化工热力学答案--第二版
化工热力学标准答案

化工热力学第二章作业解答2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式解 (1)用理想气体方程(2-4)V =RT P =68.3146734.05310⨯⨯=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6)从附录二查的甲烷的临界参数和偏心因子为Tc =190.6K ,Pc =4.600Mpa ,ω=0.008将Tc ,Pc 值代入式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610⨯⨯⨯=3.224Pa ·m 6·K 0.5·mol -2 0.0867c cRT b p ==60.08678.314190.64.610⨯⨯⨯=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6)4.053×106= 58.3146732.98710V -⨯-⨯-0.553.224(673)( 2.98710)V V -+⨯ 迭代解得V =1.390×10-3 m 3·mol -1(注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可)(3)用普遍化关系式673 3.53190.6r T T Tc === 664.053100.8814.610r P P Pc ⨯===⨯ 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。
由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138代入式(2-43)010.02690.0080.1380.0281BPc B B RTcω=+=+⨯= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ⎛⎫⎛⎫=+=+⨯= ⎪⎪⎝⎭⎝⎭V =1.390×10-3 m 3·mol -12.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算273.15K 时将CO 2压缩到比体积为550.1cm 3·mol -1所需要的压力。
化工热力学课后部分习题答案

2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。
2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。
气他的热力学性质均不同。
3-1 思考下列说法是否正确① 当系统压力趋于零时,()()0,,≡-p T Mp T M ig(M 为广延热力学性质)。
(F ) ② 理想气体的H 、S 、G 仅是温度的函数。
(F ) ③ 若()⎪⎪⎭⎫⎝⎛+-=00ln p p R S S A ig,则A 的值与参考态压力0p 无关。
(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。
(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。
(T ) 3-2 推导下列关系式:V T T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T p T V U VT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂()2RT H T RT G p ∆∆-=⎥⎦⎤⎢⎣⎡∂∂ ()RTV p RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 证明:(1)根据热力学基本方程 V p T S A d d d --= (a)因为A 是状态函数,所以有全微分:V V A T T A A TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (b) 比较(a)和(b)得: p V A S T A TV -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂, 由全微分性质得:V V T T p T T p p A T T A p V S ⎪⎭⎫ ⎝⎛∂∂-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂-即 VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂(2)由热力学基本方程 V p S T U d d d -= 将上式两边在恒定的温度T 下同除以的d V 得:p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂由(1)已经证明VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 则 p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂(3)由热力学基本方程 p V T S G d d d +-= 当压力恒定时 SdT dG -=由Gibbs 自由能定义式得 S T H G ∆∆∆-=()()()222T H T S T H S T T GT GTT T G p∆∆∆∆∆∆∆-=---⋅=-∂∂=⎥⎦⎤⎢⎣⎡∂∂等式两边同乘以R 得()2RT H T RT G p∆∆-=⎥⎦⎤⎢⎣⎡∂∂(4)当温度恒定时Vdp dG =()T V p T G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 所以 ()RTVp RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 3-4 计算氯气从状态1(300K 、1.013×105Pa )到状态2( 500K 、1.013×107Pa )变化过程的摩尔焓变。
【精品】化工热力学第二章习题解答

【精品】化工热力学第二章习题解答化工热力学第二章习题解答1.一个理想气体在恒定温度下,其压强与体积的关系如下所示:P = A / V^2其中P是压强,V是体积,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于恒温过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A / V^2代入上式,得到Cdt = dq - (A / V^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A / V^2)dV。
即Ct = q - A / V + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - A / V + B。
2.一个气体在等体过程中,其压强与温度的关系如下所示:P = A * T^2其中P是压强,T是温度,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于等体过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A * T^2代入上式,得到Cdt = dq - (A * T^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A * T^2)dV。
即Ct = q - (A / 3)T^3 + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - (A / 3)T^3 + B。
化工热力学习题及答案 第二章 流体的PVT关系

第二章 流体的PVT 性质2-1使用下述三种方法计算1kmol 的甲烷储存在容积为0.1246m3、温度为50℃的容器中所产生的压力是多少?(1) 理想气体状态方程;(2) Redlich -Kwong 方程;(3) 普遍化关系式。
解:查附录表可知:K Tc 6.190=,MPa p c 6.4=,1399-⋅=mol cm Vc ,008.0=ω(1)理想气体状态方程:MPa Pa V nRT p 56.2110156.21246.015.323214.810173=⨯=⨯⨯⨯== (2)R -K 方程:15.0365.225.22225.3106.46.190314.84278.04278.0-⋅⋅⋅=⨯⨯⨯==mol K m Pa p Tc R a c 135610987.2106.46.190314.80867.00867.0--⋅⨯=⨯⨯⨯==mol m p RTc b c 545.055.010)987.246.12(10246.115.323225.310)987.246.12(15.323314.8)(---⨯+⨯⨯⨯-⨯-⨯=+--=a V V T a b V RT p MPa Pa 04.1910904.17=⨯=(3) 遍化关系式法226.1109.910246.154=⨯⨯==--Vc V Vr 应该用铺片化压缩因子法 Pr 未知,需采用迭代法。
Z Z V p ZRT p c r 688.410246.1106.415.323314.846=⨯⨯⨯⨯==- 令875.0=Z 得:10.4=r p查表2-8(b )和2-7(b )得:24.01=Z ,87.00=Z872.024.0008.087.010=⨯+=+=Z Z Z ωZ 值和假设值一致,故为计算真值。
MPa Pa V ZRT p 87.1810877.110246.115.323314.8875.074=⨯=⨯⨯⨯==- 2-2 欲将25Kg 、298K 的乙烯装入0.1m 3的刚性容器中,试问需多大压力: 解:乙烯的摩尔数:mol n 857.8922825000==乙烯的摩尔体积:)(1012.1857.8921.0134--⋅⨯==mol m V 查表得:K Tc 4.282=,)(10129136--⋅⨯=mol m Vc ,MPa p c 036.5=,085.0=ω28682.01029.11012.144=⨯⨯=--r V 可见由普遍化压缩因子法计算 0552.14.282298==Tr Z Z V ZRT p r 7410212.21012.1298314.8⨯=⨯⨯⨯==- (A ) 有由r r c p p p p 610036.5⨯==10Z Z Z ω+= (B ) 设Z 值代入A 式求p ,由Pr 、Tr 查图得Z0和Z1,代入B 式迭代求解Z 结果为:45.1=r p ,33.0=ZMPa Z p 677103.733.010212.210212.2⨯=⨯⨯=⨯=2-3 分别用理想气体方程和Pitzer 普遍化方法,计算510K 、2。
化工热力学第二章习题答案

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。
而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。
因此,流体的p –V –T 关系的研究是一项重要的基础工作。
2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。
严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。
理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
化工热力学复习题及答案2

第1章 绪言一、是否题1.孤立体系的热力学能与熵都是一定值。
(错。
G S H U ∆∆=∆=∆,,0,0但与0不一定等于A ∆,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,0=U ∆,0=T ∆,0=H ∆,故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=∆,2ln RT S T H G -=-=∆∆∆,2ln RT S T U A -=-=∆∆∆)2. 封闭体系的体积为一常数。
(错)3. 理想气体的焓与热容仅是温度的函数。
(对)4.理想气体的熵与吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5.封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态与终态的体积相等,初态与终态的温度分别为T 1与T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
) 6.自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)三、填空题1.状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2.单相区的纯物质与定组成混合物的自由度数目分别是 2 与 2 。
3. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。
4.1kJ=1000J=238.10cal=9869.2atm cm 3=10000bar cm 3=1000Pa m 3。
5.普适气体常数R=8.314MPa cm3 mol-1 K-1=83.14bar cm3 mol-1K-1=8.314J mol-1 K-1=1.980cal mol-1 K-1。
第2章P-V-T关系与状态方程一、是否题1.纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
《化工热力学》第2章pvt关系和状态方程课后习题答案
习题解答一、是否题1.纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)2.当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle温度时,Z>1。
)4.纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
)5.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)6.纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
)7.气体混合物的virial系数,如B,C…,是温度和组成的函数。
(对。
)二、选择题指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。
参考P-V图上的亚临界等温线。
) A.饱和蒸汽B.超临界流体C. 过热蒸汽2.T 温度下的过冷纯液体的压力P (A 。
参考P -V 图上的亚临界等温线。
)A. >()T P sB. <()T P sC. =()T P s3.能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到(A 。
要表示出等温线在临界点的拐点特征,要求关于V 的立方型方程) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项D. 只需要理想气体方程4.当0®P 时,纯气体的()[]P T V P RT ,-的值为(D 。
因()[]0lim lim ,lim 000=÷øöçèæ¶¶÷øöçèæ¶¶=-=®®®B T T P T P P P Z P Z RT P T V P RT ,又) A. 0B. 很高的T 时为0C. 与第三virial 系数有关D. 在Boyle 温度时为0三、填空题1、表达纯物质的汽平衡的准则有()()()()s ls v s l s v V T G V T G T G T G ,,==或(吉氏函数)、vap vap s V T H dT dP D D =(Claperyon 方程)、()ò-=svslV V slsv s V V P dV V T P ),((Maxwell 等面积规则)。
化工热力学第二章习题及答案
化⼯热⼒学第⼆章习题及答案化⼯热⼒学第⼆章作业解答2.1试⽤下述三种⽅法计算673K ,4.053MPa 下甲烷⽓体的摩尔体积,(1)⽤理想⽓体⽅程;(2)⽤R-K ⽅程;(3)⽤普遍化关系式解(1)⽤理想⽓体⽅程(2-4) V =R T P=68.3146734.05310=1.381×10-3m 3·mol -1(2)⽤R-K ⽅程(2-6)从附录⼆查的甲烷的临界参数和偏⼼因⼦为 T c =190.6K ,Pc =4.600Mpa ,ω=0.008 将T c ,Pc 值代⼊式(2-7a )式(2-7b )22.50.42748ccR T a p ==2 2.560.42748(8.314)(190.6)4.610=3.224Pa ·m 6·K 0.5·mol -20.0867ccRT b p ==60.08678.314190.64.610=2.987×10-5 m 3·mol -1将有关的已知值代⼊式(2-6) 4.053×106= 58.3146732.98710V -?-?-0.53.224(673)( 2.98710)V V -+?迭代解得V =1.390×10-3 m 3·mol -1(注:⽤式2-22和式2-25迭代得Z 然后⽤PV=ZRT 求V 也可) (3)⽤普遍化关系式673 3.53190.6r T T T c=== 664.053100.8814.610r P P Pc===? 因为该状态点落在图2-9曲线上⽅,故采⽤普遍化第⼆维⾥系数法。
由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/T r 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/T r 4.2=0.139-0.172/(3.53)4.2=0.138 代⼊式(2-43)010.02690.0080.1380.0281B P c B B RTcω=+=+?=由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr=+=+?= ? ?V =1.390×10-3 m 3·mol -12.2试分别⽤(1)Van der Waals,(2)R-K ,(3)S-R-K ⽅程计算273.15K 时将CO 2压缩到⽐体积为550.1cm 3·mol -1所需要的压⼒。
化工热力学第2章习题解答
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成固体,必须经过液相。
(错。
如可以直接变成固体。
)2. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
) 3. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle 温度时,Z >1。
) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
) 5. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)6. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
) 7. 气体混合物的virial 系数,如B ,C …,是温度和组成的函数。
(对。
) 二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C 。
参考P -V 图上的亚临界等温线。
) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽2. T 温度下的过热纯蒸汽的压力P (B 。
参考P -V 图上的亚临界等温线。
)A. >()T P sB. <()T P sC. =()T P s3. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到(A 。
要表示出等温线在临界点的拐点特征,要求关于V 的立方型方程)A. 第三virial 系数B. 第二virial 系数C. 无穷项D. 只需要理想气体方程4. 当0→P 时,纯气体的()[]P T V P RT ,-的值为(D 。
因()[]0lim lim ,lim 000=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=-=→→→BT T P T P P P Z P Z RT P T V P RT ,又) A. 0 B. 很高的T 时为0 C. 与第三virial 系数有关D. 在Boyle 温度时为零三、填空题1. 表达纯物质的汽平衡的准则有()()()()sl sv sl sv V T G V T G T G T G ,,==或(吉氏函数)、vapvapsV T HdT dP ∆∆=(Claperyon 方程)、()⎰-=svslV V sl sv s V V P dV V T P ),((Maxwell 等面积规则)。
化工热力学第二三版陈新志课后习题答案
1 / 37第1章绪言一、是否题3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)第2章P-V-T关系和状态方程一、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)3. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
)4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle 温度时,Z >1。
) 7. 纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
)8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。
(错。
它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)10.若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。
(错。
) 11.纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
)12.气体混合物的virial 系数,如B ,C …,是温度和组成的函数。
(对。
)13.三参数的对应态原理较两参数优秀,因为前者适合于任何流体。
(错。
三对数对应态原理不能适用于任何流体,一般能用于正常流体normal fluid )14.在压力趋于零的极限条件下,所有的流体将成为简单流体。
(错。
简单流体系指一类非极性的球形流,如A r 等,与所处的状态无关。
)二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相,。在尚未达到平衡时,,两个相都是均相敞开体系;达到平衡时,则,两个相
都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为
T1和T2,则该过程的21TTVdTCU;同样,对于初、终态压力相等的过程有21TTPdTCH。(对。状态函数的变化仅
决定于初、终态与途径无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T的1mol理想气体从(Pi,Vi)等温可逆地膨胀到(Pf,Vf),则所做的功为
firevVVRTWln(以V表示)或ifrevPPRTWln (以P表示)。
3. 封闭体系中的1mol理想气体(已知igPC),按下列途径由T1、P1和V1可逆地变化至P2,则 A 等容过程的 W= 0 ,Q=1121TPPRCigP,U=1121TPPRCigP,H= 1121TPPCigP。
B 等温过程的 W=21lnPPRT,Q=21lnPPRT,U= 0 ,H= 0 。 C 绝热过程的 W=11211igPCRigPPPRVPRC,Q= 0 ,U=
11211igPCRigP
PPR
VPRC
,
H=1121TPPCigPCRigP。 4. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg。 5. 普适气体常数R=8.314MPa cm3 mol-1 K-1=83.14bar cm3 mol-1 K-1=8.314 J mol-1 K-1 =1.980cal mol-1 K-1。
四、计算题 1. 某一服从P(V-b)=RT状态方程(b是正常数)的气体,在从1000b等温可逆膨胀至2000b,所做的功应是理想气体经过相同过程所做功的多少倍?
解:000722.12ln9991999lnlnln1212VVRTbVbVRTWWigrevEOSrev 2. 对于igPC为常数的理想气体经过一绝热可逆过程,状态变化符合下列方程 )1(1212
PPT
T,其中
igV
igP
C
C
,试问,对于2cTbTaCigP的理想气体,上述关系式又是如何? 以上a、b、c为常数。
解:理想气体的绝热可逆过程,PdVWdUrev
0ln2ln,,0ln0ln122122121212211212221PPRTTcTTbTTa
TTPPVVVVRdTcTbTRaVRddTTRcTbTadVVRTdTRCTT
igP
故又
3. 一个0.057m3气瓶中贮有的1MPa和294K的高压气体通过一半开的阀门放入一个压力恒定为
0.115MPa的气柜中,当气瓶中的压力降至0.5MPa时,计算下列两种条件下从气瓶中流入气柜中的
气体量。(假设气体为理想气体) (a)气体流得足够慢以至于可视为恒温过程;
(b)气体流动很快以至于可忽视热量损失(假设过程可逆,绝热指数4.1)。 解:(a)等温过程 66.11294314.8570005.0294314.8570001112111RTVPRTVPnmol
(b)绝热可逆过程,终态的温度要发生变化
18.24115.02944.114.111212rPPTTK
11.918.241314.8570005.0294314.8570001212111RTVPRTVPnmol
第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临界流体。) 3. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,
所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。(错。如温度大于Boyle温度时,Z>1。) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自由度是
零,体系的状态已经确定。) 5. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。(对。这是纯物质的汽液平衡准则。) 6. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。(错。只有吉氏
函数的变化是零。) 7. 气体混合物的virial系数,如B,C…,是温度和组成的函数。(对。)
二、选择题 1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。参考P-V图上
的亚临界等温线。) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T温度下的过冷纯液体的压力P(A。参考P-V图上的亚临界等温线。) A. >TPs B. <TPs C. =TPs 3. T温度下的过热纯蒸汽的压力P(B。参考P-V图上的亚临界等温线。) A. >TPs B. <TPs C. =TPs 4. 纯物质的第二virial系数B(A。virial系数表示了分子间的相互作用,仅是温度的函数。) A 仅是T的函数 B 是T和P的函数 C 是T和V的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V等温线的正确趋势的virial方程,必须至少用到(A。要表示出等温线在
临界点的拐点特征,要求关于V的立方型方程) A. 第三virial系数 B. 第二virial系数 C. 无穷项 D. 只需要理想气体方程
6. 当0P时,纯气体的PTVPRT,的值为(D。因
0limlim,lim000BTTPTPPPZPZRTPTVPRT,又)
A. 0 B. 很高的T时为0 C. 与第三virial系数有关 D. 在Boyle温度时为零 三、填空题
1. 表达纯物质的汽平衡的准则有slsvslsvVTGVTGTGTG,,或(吉氏函数)、
vapvapsVTHdTdP
(Claperyon方程)、svslVVslsvsVVPdVVTP),((Maxwell等面积规则)。它们能(能
/不能)推广到其它类型的相平衡。 2. Lydersen、Pitzer、Lee-Kesler和Teja的三参数对应态原理的三个参数分别为crrZPT,,、,,rrPT、
,,rrPT和,,rrPT。
3. 对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不同);一定温度下的泡点与露点,
在P-T图上是重叠的(重叠/分开),而在P-V图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区。纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点。
4. 对于三混合物,展开PR方程常数a的表达式,3131)1(ijijjjiijikaayya=
311313233232122121323222121121212kaayykaayykaayyayayay,其中,下标相
同的相互作用参数有332211,kkk和,其值应为1;下标不同的相互作用参数有),,(,,123132232112123132232112处理已作和和和kkkkkkkkkkkk,通常它们值是如何得到?从实验数据拟合得到,在没有实验数据时,近似作零处理。 。
5. 正丁烷的偏心因子=0.193,临界压力Pc=3.797MPa 则在Tr=0.7时的蒸汽压为
2435.0101csPPMPa。
四、计算题 1. 在常压和0℃下,冰的熔化热是334.4Jg-1,水和冰的质量体积分别是1.000和1.091cm3 g-1,且0℃时
水的饱和蒸汽压和汽化潜热分别为610.62Pa和2508Jg-1,请由此估计水的三相点数据。