charge curves of the pristine SnO 2nanoparticle (a and c),CS-1(b and d)electrode using PVdF (a and b),and CMC (c and d)as binder.507mAh g −1,respectively,while those using PVdF show capacities of only 221and 248mAh g −1,respectively.It can also be found that the carbon-coated sample CS-1shows better cycle stability than pristine SnO 2no matter which kind of binder is used.In order to compare the electrochemical performance with the references,the summary of the specific capacities for different SnO 2-based sam-ples was listed in Table 1.It can be seen that the commercial SnO 2nanoparticles show almost the lowest specific capacity comparing with other previously reported materials,while after coating withcarbon sample CS-1shows better performance than porous SnO 2nanopowder [37],SnO 2microspheres [38],SnO 2/carbon composite [19]and SnO 2/carbon hollow spheres [23].CS-1even shows as good electrochemical performance as SnO 2nanospheres [39].Although the performance of present materials is not as good as SnO 2nan-otubes [11]or meso-scale tubes [14],the simple and low-cost method and the relatively high electrochemical performance make the present materials a very promising anode materials for the future industrial usage.In addition,because CMC can bedissolvedFig.4.Differential charge–discharge capacity versus potential from the first to the 50th cycle between 0.01and 1.50V for pristine SnO 2(a and b)and CS-1(c and d)samples using PVdF (a and c)and CMC (b and d)as binders.S.-L.Chou et al./Electrochimica Acta54 (2009) 7519–75247523Fig.5.The cycle life(a),coulombic efficiency(b),and capacity retention(c)of as-prepared carbon-coated SnO2(CS-1and CS-2)and pristine SnO2nanoparticles using CMC and PVdF as binder.Table1The comparison of the specific capacities for different SnO2samples.Materials Capacity(mAh g−1)Cycle number Current density(mA g−1)ReferenceCS-150750100This work Commercial SnO2nanoparticles38750100This work Porous SnO2nanopowder41010079[37]SnO2microspheres48040100[38]SnO2nanospheres50040158[39]SnO2meso-scale tubes4621501580[14]SnO2nanotubes720503160[11]SnO2/carbon composite35050–[19]SnO2/carbon hollow spheres41060158[23]and processed in water,it makes the whole electrode fabrication process cheaper and more environmentally friendly.The coulombic efficiency shown in Fig.5(b)illustrates that the initial coulombic efficiency is in the order of pristine SnO2>CS-1>CS-2,which is the reverse order of the carbon contents.A possible reason is that the carbon coating contains organic func-tional groups(such as–COOH)which can irreversibly react with lithium ions and decrease the initial coulombic efficiency.The more carbon in the composite,the lower the initial coulombic efficiency will be.The average coulombic efficiency for the following cycles are in the order of CS-1>CS-2>pristine SnO2,indicating that the certain amount(10%)of carbon coating could prevent the agglom-eration of Sn particles and improve coulombic efficiency.Since the coated carbon contains a lot organic functional groups,the further increased amount(27%)of carbon will bring a lot of side reason which will decrease the coulombic efficiency again.The capacity retentions shown in Fig.5(c)are in the same order as the coulom-bic efficiency.It can be found that the capacity retention curves of pristine–SnO2,CS-1and CS-2show similar slopes for thefirst 20cycles.After20cycles,the slopes of the capacity retention are in the order of CS-1<CS-2<pristine SnO2.Therefore,the CS-1sample shows the best capacity retention.The possible reason for this phenomenon is that the produced Li2O from the reaction between lithium and SnO2nanoparticles can somehow prevent the agglomeration of Sn for a few cycles(20cycles)[40].Without carbon coating,after20cycles the agglomeration of Sn becomes quicker and the capacity drops more quickly.On the contrary,the carbon coating can effectively prevent the agglomeration of Sn par-ticles and improve the capacity retention for the following cycles [19,23–25].4.ConclusionsCarbon-coated SnO2nanoparticles were prepared by a novel facile route using commercial SnO2nanoparticles treated with concentrated sulfuric acid in the presence of sucrose at room tem-perature and ambient pressure.The key features of this method are the simple procedure,low energy consumption,and inexpensive and non-toxic source materials.The electrochemical measure-ments showed that both the carbon coating and the binder selection affected the electrochemical performance.The carbon-coated SnO2 nanoparticles(CS-1)with10%carbon using CMC as a binder dis-played the best electrochemical performance,with the highest specific capacity being502mAh g−1up to50cycles at a current den-sity of100mA g−1.Owing to the water solvability of CMC,the usage of CMC as binder makes the whole electrode fabrication process cheaper and more environmental friendly.7524S.-L.Chou et al./Electrochimica Acta54 (2009) 7519–7524AcknowledgmentsFinancial support provided by the Australian Research Council (ARC)through ARC Centre of Excellence funding(CE0561616)is gratefully acknowledged.The authors thank Dr.T.Silver for critical reading of the manuscript.References[1]J.M.Tarascon,M.Armand,Nature414(2001)359.[2]M.Winter,R.J.Brodd,Chem.Rev.104(2004)4245.[3]J.R.Dahn,T.Zheng,Y.Liu,J.Xue,Science270(1995)590.[4]Y.Idota,T.Kubota,A.Matsufuji,Y.Maekawa,T.Miyasaka,Science276(1997)1395.[5]H.Li,Q.Wang,L.Shi,L.Chen,X.Huang,Chem.Mater.14(2002)103.[6]M.Behm,J.T.S.Irvine,Electrochim.Acta47(2002)1727.[7]P.Limthongkul,H.Wang,E.Jud,Y.M.Chiang,J.Electrochem.Soc.149(2002)A1237.[8]M.Yoshio,H.Wang,K.Fukuda,Angew.Chem.Int.Ed.42(2003)4203.[9]K.T.Lee,Y.S.Jung,S.M.Oh,J.Am.Chem.Soc.125(2003)5652.[10]M.Winter,J.O.Besenhard,Electrochim.Acta45(1999)31.[11]N.C.Li,C.R.Martin,B.Scrosati,Electrochem.Solid-State Lett.3(2000)316.[12]Y.Wang,J.Y.Lee,H.C.Zeng,Chem.Mater.17(2005)3899.[13]Y.Wang,H.C.Zeng,J.Y.Lee,Adv.Mater.18(2006)645.[14]S.L.Chou,J.Z.Wang,H.K.Liu,S.X.Dou,mun.11(2009)242.[15]Z.Ying,Q.Wan,H.Cao,Z.T.Song,S.L.Feng,Appl.Phys.Lett.87(2005)113108.[16]M.S.Park,G.X.Wang,Y.M.Kang,D.Wexler,S.X.Dou,H.K.Liu,Angew.Chem.Int.Ed.46(2007)750.[17]Y.Wang,J.Y.Lee,J.Phys.Chem.B108(2004)17832.[18]Y.L.Zhang,Y.Liu,M.L.Liu,Chem.Mater.18(2006)4643.[19]J.Read,D.Foster,J.Wolfenstine,W.Behl,J.Power Sources96(2001)277.[20]Y.Wang,J.Y.Lee,mun.5(2003)292.[21]L.Yuan,K.Konstantinov,G.X.Wang,H.K.Liu,S.X.Dou,J.Power Sources146(2005)180.[22]T.Moon,C.Kim,S.T.Hwang,B.Park,Electrochem.Solid-State Lett.9(2006)A408.[23]Y.Wang,F.B.Su,J.Y.Lee,X.S.Zhao,Chem.Mater.18(2006)1347.[24]X.M.Sun,J.F.Liu,Y.D.Li,Chem.Mater.18(2006)3486.[25]M.S.Park,Y.M.Kang,J.H.Kim,G.X.Wang,S.X.Dou,H.K.Liu,Carbon46(2008)35.[26]L.Yuan,J.Wang,S.Y.Chew,J.Chen,Z.P.Guo,L.Zhao,K.Konstantinov,H.K.Liu,J.Power Sources174(2007)1183.[27]H.Buqa,M.Holzapfel,F.Krumeich,C.Veit,P.Novak,J.Power Sources161(2006)617.[28]B.Lestriez,S.Bahri,I.Sandu,L.Roué,D.Guyomard,mun.9(2007)2801.[29]N.S.Hochgatterer,M.R.Schweiger,S.Koller,P.R.Raimann,T.Wöhrle,C.Wurm,M.Winter,Electrochem.Solid-State Lett.11(2008)A76.[30]J.Li,H.M.Dahn,L.J.Krause,D.-B.Le,J.R.Dahn,J.Electrochem.Soc.155(2008)A812.[31]J.Li,R.B.Lewis,J.R.Dahn,Electrochem.Solid-State Lett.10(2007)A17.[32]G.X.Zhu,X.W.Wei,S.Jiang,J.Mater.Chem.17(2007)2301.[33]F.Gu,S.F.Wang,C.F.Song,M.K.Lu,Y.X.Qi,G.J.Zhou,D.Xu,D.R.Yuan,Chem.Phys.Lett.372(2003)451.[34]G.Socrates,Infrared and Raman Characteristic Group Frequencies,3rd ed.,JohnWiley and Sons,2004.[35]D.Bar-Tow,E.Peled,L.Burstein,J.Electrochem.Soc.146(1999)824.[36]I.Courtney,J.R.Dahn,J.Electrochem.Soc.144(1997)2045.[37]Z.P.Guo,G.D.Du,Y.Nuli,M.F.Hassan,H.K.Liu,J.Mater.Chem.19(2009)3253.[38]S.Han,B.Jang,T.Kim,S.M.Oh,T.Hyeon,Adv.Funct.Mater.15(2005)1845.[39]X.W.Lou,Y.Wang,C.Yuan,J.Y.Lee,L.A.Archer,Adv.Mater.18(2006)2325.[40]R.Retoux,T.Brousse,D.M.Schleich,J.Electrochem.Soc.146(1999)2472.。

相关文档
最新文档