垃圾热解气化总结

合集下载

热解气化一体技术

热解气化一体技术

热解气化一体技术哎呀,说起热解气化一体技术,这可真是个让人头大的话题。

不过别担心,我尽量用大白话给你讲讲,咱们就像在街边小摊儿上聊天一样,轻松点。

首先,这个技术听起来挺高大上的,其实就是把垃圾或者生物质这些乱七八糟的东西,通过高温加热,让它们分解,变成气体和固体残渣。

这个过程,就像是你把一堆树叶子扔进火里,烧啊烧的,最后就剩下灰烬和烟,对吧?具体来说,热解气化一体技术,就是把这个过程搞得更科学、更环保。

咱们先说说热解,这玩意儿就像是个魔术师,能把那些看似没用的东西,变出有用的东西来。

比如,你把一堆湿哒哒的树枝扔进去,经过热解,就能得到一些油啊、气啊,这些都能当燃料用,多好!然后是气化,这个步骤就像是个清洁工,把热解出来的气体再处理一下,去除那些不好的东西,比如硫啊、氮啊这些污染物。

这样处理过的气体,就能更干净,更环保,用起来也更放心。

我记得有一次,我去参观了一个用这种技术处理垃圾的工厂。

那地方可真大,机器轰隆隆的,但是一点儿也不脏。

他们把一大堆垃圾倒进去,然后通过热解气化一体技术,垃圾就变成了有用的能源。

我当时就想,这技术真是太神奇了,能把垃圾变废为宝。

而且,这个技术还有个好处,就是能减少垃圾填埋场的压力。

你想啊,垃圾填埋场那地方,又臭又占地,还污染环境。

但是用了热解气化一体技术,很多垃圾就能变成能源,就不用填埋了,多好啊!总之,热解气化一体技术,就是把那些看似没用的东西,通过高科技的手段,变成有用的东西。

这不仅环保,还能节约资源,真是一举两得。

下次你再听到这个技术,可别觉得它遥不可及,其实它就在我们身边,默默地改变着我们的生活呢。

(完整版)垃圾热解气化总结,推荐文档

(完整版)垃圾热解气化总结,推荐文档

1. 固废管理的原则减量化:减量化是指在生产、流通和消费等过程中减少资源消耗和废物产生,以及采用适当措施使废物量减少(含体积和重量)的过程。

资源化:将废物直接作为原料进行利用或着对废物进行再生利用,也就是采用适当措施实现废物的资源利用过程,其中再利用是指将废物直接作为产品或者经修复、翻新、再制造后继续作为产品使用,或者将废物的全部或者部分作为其他产品的部件予以使用。

分为三种类型:①保持原有功能和性质,直接回收利用;②不再保持其原有的形态和使用性能,但还保持利用其材料的基本性能,如废金属回收利用、废纸再生、玻璃再生等;③不再保持其原有的形态、使用性能和材料的基本性能,但还保持利用其部分分子特性等如生物质有机垃圾的好氧堆肥、厌氧发酵等。

无害化:在垃圾的收集、运输、储存、处理、处置的全过程中减少以至避免对环境和人体健康造成不利影响。

2. 固废处理方法垃圾焚烧,或称垃圾焚化,是一种废物处理的方法,通过焚烧废物中有机物质,以缩减废物体积。

焚烧与其他高温垃圾处理系统,皆被称为“热处理”。

焚化垃圾时会将垃圾转化为灰烬、废气和热力。

灰烬大多由废物中的无机物质组成,通常以固体和废气中的微粒等形式呈现。

废气在排放到大气中之前,需要去除其中污染气体和微粒。

其余残余物则用于堆填。

在某些情况,焚化垃圾所产生的热能可用于发电。

焚化是其中一种将垃圾转换成能源的技术,其他如气化、等离子弧气化、热解和厌氧消化。

垃圾焚化会减少原来垃圾80%~85%的质量和95%~96%的体积(垃圾在垃圾车里已经过压缩),减少程度取决于可回收材料的成分和其回收的程度,如灰烬中有可回收的金属。

这意味着,尽管焚化不能完全取代堆填,但它却可以大大减少垃圾量。

垃圾车一般在运送垃圾至焚化炉前,会以内置压缩机内压缩以减少垃圾的体积。

或者,未经压缩运输的垃圾可以在填埋场进行压缩,减少体积近70%。

很多国家常在堆填区作简单的垃圾压缩。

另外,垃圾焚烧在处理某些类型的垃圾,如医疗垃圾和一些有害废物时有很大的优势,因为焚烧过程的高温能销毁垃圾中的病原体和毒素。

垃圾热解气化

垃圾热解气化

知识创造未来
垃圾热解气化
垃圾热解气化是一种将固体垃圾通过高温处理转化为气体
燃料的技术。

该过程一般涉及两个步骤:热解和气化。

热解是指在高温条件下,将垃圾中的有机物分解为一系列
气体和固体产物。

这个过程主要发生在没有氧气(氧气限
制条件)的环境中。

热解会产生可燃气体(如甲烷,一氧
化碳等),以及产生固体产物(如焦炭,焦油和灰渣)。

气化是指将热解产生的气体通过反应器进一步转化为有用
气体。

在气化过程中,一些废气和灰渣会进行多种反应,
生成氢气、甲烷等可燃气体。

气化可以在合适条件下生成
高质量的气体,这些气体可以用于发电、热能或其他用途。

垃圾热解气化技术的主要优势包括能够将垃圾转化为可再
生能源,减少废弃物对环境的影响,以及解决固体废弃物
管理的问题。

然而,该技术的应用还面临一些挑战,例如
高温和压力要求、处理过程中产生的副产物处理等。

1。

可燃固废热解气化利用技术

可燃固废热解气化利用技术
减量化处理
通过热解气化过程,可燃固废体积大幅减小,有 利于减少填埋场地占用和降低处理成本。
无害化处理
在高温条件下,可燃固废中的有害物质得以分解, 实现无害化处理,减少对环境的影响。
缺点分析
技术要求较高
热解气化技术需要较高的温度和压力条件,对设备材质和制造工 艺要求较高,增加了投资和运行成本。
气体净化问题
值产品。
应用领域
热解气化技术可应用于城市生活 垃圾、工业固废、农业废弃物等 多种可燃固废的处理和资源化利
用。
热解气化技术概述
技术原理
热解气化技术是在无氧或缺氧条 件下,通过高温加热使可燃固废 中的大分子有机物裂解为小分子 气体,同时回收能量和资源的过
程。
技术优势
热解气化技术具有处理效率高、 二次污染少、资源化利用率高等 优势。通过该技术可将可燃固废 转化为合成气、燃料油等高附加
03
经济发展
热解气化技术的推广应用有助于推动环保产业发展,创造经济效益和就
业机会。
可燃固废现状及问题
01
02
03
产生量大
随着城市化进程的推进和 工业生产规模的扩大,可 燃固废产生量逐年增长, 处理压力日益加大。
处理方式落后
目前可燃固废处理方式以 填埋和焚烧为主,存在占 地面积大、二次污染严重 等问题。
可燃固废热解气化利用技术
目录
• 引言 • 可燃固废热解气化原理及工艺 • 热解气化产物特性及应用 • 热解气化技术优缺点分析 • 热解气化技术应用现状及前景 • 结论与展望
目录
• 引言 • 可燃固废热解气化原理及工艺 • 热解气化产物特性及应用 • 热解气化技术优缺点分析 • 热解气化技术应用现状及前景 • 结论与展望

(完整版)垃圾热解气化项目报告书

(完整版)垃圾热解气化项目报告书

(完整版)垃圾热解气化项目报告书垃圾热解气化项目报告书一、垃圾热解气处理技术简介垃圾热解气是利用垃圾中有机物的热不稳定性,在对其进行加热蒸馏,使有机物产生裂解,经冷凝后形成各种新的气体、液体和固体,从中提取燃料油、可燃气的过程。

在运行过程中所生成的气体含有大量甲烷、一氧化碳和氢气,可以用于工业燃气,具有良好的经济效益。

垃圾热解气技术的环保特点在于:能从根本上解决二噁英的生成,同时减少空气中有毒物质的排放量,将重金属固化并有效回收利用,有利于城市环境的发展。

北京宝能科技有限公司垃圾热解气化技术是针对城市垃圾差异性较大所提出的一套低成本、适合中国国情的城市生活垃圾清洁综合利用技术,主要是让城市生活垃圾在还原性气氛下发生反应,从源头上避免二噁英的生成。

根据垃圾处理过程,可日处理100—2000吨生活垃圾,每吨生活垃圾(干基)最低可产生约1500立方米的燃气,热值约1500大卡/立方米,能够满足一般工业燃气的需要。

而垃圾处理后产生5%―8%体积的固体无机物,可作为生产建筑砌块。

酸性气体作为气化剂在气化炉中得到处理。

清洁处理后的合成气可作为燃料供给锅炉,也可经过高效燃气轮机发电机系统发电。

1.1开发垃圾热解项目的市场背景1.1.1.我国垃圾资源概况垃圾是一种可再生资源,如果能够有效的资源整合利用,能够创造巨大的经济效益,目前政府部门也越来越重视垃圾资源的回收问题。

随着城镇化工业化进程加快,未来我国生活垃圾处理设施的建设力度将大幅增加。

垃圾处理行业拥有着庞大的市场容量,据统计,全球每年排放各类垃圾近5亿吨,中国主要城市年产生活垃圾1.5亿吨,并且还在以每年8%—10%的速度攀升。

建设部2010年调查结果显示,全国600多座城市中,有1/3以上正在陷入垃圾重围,垃圾堆存累计侵占土地面积5亿平方米。

中国城市每年因垃圾造成的损失高达250亿至300亿元。

受垃圾处理技术的制约影响,截至2010年,中国97%的城市垃圾只能采用堆放或填埋的方式简单处理。

污泥热解气化

污泥热解气化

污泥去哪了?污泥热解气化——让污泥从有到无!据笔者看来,现在的污泥处理还未形成行业,污泥的处理技术也五花八门,现有正在使用的处理技术整体水平较低,这与国家的政策导向密不可分,过去的10年里,国家集中完成了全国城镇污水处理基础建设的升级换代,但从顶层设计上就轻视或者忽略了污泥处置的必要性,这直接导致了近几年污泥所造成的环境公害事件层出不穷,好消息是,随着污水处理行业的逐步成熟,污泥处置这项课题也慢慢被提上日程,这直接刺激了污泥处理技术的研究,形成目前污泥处置技术百花齐放,政府对污泥处理减量化的追逐使得目前污泥减量化处置成为热点,但国内许多专家学者对高耗能的污泥干化都持消极态度,污泥的减量化是污泥处置的目标之一,但绝不是终点,污泥的处置要做到减量化、无害化、资源化“三化”合一才是污泥处置的终极目标。

目前全国污泥处理的主流技术仍旧是以减量化为目的,填埋仍旧是主要解决办法,在现在垃圾围城各城市垃圾填埋场都爆棚的现状下,污泥填埋更显尴尬。

笔者认为现在已经到了环境问题倒逼技术升级的地步,在未来的一段时间里,污泥处置技术只有能同时实现“三化”的技术,才能迈进污泥处置行业的门槛,才有可能在即将袭来的污泥处置风暴中占有一席之地,才有可能得到大规模推广应用,比如污泥热解气化技术。

华天污泥热解气化技术是将污泥热解气化作为污泥处置的核心技术,以烘干、造粒、尾气处置、废渣利用为依托的系统工程。

主要目的就是在无臭、无污染的前提下使污泥实现大规模的减量化、无害化、资源化成为现实。

比目前传统技术的优点在于在减量化的前提下,以较低的成本实现污泥的无害化、资源化,污泥热解气化技术在工艺设计上就规避了污染物二恶英类物质的产生条件,系统的高温是臭味和病菌的克星,可以将硫化氢,氨类物质彻底分解,将有害病菌全部杀死,特别是对重金属的稳定化,热解气化技术具有天然优势,系统的高温将污泥中的重金属牢牢地锁在流化的硅酸盐晶体结构中,该晶体异常稳定,在酸碱环境下试验均不会溢出。

垃圾热解气化--生活垃圾处理新方向

垃圾热解气化--生活垃圾处理新方向

专业技术・Professional Skill85 大陆桥视野・2016年第2期热解气化技术是一种新兴的垃圾处理方法。

它将有机物在无氧和缺氧状态下加热,使之分解为可燃气体、可燃油和炭黑。

热解气化所产生的气体、固体和水都能经过处理回收,垃圾处理后的排放量大幅度降低。

垃圾热解气化是固体废物处理的一个新方向,我国的学者也在这方面展开了大量的研究。

1. 研究进展1.1二噁英垃圾直接焚烧易产生二噁英类物质,作为一级致癌物,还具有生殖毒性和遗传毒性。

这也是垃圾焚烧调来的负面影响中最为严重的一种。

2011年的“北京六里屯垃圾焚烧厂事件”凸显了垃圾焚烧对于人们生活的影响[1]。

热解气化技术从二噁英的形成源头解决了这一问题。

二噁英的形成需要四个基本条件:氯、氧、较低温度和催化剂存在。

热解气化反应过程中的高温和缺氧条件都遏制了二噁英的生成。

为避免生产过程中存在的人为操作错误以及设备故障等原因导致问题的发生,对二噁英的研究仍在开展。

倪余文等[2]将研发的二噁英连续采样装置与G4型常规烟道气等速采样器同步采样,通过示范运行,考察该连续采样装置的长期采样性能。

试验表明,2种采样设备同步采集的样品具有一致性,其二噁英指纹、二噁英浓度和毒性当量相符合。

李煜婷等[3]研究表明垃圾烟气从出口到大气环境二噁英类气-固分配存在动态平衡。

1.2 重金属迁移的研究热解处理对固体废弃物的资源化利用程度更高,污染小,能有效控制二噁英等有毒物质的排放。

但是由于固体废弃物组分复杂,废弃物热解后产生的灰渣含有一定量的重金属等污染物,为了使采用热解处理固体废弃物的达到无害化的目的,了解热解过程中重金属的迁移特性十分必要。

董隽等[4]的研究结果表明,高温及还原性条件促进了Cd、Pb及Zn的挥发,而氧化性气氛有利于Cu的迁移;大部分以气相形式挥发的重金属易在降温过程中冷凝并富集于飞灰。

于洁[5]对武汉市某一流化床垃圾焚烧炉产生的底灰和飞灰的物理化学特性的研究表明,重金属主要富含在较细的底灰以及飞灰中;随着底灰粒径的增加,元素镉、铅和锌的析出率大幅增加,而铜的析出率则小幅降低,铅主要存在于残留态中,从而不易析出到自然环境中,而镉则容易析出到自然环境中;根据飞灰的重金属含量分析得出,底灰可以直接填埋并不会对环境造成大的危害,飞灰在填埋前必须进行预处理。

医废气化热解工艺

医废气化热解工艺

医废气化热解工艺医废气化热解工艺是一种将医院废弃物化为能源的技术,具有环保、资源节约、经济实用等特点,已经被广泛应用于医疗废弃物处理行业。

1. 医废气化热解工艺的基本原理所谓医废气化热解工艺,即是将医院废弃物通过高温反应将其化为有机气体和灰渣等物质,达到卫生、环保、能源化的目的。

该工艺基于热解原理,在高温条件下将废物进行加热,使其分解成为燃料气和灰渣。

具体来说,医院废弃物经过收集后,首先进行粉碎和干燥处理,然后将碎料送入气化炉,经过高温加热(约750℃-850℃),化为合成气体,其中还包括一定量的烷烃、芳香化合物、不饱和脂肪酸等,最后得到的废气通过高温燃烧后,能够产生大量的热能。

而产生的灰渣则可以经过净化处理,还可用于制造水泥等建筑材料。

2. 医废气化热解工艺在废弃物处理中的应用医废气化热解工艺在废弃物处理中有着广泛的应用。

首先,它可以解决医院产生的大量废弃物的处理问题,满足一方面的医废处理需求,另一方面为能源公司提供燃料资源,达到节约资源的目的。

其次,该工艺不仅能够取代传统的填埋处理方式,还能避免传统处理方式可能带来的环境污染问题。

更重要的是,气化热解技术本身具有环保性,废气处理问题得到了很好的解决。

而且,医废气化热解工艺在燃烧过程中可以有效地减少废气排放,不仅可以减少大气污染,还可以回收能量,提高能源利用率。

除此之外,该工艺还可以促进环保产业的发展,为可持续发展作出应有的贡献。

3. 医废气化热解工艺的优点和局限性医废气化热解工艺的优点主要包括:① 处理效率高:能够对医院废弃物进行完全的热解,并能予以回收和利用。

② 资源节约:将医院废弃物转化为能源,可实现循环利用,节约资源。

③ 环保性好:气化热解技术适用于高污染废物的处理,废气排放得到很好的控制。

④ 经济实用:医废气化热解工艺不仅能为医院节约处理费用,还能带来燃料收益等,简便高效。

而其局限性则主要是:① 技术复杂:气化热解技术需要高温加热,需要耗费大量的能源,技术难度较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 固废管理的原则减量化:减量化是指在生产、流通和消费等过程中减少资源消耗和废物产生,以及采用适当措施使废物量减少(含体积和重量)的过程。

资源化:将废物直接作为原料进行利用或着对废物进行再生利用,也就是采用适当措施实现废物的资源利用过程,其中再利用是指将废物直接作为产品或者经修复、翻新、再制造后继续作为产品使用,或者将废物的全部或者部分作为其他产品的部件予以使用。

分为三种类型:①保持原有功能和性质,直接回收利用;②不再保持其原有的形态和使用性能,但还保持利用其材料的基本性能,如废金属回收利用、废纸再生、玻璃再生等;③不再保持其原有的形态、使用性能和材料的基本性能,但还保持利用其部分分子特性等如生物质有机垃圾的好氧堆肥、厌氧发酵等。

无害化:在垃圾的收集、运输、储存、处理、处置的全过程中减少以至避免对环境和人体健康造成不利影响。

2. 固废处理方法垃圾焚烧,或称垃圾焚化,是一种废物处理的方法,通过焚烧废物中有机物质,以缩减废物体积。

焚烧与其他高温垃圾处理系统,皆被称为“热处理”。

焚化垃圾时会将垃圾转化为灰烬、废气和热力。

灰烬大多由废物中的无机物质组成,通常以固体和废气中的微粒等形式呈现。

废气在排放到大气中之前,需要去除其中污染气体和微粒。

其余残余物则用于堆填。

在某些情况,焚化垃圾所产生的热能可用于发电。

焚化是其中一种将垃圾转换成能源的技术,其他如气化、等离子弧气化、热解和厌氧消化。

垃圾焚化会减少原来垃圾80%~85%的质量和95%~96%的体积(垃圾在垃圾车里已经过压缩),减少程度取决于可回收材料的成分和其回收的程度,如灰烬中有可回收的金属。

这意味着,尽管焚化不能完全取代堆填,但它却可以大大减少垃圾量。

垃圾车一般在运送垃圾至焚化炉前,会以内置压缩机内压缩以减少垃圾的体积。

或者,未经压缩运输的垃圾可以在填埋场进行压缩,减少体积近70%。

很多国家常在堆填区作简单的垃圾压缩。

另外,垃圾焚烧在处理某些类型的垃圾,如医疗垃圾和一些有害废物时有很大的优势,因为焚烧过程的高温能销毁垃圾中的病原体和毒素。

综合而言,垃圾焚烧处理的减量化效果最好,但存在燃烧产生污染物的环境风险。

卫生填埋法是指采取防渗、铺平、压实、覆盖等措施对城市生活垃圾进行处理和对气体、渗滤液、蝇虫等进行治理的垃圾处理方法。

该方法采用底层防渗、垃圾分层填埋、压实后顶层覆盖土层等措施,使垃圾在厌氧条件下发酵,以达到无害化处理。

卫生填埋处理是垃圾处理必不可少的最终处理手段,也是现阶段我国垃圾处理的主要方式。

科学合理地选择卫生填埋场场址,可以有利于减少卫生填埋对环境的影响。

场址的自然条件符合标准要求的,可采用天然防渗方式。

不具备天然防渗条件的,应采用人工防渗技术措施。

场内实行雨水与污水分流,减少运行过程中的渗沥水产生量,并设置渗沥水收集系统,将经过处理的垃圾渗沥水排入城市污水处理系统。

不具备排水条件的,应单独建设处理设施,达到排放标准后方可排入水体。

渗沥水也可以进行回流处理,以减少处理量,降低处理负荷,加快卫生填埋场稳定化。

设置填埋气体导排系统,采取工程措施,防止填埋气体侧向迁移引发的安全事故。

尽可能对填埋气体进行回收和利用,对难以回收和无利用价值的,可将其导出处理后排放。

填埋时应实行单元分层作业,做好压实和覆盖。

填埋终止后,要进行封场处理和生态环境恢复,继续引导和处理渗沥水、填埋气体。

卫生填埋技术开始于20世纪60年代,它是在传统的堆放、填坑基础上,处于保护环境的目的而发展起来的一项工程技术。

卫生填埋的处理能力大,成本较低,但是占用土地,选址困难,直接产生的填埋气主要成分为甲烷,容易发生爆炸等危险。

目前大多填埋厂将填埋气排空,不仅提高了温室气体的排放,而且浪费了能源。

固体废弃物热解是指在无氧或缺氧条件下,使可燃性固体废物在高温下分解,最终成为可燃气体、油、固形碳的化学分解过程,是将含有有机可燃质的固体废弃物置于完全无氧的环境中加热,使固体废弃物中有机物的化合键断裂,产生小分子物质(气态和液态)以及固态残渣的过程。

固体废物热解利用了有机物的热不稳定性,在无氧或缺氧条件下使得固体废物受热分解。

热解法与焚烧法相比是完全不同的两个过程,焚烧是放热的,热解是吸热的;焚烧的产物主要是二氧化碳和水,而热解的产物主要是可燃的低分子化合物:气态的有氢、甲烷、一氧化碳,液态的有甲醇、丙酮、醋酸、乙醛等有机物及焦油、溶剂油等,固态的主要是焦炭或碳黑。

焚烧产生的热能量大的可用于发电,量小的只可供加热水或产生蒸汽,就近利用。

而热解产物是燃料油及燃料气,便于贮藏及远距离输送。

热分解过程由于供热方式、产品状态、热解炉结构等方面的不同,热解方式各异:1.按供热方式可分成内部加热和外部加热。

外部加热是从外部供给热解所需要的能量。

内部加热是供给适量空气使可燃物部分燃烧,提供热解所需要的热能。

外部供热效率低,不及内部加热好,故采用内部加热的方式较多。

2.按热分解与燃烧反应是否在同一设备中进行,热分解过程可分成单塔式和双塔式。

3.按热解过程是否生成炉渣可分成造渣型和非造渣型。

4.按热解产物的状态可分成气化方式、液化方式和碳化方式。

5.按热解炉的结构将热解分成固定层式、移动层式或回转式。

由于选择方式的不同,构成了诸多不同的热解流程及热解产物。

综合而言,热解方法适用于城市固体废弃物、污泥、工业废物如塑料、橡胶等。

热解法其优点为产生的废气量较少,能处理不适于焚烧和填埋的难处理物,能转换成有价值的能源,减少焚烧造成的二次污染和需要填埋处置的废物量。

热解处理缺点是技术复杂,投资巨大。

3. 热解的减量化、资源化与无害化固废的减量比是衡量减量化的重要指标,减量比为处理后残余固体量/固废量。

固废热解过程中,有机物热解为合成气,无机物成为飞灰和炉渣,因此减量化处理是针对飞灰和炉渣的回收利用,针对飞灰与炉渣的处理方式主要是熔融技术,在高温下使得炉渣熔融液化,金属由于重力较大,沉积在熔融体液体的底部,上部为无害的玻璃体,通过激冷的方式使之冷却后,金属被回收,玻璃体制成建筑材料,从而实现接近100%的回收利用。

资源化是固废热解的推进因素,针对热解,能量利用率是重要的指标,利用效率越高,收益越高,焚烧能量利用率为20~30%,而垃圾热解的能量利用率高达80%。

固废无害化关键点在于烟气与飞灰中二噁英的含量,是工艺处理的难点与重点。

二噁英生成的温度区间为200-400℃之间,而当温度高于850℃,将会破坏二噁英结构,将其裂解为小分子有机物与HCl,HCl可以通过碱液吸收除去。

实现二噁英的国内排放指标的条件为3T,即温度(temperature)、时间(time)、湍流(turbulence)。

同时从炉内释放后,需要快速降低温度至200℃以下。

通常,生活垃圾焚烧炉中的烟气冷却速率在100℃/s-200℃/s范围内,对应炉膛出口二恶英的浓度一般为5ng1-TEQ/m3.要达到低于0.1ng1-TEQ/m3标准,烟气冷却速率必须在500℃/s-1000℃/s。

3. 固废热解技术3.1 流化床气化固体废弃物难以利用传统气化炉,主要原因在于垃圾热值较低,为维持炉内高温,稳定炉内工况,需要掺混大量的煤。

而流化床由于炉内存有大量高温底料与循环分离下的高温飞灰,能够燃烧低热值垃圾,同时可以实现炉内脱硫脱酸。

垃圾经过分选、破碎为10mm以下,利用给料装置,加入流化床内,有机物在炉内高温物料与湍流的作用下,快速升温气化,而无机物成为大块炉渣沉在底部,由于底料在高温炉内长时间停留,进行高温无害化处理,大块炉渣从排渣口排出炉内,经冷却成为无害炉渣。

飞灰被旋风分离器捕集,通过返料器送回炉内。

以此保证炉内物料平衡。

流化床炉内温度一般维持在850~950℃之间,且处于还原性气氛,能够有效抑制二噁英的产生。

在炉内物料中加入CaCO3更能够实现炉内脱酸,从源头上降低了有害气体的产生。

目前,垃圾流化床气化系统有日本荏原双塔循环式流动床热解工艺。

优点是燃烧的废气不进入产品气体中,因此可得高热值燃料气(1.67×104~1.88×104kJ/m3);在燃烧炉内热媒体向上流动,可防止热媒体结块;因炭燃烧需要的空气量少,向外排出废气少;在硫化床内温度均一,可以避免局部过热;由于燃烧温度低,产生的NOx少,特别适合于处理热塑性塑料含量高的垃圾的热解;可以防止结块。

图1 双塔循环式流动床热解工艺3.2 等离子体气化等离子体(Plasma)技术最早是由美国科学家Lang-muir于1929年在研究低气压下汞蒸气中放电现象时提出的。

等离子体技术应用于污染治理的研究开始于20世纪70年代。

90年代,美国、加拿大、德国等发达国家将该技术应用于废物处理并取得了不俗的业绩。

等离子体是物质的第四态,是一种由自由电子和带电离子为主要成分的物质形态。

等离子体可分为高温等离子体和低温等离子体,低温等离子体又分为热等离子体和冷等离子体,热等离子体温度在103~106 K,接近热力学平衡,电子温度和重粒子温度相同。

等离子气化技术的原理,简而言之,即利用等离子体的高温高能,在气化剂的辅助作用下,将垃圾废物进行高温气化和熔融,垃圾中的有机物被气化形成以CO 和H2为主的合成气,而无机物则被熔融后急冷形成无害的玻璃体渣。

等离子体技术分为直接等离子体气化与气化+等离子体重整技术。

直接等离子体气化,纯热解技术,电耗较高,1000℃以上。

等离子体直接作用在垃圾上,气化过程中加入少量空气或水蒸气作为氧化剂和气化剂,气体产物以CO和H2为主。

气化+等离子体重整技术,垃圾首先在650℃左右的常规气化炉内热解形成合成气,等离子体(900℃)作用在合成气上,使之重整,可有效降低能耗和气体焦油量3.3 熔融气化技术熔融气化技术。

垃圾在贫氧条件下气化,生产可燃气体;飞灰或底渣经过高温熔融固化处理后作为水泥、铺路砖等原料,不仅能欧股将重金属稳定在晶相中而不会浸出,彻底分解二噁英,符合固废处理的减量化、资源化、无害化的要求。

分为间接熔融气化技术和两步法气化熔融(热分选技术)、直接气化熔融技术。

间接熔融气化技术先在传统炉内气化,而后将灰渣置于1350-1500℃的熔融炉内进行高温熔融处理,以消除灰渣中的二噁英,因此也成为灰渣熔融技术。

充分利用了原有的垃圾气化装置,弥补了传统的不足,但二者缺乏有机的联系,紧密性差;两步法气化熔融技术先将固废在500至600℃下气化,形成可燃气体和金属残留物,然后再进行可燃气焚烧的高温熔融技术;直接气化熔融是指固废的干燥、气化、燃烧和灰渣的熔融等过程均在同一炉内进行,工艺简单,工程投资和运行费用低。

4. 公司工艺分析(1)BellwetherBellwether公司利用(Integrated Multifuel Gasification)IMG技术进行垃圾气化发电,工艺流程图如图1所示,其核心技术为等离子体气化技术。

相关文档
最新文档